跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.172) 您好!臺灣時間:2025/09/11 01:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李柏毅
研究生(外文):P.Y.Lee
論文名稱:量產奈米碳管及其做為色素增感型太陽電池對電極之研究
論文名稱(外文):Large-Scale Synthesis of Carbon Nanotubes and Their Applications to the Counter Electrodes of Dye-Sensitized Solar Cells
指導教授:葉競榮葉競榮引用關係陳雍宗陳雍宗引用關係姚品全姚品全引用關係
學位類別:碩士
校院名稱:大葉大學
系所名稱:電信工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:中文
論文頁數:88
中文關鍵詞:氧化鎂氣相沉積法色素增感型太陽電池對電極奈米碳管電解液表面積二極體多孔性奈米碳管電解液表面積二極體多孔性
外文關鍵詞:MgOChemical vapor depositionDye-SensitizedCounter electrodesfamilyafter
相關次數:
  • 被引用被引用:1
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
理想的色素增感型太陽電池(Dye-sensitized Solar Cells, DSSC)對電極必須具備:(1).良好的導電性以降低串聯電阻,(2).極佳的化學安定性,以避免受到電解液的侵蝕以及參與電化學反應,(3).具有降低媒子(mediator)氧化還原反應之過電壓(over-potential),提升供給還原電子的速率。(4).高表面積以提升質傳速率。
本研究利用奈米碳管具有快速轉移電子速度、多孔性高表面積及高導電性等特性,因此以其做為DSSC對電極材料。奈米碳管的合成使用常壓熱化學氣相沉積法,以Co-Mo/MgO載體觸媒,C2H2為碳源,H2或NH3為還原氣體,合成的主產物是多壁奈米碳管(multiwalled nanotubes, MWNT)。本法特點是不受基板大小限制、高奈米碳管產率以及容易純化分離等。研究發現本系統適合前處理溫度為800℃,成長溫度為800~900℃密度較高。成長溫度越高奈米碳管管徑越大(7~13 nm),系統產率為0.733g-CNT/hr,成長速率在成長的前10分鐘為最快,達到0.057g-CNT/min.g-cat。
純化後的MWNT均勻分散在ITO導電面上,製作對電極及組裝DSSC。I-V特性量測證明,CNT對電極擁有較高的開路電壓,VOC=0.65V與短路電流,ISC=3.05 mA,比傳統白金對電極在相同測試條件下相比,VOC=0.49V,ISC=1.86 mA增加不少。相同[KI]/[I2](5:1),改變電解質濃度發現:電解質濃度與短路電流之間,有一最佳值[KI]/[I2]=0.3M/0.06M,此時VOC=0.65V,ISC=3.05 mA,相同[KI]/[I2]比例可以維持固定的開路電壓,VOC。當固定[KI]=0.3M,改變[I2],I-V量測結果顯示:增加[I2],可以提高短路電流。以太陽電池等效電路分析實驗數據,由理想二極體串聯電阻公式得到:上述最佳CNT對電極(ISC=3.05,VOC=0.65V)的等效串聯電阻,Ro=138 Ω,理想因子(ideal factor) n=0.56,而相同情況之白金對電極,=0.4, Ro=190 Ω。證明奈米碳管確實可以改善對電極的電子傳輸特性。
The ideal counter electrodes of Dye-Sensitized Solar Cells(DSSC) must meet the following requirement: (1).Good electrical conductivity to reduce the series resistance (RS), (2).Excellent chemical stability to protect from corrosive electrolytes and take part in undesired electrochemical reactions, (3).To reduce the over-potential of the redox couples (mediator, i.e. I-/I3- in typical DSSC) and (4).High surface area for mass transfer.
Fullerenes family such as C60 and carbon nanotubes(CNTs) have better electron affinity for fast transfer of photocurrent(electron shuttle),. Carbon nanotubes have high porosity, large surface area with good electric conductivity and relatively easy synthesized in lab. Scale. Accordingly, in this study, we had fabricated multiwalled carbon nanotubes(MWNT) based counter electrode of DSSC in endeavor for cell performance improvement. MWNTs were synthesized by atmospheric thermal chemical vapor deposition over Co-Mo/MgO by using C2H2 as carbon source and H2/NH3 as reducing ambient at 700~900oC. The major products were multiwalled carbon nanotubes with diameter around 7~13 nm. The as-synthesized MWNTs with high carbon yield are easily purified and processed. The optimal pretreatment temperature is 800 oC. For higher nanotube density, reaction temperature of 800~900oC is desirable. As the growing temperature is increased, the diameter of MWNT is larger. One of the production yield is 0.733 g-CNT/hr whose growth rate is fastest at the very start of 10min.(0.057 g-CNT/min. g-cat).
After purification of the as-grown MWNTs, finely dispersed CNTs were anchored on the ITO glasses as the counter electrode of DSSC. After fabrication of TiO2 working electrode dyed with mercurochrome. The assembled DSSC was tested for I-V character under illumination. It revealed that CNT-based counter electrode own superior VOC and ISC under identical conditions. In comparison with the traditional Pt-counter electrode(VOC=0.49 V and ISC=1.86 mA), the CNT- counter electrode possessed higher cell performance with VOC=0.65 V and ISC=3.05 mA. After keeping the [KI]/[I2] to 5/1, the influence of different electrolyte concentration were invesitagted. The results shows that there is optimal value of [KI]/[I2]=0.3 M/0.06 M. Under the given electrolyte value, the DSSC have VOC=0.65 V and ISC=3.05 mA. Besides, it shows that under identical [KI]/[I2] ratio, the VOC is always kept the same. By varying the [I2] and keeping [KI]=0.3 M, the ISC will increase as the [I2] is increased. The equivalent solar cells circuit analysis shows that the series resistance under best cell performance in this study is Ro=138 Ω, with ideal factor n=0.56 in comparison to that of Pt-counter electrode with Ro=190 Ω, n=0.4. As a conclusion, the CNTs is effective increase the electron transfer property of counter electrode of DSSC.
封面內頁
簽名頁
授權頁............................iii
中文摘要...........................iv
英文摘要...........................vi
致謝.............................vii
目錄.............................viii
圖目錄............................xiii
表目錄.............................xvi

第一章 緒論...........................1
1.1奈米碳管...........................1
1.2奈米碳管的結構特性......................5
1.2.1奈米碳管的電性.......................5
1.2.2奈米碳管的機械特性.....................6
1.3奈米碳管的主要製程......................7
1.3.1電弧放電法(Electric Arc Discharge)...........8
1.3.2雷射蒸發法(Laser Ablation)................9
1.3.3化學氣相沈積法(Chemical vaper deposition).......10
1.4 奈米碳管的成長機制.....................11
1.5 濕式觸媒..........................17
1.6 奈米碳管的純化.......................19
1.6.1氧化法...........................19
1.7 奈米碳管的應用.......................21
1.7.1 複合材料的應用(Composites)...............22
1.7.2 儲氫材料的應用(Hydrogen Storage)...........23
1.7.3 掃描探針的應用(probes).................23
1.7.4 微型感測器(sensor)...................24
1.7.5 場發射平面顯示器(Field Emitter for
Flat Panel Display)..................25
1.7.6 燃料電池.........................26
1.7研究動機與背景.......................26
第二章CNTs實驗部........................29
2.1藥品與氣體..........................29
2.2反應設備...........................29
2.3觸媒製備...........................31
2.4 奈米碳管合成........................32
2.5純化.............................32
2.6 微結構分析..........................33
2.6.1 掃描式電子顯微鏡(Scanning Electron Microscopy; SEM).33
2.6.2 穿透式電子顯微鏡(Transmission Electron Microscopy;TEM).34
2.6.3 拉曼光譜儀(Raman spectrnum;RS)..............35
第三章CNTs成長結果與討論.....................37
3.1前言..............................37
3.2 觸媒型態上的觀察.......................37
3.3 不同觸媒負載量的表面觀察...................39
3.4前處理時間、溫度的影響.....................42
3.4.1前處理時間的影響.......................43
3.4.2前處理溫度的影響.......................44
3.5成長時間、溫度的影響......................46
3.5.1成長溫度的影響........................47
3.5.2成長時間對碳產率的影響....................49
3.6 純化前後的影響.........................50
第四章 DSSC對電極之研究......................53
4.1 研究背景............................53
4.2色素增感型太陽電池(Dye-sensitized solar cells,DSSC)簡介...55
4.3 色素增感型太陽電池對電極....................56
4.4光電化學太陽電池.........................58
4.5 色素增感型電化學電池(DSSC)的優點及其工作原理..........62
4.6有機太陽能電池之光電轉換特性...................67
4.6.1 短路電流( Isc,short circuit current )...........67
4.6.2 開路電壓 ( Voc,open circuit voltage )...........67
4.6.3 填充因子 ( FF,fill factor ).................68
4.6.4 能量轉換效率 ( η,power conversion efficiency )......68
4.7 DSSC實驗部份...........................70
4.7.1 實驗藥品............................70
4.8 實驗步驟.............................70
4.8.1氧化銦錫玻璃(ITO)基板之清洗...................70
4.8.2 工作電極的製作.........................71
4.8.3 對電極的製作..........................72
4.8.4 加入電解液及封裝........................73
4.9 I-V曲線之充電特性量測.......................73
4.10 太陽能電池之串聯電阻.......................76
4.11 結果與討論............................78
4.11.1 無碳管添加之白金對電極.....................78
4.11.2 添加碳管對DSSC之影響......................79
4.11.3 改變不同濃度電解液對DSSC之I-V特性研究.............79
4.11.4電解液比例對DSSC之I-V特性研究..................80
4.11.5 串聯電阻量測計算........................82
第五章 結果與討論............................84
5.1結論.................................84
第六章 參考文獻.............................85
[1]. S. Iijima , “Helical microtubules of graphite carbon”, Nature,vol.354,no.7, pp-56.58, 1999.
[2]. D. S. Bethune, C. H. Kiang, M. S. de Vries, G. Gorman, R. Savoy, J.vazquez, R. Beyers, Nature,
363, 605-609 (1993).
[3] J. Kong, M. Cassell and H. G. Dai, “Chemical vapor deposition of methane for single-walled carbon
nanotubes”, Chemical Physics Letters, 292, 567-574 (1998).
[4] C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins and M. J. Heben, “Controlling single-wall
nanotube diameters with variation in laser pulse power”, Chemical Physics Letters, 316, 13-18 (2000).
[5] Subramoney, “Novel Nano Carbons-Structure, Properties, and Potential Applications”, Advanced
Materials, 1(15), (1157-1171) 1998.
[6] A. Rao, “Nanostuctured From of Carbon-An Overview”, International School of Solid State Physics-18th course: the three faucets Nanostructured Carbon for Advanced Applications (NATO-ASI),
2000, Italy.
[7] T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, Nature, 367, 519 (1994).
[8] T. W. Ebbesen and P. M. Ajayan, Nature, 358, 220 (1992).
[9] r, J. M. Planeix, V. Brotons, B.
Coq, and J. Castaing, Chem. Phys. Lett., 226, 364 (1994).
J. M. Lambert, P. M. Ajayan, P. Bernie
[10] R. Saito, G. Dresselhaus, M. S. Dresselhaus, "Physical Properties of Carbon Nanotubes ", Imperial College Press, 1998, p75
[11]. C. Journet, P. Bernier, Appl. Phys. A, 67(1998)1.
[12] H. Dai, A. G. Rinzer, P. Nikolaev, A Thess, D. T. Colbert, and R. E.Smalley, Chem. Phys. Lett. ,260, 471 (1996).
[13] Rao, A. M. et al., Science 275, 1997, 187.
[14] P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Science, 265, 1212 (1994).
[15] Alan M.Cassell, Jeffrey A. Raymakers, Jing Kong, Hongjie Dai, 1999,Joural Physical Chemistry B , 103, pp. 6484-6492
[16] J. F. Colomer, C. Stephan, S. Lefrant, G. Van Tendeloo, I. Willems, Z.Konya, A. Fonseca, C. h. Laurent, J. B. Nagy, 2000, Chemical Phycics etters, 317, pp. 83-89
[17] M. J. Bronikowski, P. A. Willis, D. T. Colbert, K. A. Smith, R. E.
Smalley, 2001, Journal Vacuum Science Technol. A, 19, pp.
1800-1805
[18] P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Rohmund, D. T.Colbert, K. A. Smith, R. E. Smalley, 1997, Chemical Physics Letters,313, pp. 91-97
[19] R. Andrews, D. Jacques, A. M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen, 1999, Chemical Physics Letters, 303, pp. 467-474
[20] Md. Shajahan , Y.H. Mo , A.K.M. Fazle Kibria , M.J. Kim , K.S. Nahm , Received 20 August 2003; accepted 30 April 2004 Available online 9 June 2004 , Carbon 42 (2004) 2245–2253
[21] 吳榮宗著,「工業觸媒概論」,國興出版社,1989
[22] T. W. Ebbesen, P. M. Ajayan, H. Hiura and K. Tanigaki, "Purification. of carbon nanotubes". Nature,367, (1994) 519.
[23] 李元堯,「21 世紀的尖端材料- 奈米碳管」,化工技術,第120期,第140~159 頁,民國九十二年。
[24] M. Yumura, S. Ohshima, K. Uchida, Y. Tasaka, Y. Kuriki, F. Ikazaki,Y. Saito, and S. Uemura, 1999, Diamond and Related Materials, 8, p.785
[25] K. Bladh, L.K.L. Falk, F. Rohmund, On the iron-catalysed growth of single-walled carbon nanotubes and encapsulated metal particles in the gas phase, Appl. Phys. A 70 (2000) 317–322
[26] A. Fonseca1, et al., Synthesis of single-and multi-wall carbon nanotubes over supported catalysts, Appl. Phys., A 67 (1998) 11-22
[27] Jose E. Herrera, et al., Relationship between the Structure/Composition of Co–Mo Catalysts and Their Ability to Produce Single-Walled Carbon Nanotubes by Disproportionation, Journal of Catalysis, 204 (2001) 129–145
[28] Ping’an Hu, et al., Synthesis of single-walled carbon nanotubes using MgO as a catalyst support, Synthetic Metals 135–136 (2003) 833–834
[29]Solar Energy Mater.,and Solar Cells.,44(1996)99-117
[30]Solar Energy Mater.,and Solar Cells.,79(2003)459-469
[31]簡匯宏, 以化學氣相沉積法在氧化鎂觸媒載體上成長單層奈米碳管, 大同大學材料工程研究所碩士論文,2004.
[32]J.Am.Chem.SOC.,115(1993)6382-6390
[33]J.Photochem.,and Photobio.A:Chemistry,164(2004)179-182
[34]Electrochimica Actr.,51(2006)3814-3819
[35] J.Photochem.,and Photobio.A:Chemistry,145(2001)107-112
[36]Synthetic Metal.,77(1996)47-49
[37]J.Electrochem.Soc.,144(1997)876
[38]Chemistry Letter,32(2003)28-29
[39]黃調元,半導體元件物理與製作技術(第二版),國立交通大學出版社
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 林振春(民86)。學校社區化。國民教育,37(6),7-15。
2. 周新富(民87)。提高家長參與子女學習的有效途徑。人文及社會學科教學通訊,9(3),162-172。
3. 林明地(民88)。家長參與學校教育的研究與實際:對教育改革的啟示。教育研究資訊,7 (2),61-79。
4. [23] 李元堯,「21 世紀的尖端材料- 奈米碳管」,化工技術,第120期,第140~159 頁,民國九十二年。
5. 謝文豪(民89)。家長參與學校教育:理由、實務、及改進途徑。花蓮師院學報,11,21-35。
6. 閻自安(民88)。學校社區化之基本理念、策略與實施。國教學報,1 1 ,307-331。
7. 湯梅英(民90)。落實教育基本法對學生學習權與受教權的保障。教育研究月刊,8 4 ,61-73。
8. 曹翠英(民89)。家長教育權與校務運作初探。載於國教之友,51(5),50-59。
9. 張茂源(民90)。從家長參與談親師合作的推展。教師之友,42(2),58-63。
10. 林明地(民85)。學校與社區關係:從家長參與學校活動的理念談起。教育研究雙月刊,51,30-40。
11. 林明地(民87)。家長參與學校活動與校務:台灣省公私立國民中小學校長的看法分析。教育政策論壇,1(2),155-187。
12. 王秀雲(民86)。健全家長會功能以協助校務發展。北縣教育,17,50-51。
13. 丁金松(民90)。學校本位課程發展中不可或缺的角色─家長參與之角色與功能的探究。研習資訊,18(1),45-52。