跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/09 11:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳毓君
研究生(外文):Yuh-Jiun Chen
論文名稱:連續性與間歇性行走運動之能量消耗情形-三度空間加速規與實測耗氧量
論文名稱(外文):The Energy Expenditure during Continuous and Intermittent Walking— RT3 Triaxial Accelerometer and Indirect Calorimetry
指導教授:傅麗蘭傅麗蘭引用關係
學位類別:碩士
校院名稱:國立體育學院
系所名稱:運動傷害防護研究所
學門:民生學門
學類:運動科技學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:78
中文關鍵詞:間歇性運動連續性運動三度空間加速規能量消耗
外文關鍵詞:Intermittent exerciseContinuous exerciseEnergy expenditureTriaxial accelerometer
相關次數:
  • 被引用被引用:7
  • 點閱點閱:515
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:1
研究目的︰本實驗目的是為探討RT3三度空間加速規量化身體活動的能量消耗之準確度及可能的限制,並進一步探討使用RT3三度空間加速規在比較連續與間歇兩種不同運動型式的可行性。另一目的是在比較連續與間歇的兩種運動方式於運動期和恢復期能量消耗是否有所差異。方法︰以20位平均23.6 ± 2.3歲的年輕成人為對象,進行三項跑步機行走測試,同時以間接量熱計和RT3三度空間加速規測量在跑步機上行走時的能量消耗:(一)使用Bruce運動測驗,測試直到85%年齡預估之最大心跳率為止,(二)受試者隨機在三種不同速度、坡度跑步機上行走(共九種測試,速度分別為2、3、4 mph,坡度分別為0 %、3.5 %、7 %),每次行走5分鐘,(三)受試者於無坡度的跑步機上以4 mph的速度行走,隨機進行連續性(行走30分鐘後,坐在椅子上休息30分鐘)和間歇性行走(行走三次,每次行走10分鐘後皆坐在椅子上休息10分鐘)。實驗結果以SPSS/PC 10.0軟體分析。結果︰RT3三度空間加速規所評估的能量消耗和向量大小,分別與間接量熱計有顯著相關(r=.8, p<.01, r=.65,p<.01)。若分別比較在0%、3.5%、7%三種不同的跑步機坡度時,其相關分別為r=.94, .78和r=.95, .77和r=.94, .76 (p值全都<.01),此結果顯示RT3所評估的能量消耗和向量大小對於速度的變化,與間接量熱計有高度的相關。而在2、3、4 mph三種不同的跑步機速度時,其相關則分別為r=.26 (p<.05), -.42 (p<.01)和r=.39 (p<.01), -.27(p<.05)和r=.41 (p<.01), -.27(p<.05),顯示RT3所評估的能量消耗和向量大小對於坡度的變化,與間接量熱計的相關性較低。此外,RT3所評估的能量消耗和向量大小、及間接量熱計三者分別都顯示在三種不同的速度下有顯著差異(p<.05),可見RT3與間接量熱計同樣能分辨不同行走速度時的身體活動及能量消耗之差異。對於三種不同的坡度差異結果,間接量熱計有顯著差異(p<.05),但RT3則沒有顯著差異,表示對於不同坡度時的能量消耗或身體活動差異,間接量熱計可以分辨,而RT3則無法辨別。評估連續與間歇性行走活動時,RT3評估的能量消耗(kcal)和間接量熱計測得耗氧量(ml)有顯著相關,在運動期為r=.73,運動後恢復期的相關較低(r=.59),評估全部的總能量消耗之相關為r=.80 (p<.01)。比較連續與間歇性行走的能量消耗顯示,累計相同運動和休息時間的總能量消耗在兩種方式皆無顯著差異(p>.05),運動期能量消耗也無顯著差異(p>.05);而在運動後的恢復期能量消耗,間歇地行走顯著大於連續性行走(p<.05)。結論:RT3三度空間加速規測量年輕成人在跑步機上行走時的能量消耗,可以有效感應速度變化,但對坡度變化較不敏感。雖有其應用上限制,對於行走相關的研究或臨床評估,仍是方便又有效的能量消耗評估工具,本研究中的連續與間歇行走運動即能適用。在強度固定並累積相同運動時間的情形下,多次的間歇性運動可以和一次連續的運動累積相同的能量消耗,並在運動後恢復期有高於連續性運動的能量消耗,而加總的總能量消耗則在兩種運動方式是相同的。不同需求的運動者可以選擇適合自己的運動方式,而對於其他的運動效益,或是在不同的年齡層,連續與間歇性的運動是否能達到相同效果,則須更多的研究探討。
Purposes: The purposes of this study were (1) to investigate the validity of a triaxial accelerometer for measuring energy expenditure during treadmill walking. (2) to compare the oxygen consumption during continuous and intermittent treadmill walking. Method: Twenty young and apparently healthy subjects with mean age of 23.6 ± 2.3 years were recruited to participate in this study. The triaxial accelerometer (RT3, Stayhealthy, Inc.) and indirect calorimetry (SensorMedics, Vmas 29) were used simultaneously to measure the energy expenditure during exercise. All subjects participated in three treadmill tests: (1) using Bruce protocol to test heart rate predicted maximal oxygen consumptions. (2) randomly walked on treadmill under 9 conditions (speed 2, 3, 4 mph combined with slope 0%, 3.5% and 7 %). Each exercise lasted for 5 minutes and there were at least 5 minutes rest time in between. (3) randomly participated in continuous treadmill walking (4 mph, 30 minutes exercise followed by 30 minutes rest) and intermittent treadmill walking (4 mph, 10 minutes exercise followed by 10 minutes rest and repeated 3 times). SPSS/PC 10.0 were used for statistic analysis. Results: RT3 energy consumption vs. indirect calorimetry and RT3 vector magnitude vs. indirect calorimetry are both highly correlated (r = .8, p < .01, r = .65, p < .01). Under 0 %、3.5 %、7 % three different slopes, correlations between RT3 energy consumption and vector magnitude vs. indirect calorimetry are r = .94, .78, r = .95, .77, and r = .94, .76 (p all < .01). While under 2, 3, 4 mph three different speed, correlations between RT3 energy consumption and vector magnitude vs. indirect calorimetry are r = .26 (p < .05), - .42 (p < .01), r = .39 (p < .01), - .27(p < .05), and r = .41 (p < .01), - .27(p < .05). As for continuous and intermittent exercise measures, RT3 energy consumption vs. indirect calorimetry is significant correlated during total energy expenditure (r = .80), with a higher correlation during exercise (r = .73) than rest (r = .59). The results of energy expenditure between continuous and intermittent exercise suggest that there is no significant difference in total oxygen consumption (t = - .68, p> .05) and in exercise (t = .63, p > .05). Although there is significant difference in post exercise oxygen consumption between continuous and intermittent exercise (t = - 5.06, p < .05). Conclusions: RT3 is valid in evaluating energy consumption during treadmill walking, although it is more sensitive to change of speed rather than change of slope. Intermittent exercise could generate more post-exercise oxygen consumption and is a favorable choice for many populations. Further researches are needed to investigate differences between continuous and intermittent exercise under different modes of exercises and in different populations.
第一章 緒 論---------------------------------------------- 1
第一節 研究動機------------------------------------------ 1
第二節 研究目的------------------------------------------ 3
第三節 研究假設------------------------------------------ 3
第四節 名詞解釋與操作型定義---------------------------- 4
第二章 文獻探討------------------------------------------ 6
第一節 身體活動評估方法簡介---------------------- 6
第二節 電子測量儀器種類簡介---------------------- 9
第三節 Tritrac三度空間加速規信效度之研究-------- 17
第四節 三度空間加速規臨床應用之研究-------------- 20
第五節 影響運動後恢復期能量消耗的相關文獻-------- 31
第三章 研究方法------------------------------------------ 34
第一節 RT3三度空間加速規效度的檢測-------------- 34
第二節 連續性與間歇性走路運動實驗------------------- 36
第四章 結果------------------------------------------------- 39
第一節 RT3三度空間加速規效度的檢測結果--------- 39
第二節 連續性與間歇性走路運動實驗結果------------ 42
第五章 討論------------------------------------------------- 46
第一節 RT3三度空間加速規效度的檢測-------------- 46
第二節 連續性與間歇性走路運動實驗------------------ 50
第六章 結論與建議--------------------------------------- 57
參考文獻------------------------------------------------------ 58
附錄------------------------------------------------------------ 64
附錄一 受試者同意書----------------------------------- 64
附錄二 個人資料表------------------------------------- 67
表 目 錄

表2-1 不同身體活動測量電子儀器之比較------------- 23
表2-2 身體活動測量電子儀器之信效度研究------------ 25
表2-3 Tritrac三軸加速規信效度的相關研究---------- 28
表2-4 Tritrac三軸加速規臨床應------------------- 30
表3-1 Bruce運動測驗------------------------------- 37
表4-1 受試者基本資料(一)---------------------------------- 39
表4-2 全部的跑步機測試中RT3與間接量熱計之相關性- 40
表4-3 不同跑步機坡度時RT3與間接量熱計之相關性--- 40
表4-4 不同跑步機速度時RT3與間接量熱計之相關性--- 41
表4-5 不同跑步機速度下的身體活動與能量消耗差異結--- 42
表4-6 不同跑步機坡度下的身體活動與能量消耗差異結--- 42
表4-7 受試者基本資料(二)------------------------------------ 43
表4-8 連續性與間歇性行走的總能量消耗差異---------- 44
表4-9 連續性與間歇性行走的運動期能量消耗差異------- 44
表4-10 連續性與間歇性行走的恢復期能量消耗差異----- 44
表4-11 全部測試中RT3和間接量熱計之相關----------- 45

圖 目 錄

圖1-1 TDEE的組成分布----------------------------- 4
圖3-1 RT3正面觀---------------------------------- 34
圖3-2 RT3及電腦連接座---------------------------- 34
一、中文部分
李明憲、林旭龍、呂昌明(民91)。四種簡易身體活動測量問卷效度、信度之探討—以RT3 Tri-axial三度空間加速器為效標。衛生教育學報,17,1-14。
呂昌明、林旭龍、黃奕清、李明憲、王淑芳(民90)。身體活動自我報告量表之效度及信度的研究—以TriTrac-R3D三度空間加速器為效標。衛生教育學報,15,99-114。
楊忠祥、林正常(民88)。運動強度和持續時間對恢復期能量消耗的影響。中華民國體育學會體育學報,27,99-108。

二、英文部分
Almuzaini, K.S., Potteiger, J.A., & Green, S.B. (1998). Effects of split exercise sessions on excess postexercise oxygen consumption and resting metabolic rate. Can J Appl Physiol, 23(5), 433-443.
American College of Sports Medicine.(1995). ACSM's guidelines for exercise testing and exercise prescription. (5th ed.). Baltimore: Baltimore: Lippincott Williams & Wilkins.
Bassett, D.R., JR., Ainsworth, B.E., Leggett, S.R., Mathien, C.A., Main, J.A., Hunter, D.C., & Duncan, G.E. (1996). Accuracy of five electronic pedometers for measuring distance walked. Med Sci Sports Exerc, 28(8), 1071-1077.
Blair, S.N. (1993). Physical activity, physical fitness, and health. Res Q Exerc Sport, 64, 365.
Bouten, C.V., Westerterp, K.R., Verduin, M., & Janssen, J.D. (1994). Assessment of energy expenditure for physical activity using a triaxial accelerometer. Med Sci Sports Exerc, 26(12), 1516-1523.
Bouten, Carlijn, C.V., Wihelmine, P.H.G., Verboeket-Van De Venne, Westerterp, K.R, Verduin, M., & Janssen, J.D. (1996). Daily physical activity assessment: comparison between movement registration and doubly labeled water. J Appl Physiol, 81(2), 1019-1026.
Dawson, B., Straton, S., & Randall, N. (1996). Oxygen consumption during recovery from prolonged submaximal cycling below the anaerobic threshold. J Sports Med Phys Fitness, 36, 77-84.
Eston, R.G., Rowlands, A.V., & Ingledew D.K. (1998). Validity of heart rate, pedometry, and accelerometry for predicting the energy cost of children’s activities. J Appl Physiol, 84(1), 362-371.
Fehling, P.C., Smith, D.L., Warner, S.E., & Dalsky, G.P. (1999). Comparison of accelerometers with oxygen consumption in older adults during exercise. Med Sci Sports Exerc, 31(1), 171-175.
Freedson, P.S. & Miller, K. (2000). Objective monitoring of physical activity using motion sensors and heart rate. Res Q Exerc Sport, 71(2), 21-29.
Fulton, J.E., MÂsse, L.C., Tortolero, S.R., Watson, K.B., Heesch, K.C., Kohl Ⅲ, H.W., Blair, S.N., & Caspersen, C.J. (2001). Field evaluation of energy expenditure from continuous and intermittent walking in women. Med Sci Sports Exerc, 33(1), 163-170.
Gaesser, G.A., & Brooks, G.A. (1984). Metabolic bases of excess post-exercise oxygen consumption: a review. Med Sci Sports Exerc, 16(1), 29-43.
Hendelman, D., Miller, K., Baggett, C., Debold, E., & Freedson, P. (2000). Validity of accelerometry for the assessment of moderate intensity physical activity in the field. Med Sci Sports Exerc, 32(9), Suppl., s442-s449.
Jakicic, J.M., Wing, R.R., Butler, B.A., & Robertson, R.J. (1995). Prescribing exercise in multiple short bouts versus one continuous bout: effects on adherence, cardiorespiratory fitness, and weight loss in overweight women. Int J Obes Relat Metab Disord, 19, 893-901.
Johnson, R.K., Russ, J., & Goran, M.I. (1998). Physical activity related energy expenditure in children by doubly labeled water as compared with the Caltrac accelerometer. Int J Obes Relat Metab Disord, 22, 1046-1052.
Kaminsky, L.A., Padjen, S., & LaHam-Saeger, J. (1990). Effect of split exercise sessions on excess post-exercise oxygen consumption. Br J Sp Med, 24(2), 95-98.
Kochersberger, G., McConnell, E., Kuchibhatla, M.N., & Pieper, C. (1996). The reliability, validity, and stability of a measure of physical activity in the elderly. Arch Phys Med Rehabil, 77, 793-795.
Lemmer, J.T., Ivey, F.M., Ryan, A.S., Martel, G.F., Hurlbut, D.E., Metter, J.E., Fozard, J.L., Fleg, J.L., & Hurley, B.F. (2001). Effect of strength training on resting metabolic rate and physical activity: age and gender comparisons. Med Sci Sports Exerc, 33(4), 532-541.
Maresh, C.M., Abraham, A., De Souza, M.J., Deschenes, M.R., Kraemer, W.J., Armstrong, L.E., Maguire, M.S., Gabaree, C.L., & Hoffman, J.R. (1992). Oxygen consumption following exercise of moderate intensity and duration. Eur J Appl Physiol, 65, 421-426.
Matthews, C.E. & Freedson, P.S. (1995). Field trial of a three-dimensional activity monitor: comparison with self report. Med Sci Sports Exerc, 27(7), 1071-10778.
McArdle, W.D., Katch, F.I., & Katch, V.L. (2001). Exercise physiology: Energy, nutrition, and human performance. (5th ed.). Baltimore: Lippincott Williams & Wilkins.
Melanson, E.L. & Freedson, P.S. (1996). Physical activity assessment: a review of methods. Critical Reviews in Food Science and Nutrition, 36(5), 385-396.
Montoye, H.J., Kemper, H.C.G., Saris, W. J.M., & Washburn, R.A. (1996). Measuring physical activity and energy expenditure. Champaign, IL: Human Kinetics.
NG, A.V. & Kent-Braun, J.A. (1997). Quantitation of lower physical activity in persons with multiple sclerosis. Med Sci Sports Exerc, 29(4), 517-523.
Powers, S.K. & Howley, E.T. (2001). Exercise physiology: Theory and application to fitness and performance. (4th ed.). Boston: McGraw-Hill Companies, Inc.
Quinn, T.J., Vroman, N.B., & Kertzer, R. (1994). Postexercise oxygen consumption in trained females: effect of exercise duration. Med Sci Sports Exerc, 26(7), 908-913.
Sedlock, D.A., Fissinger, J.A., & Melby, C.L. (1989). Effect of exercise intensity and duration on postexercise energy expenditure. Med Sci Sports Exerc, 21(6), 662-666.
Sherman, W.M., Morris, D.M., Kirby, T.E., Petosa, R.A., Smith, B.A., Frid D.J., & Leenders, N. (1998). Evaluation of a commercial accelerometer (Tritrac-R3D) to measure energy expenditure during ambulation. Int J Sports Med, 19, 43-47.
Smith, J. & Mc Naughton, L. (1993). The effects of intensity of exercise on excess postexercise oxygen consumption and energy expenditure in moderately trained men and women. Eur J Appl Physiol, 67, 420-425.
Steele, B.G., Holt, L., Belza, B., Ferris, S., Lakshminaryan, S., & Buchner, D.M. (2000). Quantitating physical activity in COPD using a Triaxial accelerometer. Chest, 117(5), 1359-1367.
Trost, S.G., Ward, D.S., Moorehead, S.M., Watson, P.D., Riner, W., & Burke, J.R. (1998). Validity of the computer science and applications (CSA) activity monitor in children. Med Sci Sports Exerc, 30(4), 629-633.
Welk, G.J., Blair, S.N., Wood, K., Jones, S., & Thompson, R.W. (2000). A comparative evaluation of three accelerometry-based physical activity monitors. Med Sci Sports Exerc, 32(9), Suppl., s489-s497.
Welk, G.J. & Corbin, C.B. (1995). The validity of the Tritrac-R3D activity monitor for the assessment of physical activity in children. Res Q Exerc Sport, 66(3), 202-209.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top