[1] Chuang, C.C., Kuan, C.M., Lin, H. (2009). Causality in quantiles and dynamic
stock return-volume relations. Journal of Banking & Finance 33, 1351-1360.
[2] Diks C. and V. Panchenko (2005). A note on the HiemstraJones test for Granger
causality. Studies in Nonlinear Dynamic & Econometrics 9, article 4:17.
[3] Engle, R. F. and S. Manganelli. (2004). CaViaR: Conditional autoregressive Value
at Risk by regression quantiles. Journal of Business and Economic Statistics 22,
367-381.
[4] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and
its oracle properties. Journal of the American Statistical Association 96, 13481360.
[5] Furno, M. (2004). Arch tests and quantile regression. Journal of Statistical Compu-
tation and Simulation, 74, 277-292.
[6] Granger, C.W.J. (1969). Investigating causal relations by econometric models and
cross-spectral methods. Econometrica 37, 424-438.
[7] Hiemstra and J. Jones (1994). Testing for linear and nonlinear Granger causality in
the stock price-volume relation. Journal of Finance 49, 16391664.
[8] Hoerl, A. E. and Kennard, R.W. (1970). Ridge regression, biased estimation for
nonorthogonal problems. Technometrics 12, 55-68.
[9] Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica 46, 3350.
[10] Koenker, R. and Bassett, G. (1982). Robust tests for heteroscedasticity based on
regression quantiles. Econometrica 50, 4361.
[11] Koenker, R. and Machado, J. (1999). Goodness of ¯t and related inference
processes for quantile regression. Journal of the American Statistical Association
94, 12961310.
[12] Koenker, R. (2005). Quantile Regression. Cambridge University Press.
[13] Koenker, R. and Z. Xiao (2006). Quantile autoregression. Journal of the American
Statistical Association 101, 980990.
[14] Taylor, J.W. and R. Buizza (2006). Density forecasting for weather derivative pricing.
International Journal of Forecasting 22, 2942.
[15] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society, Series B (Methodological) 58, 267288.
[16] Wu, Y. and Liu, Y. (2009). Variable selection in quantile regression. Statistica Sinica
37, 801817.
[17] Yuan, M. (2006). GACV for quantile smoothing splines. Computational Statistics
and Data Analysis 5, 813829.
[18] Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American
Statistical Association 101, 14181429.
[19] Zou, H. and M. Yuan (2008). Composite quantile regression and the oracle model
selection theory. Annals of Statistics 36, 1108-1126.
[20] 楊筆琇 (1998),台灣電子股指數與美國股價指數互動關係之實證研究,國立成功大學企業管理學系碩士論文。[21] 廖珮真 (1992),美、日、英、港、臺五國股市報酬率多元時間數列關聯性之研究,國立台灣大學商學研究所碩士論文。