跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.223) 您好!臺灣時間:2025/10/08 11:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉惠平
論文名稱:利用最佳化參數與主成分分析預測人臉老化之研究
論文名稱(外文):Predict Human Facial Aging by Multi-stages of Principal Component Analysis
指導教授:林奕成林奕成引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:多媒體工程研究所
學門:電算機學門
學類:軟體發展學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:31
中文關鍵詞:人臉老化主成分分析
外文關鍵詞:Human Facial AgingPCA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
人臉預測技術經常被廣泛運用在各個領域上,例如:醫藥科學、法醫檢測、臉部模擬及人臉辨識。本篇論文提出一個基於擷取人臉的特徵進行數學統計分析的人臉老化模擬方法。
目前現有的年齡估測方法有WAS (Weighted Appearance Specific), AAS (the Appearance and Age Specific Classifiers), 和AGES (AGing pattErn Subspace)等。
我們採用AGES的年齡估測技術,在加上父母臉部資訊以增強個人老化的預測準確度。由於使用 FG-NET 人臉資料庫進行訓練,大多數的年齡的資料有所欠缺,用 PCA with missing data 來填補預測的結果欠缺不足。此外由於數張資料庫的人臉影像過於模糊或解析度甚低,這種情形使得能夠取得臉部細節紋理的資料更少。因此我們考慮增加數張父母成長影像,藉由父母臉部的細節加強以合成適當的臉部紋理,實作且比較其差異。
Human face prediction is an interesting task in many applications, such as medical science, forensic science, face synthesis, and identification. This thesis proposes a statistic method based on human face features, which is used for face aging simulation.
The existing age estimation methods are WAS (Weighted Appearance Specific), AAS (the Appearance and Age Specific Classifiers), and AGES (AGing pattErn Subspace) etc presently.
We adopt a method: parent-enhanced aging prediction for repairing the aging prediction result from AGES method. Since we use the FG-NET face image database and train them by PCA with missing data to predict aging human face, the results are not appropriate for those images which are not from the training samples. In addition, several face images of FG-NET database are blurred and lack details for aging texture. So we consider annexing several images from one’s parents to enhance his/her image detail display in our experiment.
Our experiment shows that the proposed method achieves more faithful and detailed aging simulation.
Chinese Abstract II
English Abstract III
Contents IV
List of Figures V
Chapter1. Introduction 1
Chapter2. Related Works 3
Chapter3. Facial Shape Prediction 6
3.1 Form the Personal Age Subspace 6
3.2 PCA with missing data 6
3.3 Add the Images of the Parents 7
Chapter4. Facial Texture Synthesis 12
4.1 Form the Texture Prototypes 12
4.2 Iterate to find the Optimal Synthesis Parameters 13
Chapter5. Experiment and Result 17
5.1 The Result of AGES Prediction and Texture Synthesis 17
5.2 Application: Child Face Prediction by Parent’s Photos 24
Chapter6. Discussion and Future Work 28
6.1 Discussion 28
6.2 Future work 28
Reference 29
[BN92] Thaddeus Beier, Shawn Neely, “Feature-Based Image Metamorphosis” SIGGRAPH 1992
[CET98] T. F. Cootes, G. J. Edwards, and C. J. Taylor, “Active appearance models,” in Proc. ECCV, 1998, vol. 2, pp. 484–498.
[CR95] Yves Chauvin and David E. Rumelhart, Backpropagation: theory, architectures, and applications, L. Erlbaum Associates Inc. USA, 1995
[FG-NET] http://sting.cycollege.ac.cy/»alanitis/fgnetaging/index.htm. The FG-NET Aging Database.
[FH06] Y. Fu and T. S. Huang, “Human age estimation with regression on discriminative aging manifold,” IEEE Trans. Multimedia, to be published. This paper appears in: Multimedia, IEEE Trans. Vol. 10, no. 4 pp. 578-584, June 2008
[FZ06] Y. Fu and N. Zheng, “M-face: An appearance-based photorealistic model for multiple facial attributes rendering,” IEEE Trans. Circuits Syst. Video Technol., vol. 16, no. 7, pp. 830–842, 2006.
[GDJ07] Philip E. GILL, San Diego, La Jolla, "User’s Guide for SNOPT Version 7: Software for Large-Scale Nonlinear Programming", CA 92093-0112, USA Walter MURRAY and Michael A. SAUNDERS Systems Optimization Laboratory, 2007
[GFDH08] Guodong Guo, Yun Fu, Charles R. Dyer, and Thomas S. Huang, “Image-Based Human Age Estimation by Manifold Learning and Locally Adjusted Robust Regression”, IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 17, NO. 7, JULY 2008
[GZS06] Xin Geng, Zhi-Hua Zhou, and Kate Smith-Miles, “Automatic Age Estimation Based on Facial Aging Patterns”, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 29, NO. 12, 2006 Pages: 271 - 276, 2001
[GZZLD06] X. Geng, Z.-H. Zhou, Y. Zhang, G. Li, and H. Dai, “Learning from facial aging patterns for automatic age estimation,” in Proc. ACMConf. Multimedia, 2006, pp. 307–316.
[HCG2008] Daniel Hubball, Min Chen and Phil W. Grant, Swansea University(UK),"Image-based Aging Using Evolutionary Computing", EUROGRAPHICS 2008, Volume 27 (2008), Number 2
[JOL02] I.T. Jolliffe, Principal Component Analysis, second ed. Springer-Verlag, 2002.
[LB00] A. Leonardis and H. Bishof, “Robust Recognition Using Eigenimages,” Computer Vision and Image Understanding, vol. 78, no. 1, pp. 99-118, 2000.
[LDC04] A. Lanitis, C. Draganova, and C. Christodoulou, “”Comparing Different Classifiers for Automatic Age Estimation,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 34, no. 1, pp. 621–628, Feb. 2004.
[LSZ01] Zicheng Liu, Ying Shan, and Zhengyou Zhang ,”Expressive Expression Mapping with Ratio Images”(ERI) Proceedings of ACM SIGGRAPH 2001. New York, USA: ACM, 2001:271-276.
[LTC02] A. Lanitis, C.J. Taylor, and T. Cootes, “Toward Automatic Simulation of Aging Effects on Face Images,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 24, no. 4, pp. 442-455, Apr. 2002.
[SZSC09] Jinli Suo, Song-Chun Zhu , Shiguang Shan and Xilin Chen. “A Compositional and Dynamic Model for Face Aging”, JOURNAL OF LATEX CLASS FILES, VOL. *, NO. *, JANUARY 2009
[XCZ05] Z. J. Xu, H. Chen, S. C. Zhu, ”A high resolution grammatical model for face representation and sketching". CVPR,2005.
[YWHT09] S. Yan, H. Wang, T. S. Huang, and X. Tang, “Ranking with uncertain labels,” in Proc. IEEE Conf. Multimedia and Expo, 2007, pp. 96–99.
[YWTH07] S. Yan, H.Wang, X. Tang, and T. S. Huang, “Learning auto-structured regressor from uncertain nonnegative labels,” presented at the IEEE
Conf. ICCV, 2007.
[RC06a] N. Ramanathan and R. Chellappa, “Modeling age progression in young faces,” in Proc. IEEE Conf. CVPR, 2006, pp. 387–394.
[RC06b] N. Ramanathan and R. Chellappa, “Face verification across age progression,” IEEE Trans. Image Process., vol. 15, no. 11, pp. 3349–3361, Nov. 2006.
[SZSC09] J. Suo, F. Min, S. Zhu, S. Shan, and X. Chen, “A multi-resolution dynamic model for face aging simulation,” presented at the IEEE Conf. CVPR, 2007.
[WZW77] A.P. Dempster, N.M. Laird, D.B. Rubin, Harvard University and Educational Testing service, "Maximum Likelihood from Incomplete Data via the EM Algorithm". Journal of the Royal Statistical Society, Series B (Methodological), Vol. 39, No. 1, 1977 http://www.jstor.org/stable/2984875
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top