|
[1]J.L. Hoyt, et al., “Strained Silicon MOSFET Technology,” IEDM Tech. Dig., pp. 23-26, 2002. [2]K. Rim, et al., “Low Field Mobility Characteristics of Sub-100 nm Unstrained and Strained Si MOSFETs,” IEDM Tech. Dig., pp. 43-46, 2002. [3]T. Ghani, et al., “A 90nm high volume manufacturing logic technology featuring novel 45nm gate length strained silicon CMOS transistors,” IEDM Tech. Dig., pp. 978-991, 2003. [4]S. Maikap, et al., “Mechanically Strained Strained-Si NMOSFETs,” Electron Device Letters, Vol. 25, pp. 40-42, May 2004. [5]R. A. Soref, “Silicon-based optoelectronics,” Proc. IEEE, vol. 81, pp. 1687-1706, Dec. 1993. [6]M. R. T. Pearson, et al., “Fabrication of SiGe optical waveguides using VLSI processing techniques,” Journal of Lightwave Technology, vol. 19, pp. 363-370, 2001. [7]F. Y. Huang, et al., “Epitaxial SiGeC/Si photodetector with response in the 1.3-1.55 μm wavelength range,” IEDM Tech. Dig., pp. 665-668 , 1996 [8]Gianlorenzo Masini, et al., “High-performance p-i-n Ge on Si photodetectors for the near infrared: from model to demonstration,” IEEE Transactions on Electron Devices, vol. 48, pp. 1092-1096, 2001. [9]C.W. Liu, et al., “Light emission and detection by metal oxide silicon tunneling diodes,” IEDM Tech. Dig., pp. 749-752, 1999. [10]C.W. Liu, et al., “A novel photodetector using MOS tunneling structures,” Electron Device Letters, Vol. 21, pp. 307-309, June 2000. [11]S. M. Park and C. Toumazou, “Low noise current-mode CMOS transimpedance amplifier for giga-bit optical communication,” IEEE Int. Symp. on Circuits and Systems, vol.1, pp. 293-296, June 1998. [12]F. Yuan, S.-R. Jan, S. Maikap, Y.-H. Liu, C.-S. Liang, and C. W. Liu, “Mechanically Strained Si-SiGe HBTs,” IEEE Elec. Device Lett., vol. 25, no. 7, pp. 483-485, 2004. [13]Wei-Zen Chen, et al. “A 2.5 Gbps CMOS optical receiver analog front-end,” IEEE Conference on Custom Integrated Circuits, pp. 359–362, May 2002. [14]Behzad Razavi, “A 622 Mb/s 4.5 pA/vHz CMOS transimpedance amplifier,” Dig. Tech. Papers ISSCC, pp.162 -163, 453, Feb. 2000. [15]Behzad Razavi, Design of integrated Circuits for Optical Communications, McGRAW-Hill, 2003. [16]Behzad Razavi, “Design of high-speed circuits for optical communication systems,” IEEE Conference on Custom Integrated Circuits, pp. 315–322, May 2001. [17]M. Aiki, “Low-noise Optical Receiver for High-speed Optical Transmission,” IEEE Trans. Electron Dev., vol. ED-32, pp. 2693-2698, Dec. 1985. [18]A. K. Petersen, K. Kiziloglu, T. Yoon, F. Williams, M. R. Sandor, “Front-end CMOS chipset for 10 Gb/s communication,” RFIC 2002, pp. 93-96. [19]H. H. Ki, S. Chandrasekhar, C. A. Burrus, J. Bauman, “A Si BiCMOS transimpedance amplifier for 10-Gb/s SONET receiver,” IEEE Journal of Solid-State Circuits, vol. 36, pp. 769 -776, May 2001. [20]A. Thanachayanont and A. Payne, “VHF CMOS integrated active inductor,” Electronics Letters, Vol. 32, pp. 999-1000, May 1996. [21]A. Thanachayanont and S. Sae Ngow, “Low voltage high Q VHF CMOS transistor-only active inductor,” Midwest Symposium on Circuits and Systems (MWSCAS), vol. 3, pp. 552-555, Aug. 2002. [22]W. zhuo, et al., “Programmable low noise amplifier with active-inductor load,” IEEE Int. Symp. on Circuits and Systems, vol.4, pp. 365-368, June 1998. [23]Joachim N., et al., “Multilevel-spiral inductors using VLSI interconnect technology,” Electron Device Letters, Vol. 17, pp. 428-430, Sept. 1996. [24]Pin-Quan Chen, et al., “Improved microwave performance on low-resistivity Si substrates by Si+ ion implantation”, IEEE Transactions on Microwave Theory and Techniques, Vol. 48, pp.1582-1585, Sept. 2000. [25]Chao-Chih Hsiao, et al., “Improved quality-factor of 0.18-/spl mu/m CMOS active inductor by a feedback resistance design,” Microwave and Wireless Components Letters, Vol. 12, pp.467-469, Dec. 2002. [26]Ismail M., et al., “A high-speed continuous-time bandpass VHF filter in MOS technology,” IEEE Int. Symp. on Circuits and Systems, vol.3, pp. 1761-1764, 1991. [27]E.R. Fossum, “CMOS image sensors: electronic camera-on-a-chip,” IEEE Transactions on Electron Devices, Vol. 44, pp. 1689-1698, Oct. 1997. [28]J. R. Chelikowsky and M. L. Cohen, “Nonlocal pseodopotential calculations for the electronic structure of eleven diamond and zinc-blende semiconductors,” Phys. Rev. B, Vol. 14, pp. 556, 1976. [29]T. Manku and A. Nathan, “Electron drift mobility model for devices based on unstrained and coherently strained Si1-xGex grown on <001> silicon substrate,” IEEE Transactions on Electron Devices, vol. 39, pp. 2082-9, 1992. [30]C. G. Van de Walle and R. M. Martin, “Theoretical calculations of heterojunction discontinuities in the Si/Ge system,” Phys. Rev. B, vol. 34, pp. 5621-34, 1986. [31]C. Zeller and G. Abstreiter, “Electric subbands in Si/SiGe strained layer superlattice,” Zeitschrift fur Ohysik B (Condensed Matter), vol. 64, pp. 137-43, 1986. [32]R. People, “Physics and applications of GexSi1-x/Si strained-layer heterostructures,” IEEE J. Quantum Electron., QE-22 (9), pp. 1696, 1986. [33]R. Braunstein, A.R. Moore, and F. Herman, “Intrinsic optical absorption in germanium-silicon alloys,” Phys. Rev., vol. 109(3), pp. 695, 1958. [34]C. A. King, J. L. Hoyt, and J. F. Gibbons, “Bandgap and transport properties of Si1-xGex by analysis of nearly ideal Si/Si1-xGex/Si heterojunction bipolar transistors,” IEEE Tran. Electron Devices, vol. 36(10), pp. 2093, 1989. [35]D. V. Lang, R. People, J.C. Bean, and A. M. Sergent, “Measurement of the band gap of GexSi1-x/Si strained-layer heterostructures,” Appl. Phys. Lett., vol. 47(12), pp. 1333, 1985. [36]D. Caruth et al., “A 40Gb/s integrated differential PIN+TIA with DC offset control using InP SHBT technology,” GaAs IC Symposium, pp. 59-62, 2002. [37]Helen H. Kim et al., “A Si BiCMOS transimpedance amplifier for 10Gbs SONET receiver”, SSC, vol.36, no.5, pp. 769, May 2001. [38]K. Misiakos, E. Tsoi, E. Halmagean, and S. Kakabakos, “Monolithic integration of light emitting diodes, detectors and optical fibers on a silicon wafers: a CMOS compatible optical sensor,” IEDM Tech. Dig., pp. 25–28., 1998. [39]C. W. Liu et al., “Room-temperature electroluminescence from electron-hole plasmas in the metal oxide silicon tunneling diodes,” Appl. Phys. Lett., vol. 76, pp. 1516–1518, 2000. [40]J. J. Morikuni and S. M. Kang; “An analysis of inductive peaking in photoreceiver design,” Journal of Lightwave Technology, vol. 10, pp. 1426- 1437, Oct. 1992. [41]Jaeseo Lee, Seong Jun Song Min Park, Choong-Mo Nam, Young – Se Kwon and Hoi– Jun Yoo, “ A Multichip on Oxide of 1Gb/s 80 dB Fully Differential CMOS Transimpedance Amplifier for Optical Interconnect Applications,” ISSCC Dig. Tech., 2002. [42]Ahmed Gasmi, Bertrand Wroblewski, Remy Leblanc, Marc Rocchi, “ Ultra Low Noise 2.5 Gbit/s 3.3V Transimpedance Amplifier With Automatic Gain Control ,” IEEE GaAs Digest, 2001. [43]Karl Schrodinger, Jaro Stimma, and Manfred Mauthe, “ A Fully Integrated CMOS Receiver Front End for Optic Gigabit Ethernet ,” IEEE J. Solid-State Circuits , July, 2002. [44]S. Hara, “Broad-Band Monolithic Microwave Active Inductor and Its Application to Miniaturized Wide Band Amplifier,” IEEE Trans. On Microwave Theory and techniques, vol. 36, pp. 1920-1924, Dec. 1988. [45]H. S. P.Wong, R. T. Chang, E. Crabbe, and P. D. Agnello, “CMOS active pixel image sensors fabricated using a 1.8, 0.25-um CMOS technology,” IEEE Trans. Electron Devices, vol. 45, pp. 889–894, 1998.
|