跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/25 23:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱世璿
研究生(外文):Shih-Hsuan Chiu
論文名稱:以熱燈絲化學氣相沉積法研製碳化矽薄膜及其在太陽電池本質層之應用
論文名稱(外文):Fabrication of Silicon Carbide Thin Films Using Hot-Wire CVD for Solar-Cell Intrinsic Layer Applications
指導教授:武東星
指導教授(外文):Dong-Sing Wuu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:75
中文關鍵詞:熱燈絲化學氣相沈積;碳化矽;太陽電池
外文關鍵詞:hot-wire CVDsilicon carbidesolar cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
本研究旨在利用熱燈絲化學氣相沉積技術製作碳化矽薄膜並應用於薄膜太陽電池吸光層。透過控制碳化矽沉積時的矽甲烷、甲烷及氫稀釋比例,探討不同製程條件相對的薄膜光電特性與結構變化,並優化製程條件使產出元件等級之碳化矽薄膜,最後實際製作成薄膜太陽電池以驗證此薄膜的品質。薄膜分析部分使用了化學分析電子能譜儀、傅立葉轉換紅外線光譜儀來探討Si-C成份的化學鍵結;以X光繞射儀、拉曼光譜儀鑑定薄膜的晶體結構;以場發射電子顯微鏡觀察其表面形貌;並分析薄膜的光暗電導特性與光學性質,探討各參數對薄膜品質之影響。在本研究中,透過材料分析與製程條件之修改,當矽甲烷、甲烷比例為1:1時,可以得到較佳的本質碳化矽薄膜,此時薄膜之光學能隙為1.98eV,光電導/暗電導的比值約在103左右。元件製作部分使用ITO玻璃作為基材,以單一腔體之熱燈絲化學氣相沉積系統連續製作p型碳化矽、本質碳化矽與n型微晶矽薄膜,形成pin薄膜太陽電池結構,最後再以電子束蒸鍍系統鍍上金屬背電極,此碳化矽薄膜太陽電池效率達=2.44 %,未來持續改善製程條件進而應用於串接式結構。

In this thesis, silicon carbide (SiC) thin films prepared by hot-wire chemical vapor deposition (HWCVD) system was investigated for absorption layer of thin-film solar cells applications. During the deposition, the gas flow rate ratios of SiH4 and CH4 and H2 dilution were varied to study the effects of process conditions on the optoelectronic characteristics and microstructures of SiC thin films. The optimized process conditions of SiC thin film deposition were used to fabricate thin film solar cells. Details of material characteristics of SiC thin films were investigated in terms of x-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectrometer, x-ray diffraction (XRD), Raman spectroscopy, and field-emission scanning electron microscopy (FESEM). Electrical properties of SiC thin films were determined by I-V measurement under AM1.5. The optimum deposition conditions of SiC thin film were SiH4/CH4 ratio of 1 and without H2 dilution. The optical bandgap and ratio of photo- and dark-conductivity of SiC thin film were 1.98 eV and 1000, respectively. In thin film solar cell fabrication, p-type SiC, intrinsic SiC, and n-type microcrystalline Si thin films were prepared on ITO glass substrates by HWCVD system. Al back-electrode was used and prepared by electron-beam evaporation. The efficiency of SiC thin film solar cells was 2.44 %. The further improvement of process conditions on SiC thin film could be performed for tandem solar cells.

目錄
封面內頁
簽名頁
授權書
中文摘要i
Abstract ii
誌謝iii
目錄iv
表目錄vii
圖目錄viii
第一章 緒論1
1-1 前言1
1-2 矽薄膜太陽電池發展1
1-3 研究動機與目的3
1-4 論文架構3
第二章 理論基礎與文獻回顧4
2-1 太陽電池發電原理4
2-2 太陽電池等效電路與效率計算5
2-3 碳化矽文獻回顧6
2-4 熱燈絲化學氣相沉積法 7
2-4-1 熱燈絲化學氣相沉積法文獻回顧7
2-4-2 熱燈絲化學氣相沉積法之原理8
2-4-3 熱燈絲化學氣相沉積法沉積矽薄膜的反應機制8
2-4-4 熱燈絲化學氣相沉積法之優點9
第三章 實驗步驟與研究方法10
3-1 實驗參數規劃與實驗步驟流程10
3-1-1 實驗材料及基材前處理11
3-2 實驗設備12
3-2-1 熱燈絲化學氣相沈積系統12
3-2-2 電子束蒸鍍機13
3-2-3 感應式耦合反應蝕刻系統14
3-3 薄膜分析的方法14
3-3-1 表面輪廓儀(α-Step)14
3-3-2 X光繞射儀(X-ray Diffraction,XRD)14
3-3-3 拉曼光譜儀(Raman Spectrometer)15
3-3-4 傅立葉轉換紅外線光譜儀(FTIR)16
3-3-5 化學分析電子能譜儀(XPS)16
3-3-6 場發射電子顯微鏡(FE-SEM)17
3-3-7 薄膜特性分析儀(N&K Analyzer)17
3-3-8 霍爾效應量測(Hall Measurement)17
3-3-9 光暗電導及效率量測18
第四章 結果與討論 19
4-1 本質碳化矽薄膜厚度與鍍率分析19
4-2 本質碳化矽薄膜材料分析 20
4-2-1 薄膜晶體結構與結晶性分析20
4-2-2 薄膜之微結構分析21
4-2-3 薄膜之傅立葉轉換紅外線光譜儀分析23
4-2-4 薄膜之化學分析電子能譜儀分析24
4-3 本質碳化矽薄膜光學性質分析25
4-4 本質碳化矽薄膜電性分析 26
4-5 p、n層膜特性之分析27
4-5-1 p 層膜沉積條件與特性分析27
4-5-2 n 層膜沉積條件與特性分析28
4-6 太陽電池製作及其特性28
第五章 結論30
參考文獻32



[1]KRI Report No.8:Solar Cells, February 2005.
[2]黃惠良、曾百亨等,太陽電池 Solar Cells ,五南出版社。
[3]B. Abeles, G. D. Cody, Y. Goldstein, C.R. Wronski ,“Hydrogenated Amorphous Silicon Solar Cells,” Thin Solid Films, vol. 90, pp. 441-449, 1982.
[4]S. Bauer, B. Schroder, H. Oechsner, “The Effect of Hydrogen Dilution on the Microstructure and Stability of a-Si:H Films Prepared by Different Techniques,” Thin Solid Films, vol. 227-230, pp. 34-38, 1998.
[5]F. Giorgis, F. Giuliani, C. F. Pirri, J. P. Conde, V. Chu, “Wide Band Gap a-SiC:H Films for Optoelectronic Applications,” Thin Solid Films, vol. 395, pp. 227-230, 1998.
[6]B. P. Nelson , Y. Q. Xu, D. L. Williamson, D. Han, R. Braunstein, M. Boshta, B. Alavi, “Narrow Gap a-SiGe:H Grown by Hot-wire Chemical Vapor Deposition,” Thin Solid Films, vol. 430, pp. 104-109, 2003.
[7]K. Yamamoto, “Thin Film Crystalline Silicon Solar Cells”, JSAP Int. No. 7 pp. 12-19, 2003.
[8]C. Strobel, T. Zimmermann, M. Albert, J. W. Bartha, and J. Kuske, “Productivity Potential of an Inline Deposition System for Amorphous and Microcrystalline Silicon Solar Cells,” Thin Solid Films, vol. 93, pp. 1598-1607, 2009.
[9]W. R. Fahrner, M. Muehlbauer, H. C. Neitzert, “Silicon Heterojunction Solar Cells”, p. 42, 2006.
[10]J. A. Lely: Ber Deut. Keram. Ges. 32, 229, 1955.
[11]J. H. Boo, K. S. Yu, M. Lee, and Y. Kim, “Deposition of Cubic SiC Films on Silicon Using Dimethlisopropylsilane”, Appl. Phys. Lett. Vol. 66 , No. 25, pp. 3486-3488, 1995.
[12]C. A. Zorman, S. Rajgopal, X. A. Fu, R. Jezeski, J. Melzak, and M. Mehregany, “Deposition of Polycrystalline 3C-SiC Films on 100 mm Diameter Si(100) Wafers in a Large-Volume LPCVD Furnace”, Electrochemical and Solid-State Letter Vol. 5, No. 10, pp. 99-101, 2002.
[13]B. P. Swain, R. O. Dusane, “Effect of Filament Temperature on HWCVD Deposited a-SiC:H”, Materials Letters, Vol. 60, pp. 2915–2919, 2006.
[14]C. Bittencourt, “Reaction of Si (100) with Silane–Methane Low-Power Plasma: SiC Buffer-Layer Formation”, J. Appl. Phys., Vol. 86, pp. 4643-4648, 1999.
[15]D. S. Wuu, R. H. Horng, C. C. Chan, and Y. S. Lee, “Plasma-deposited Amorphous Silicon Carbide Flms for Micromachined Fluidic Channels”, Appl. Surf. Sci., Vol. 144, pp. 708-712 , 1999.
[16]W. H. Lee, J. C. Lin, C. Lee, H. C. Cheng, T. R. Yew, “Effects of CH4 /SiH4 Flow Ratio and Microwave Power on the Growth of β-SiC on Si by ECR-CVD Using CH4 /SiH4 /Ar at 200℃”, Thin Solid Films, 405, pp. 17-22, 2002.
[17]Y. Komura, A. Tabata, T. NaritaA, M. Kanaya, A. Kondo, T. Mizutani, “Film Properties of Nanocrystalline 3C–SiC Thin Films Deposited on Glass Substrates by Hot-Wire Chemical Vapor Deposition Using CH4 as a Carbon Source,” Jpn. J. Appl. Phys., vol. 46, pp. 45-50, 2007.
[18]H. Wiesmann, A. K. Ghosh, T. McMahon, M. Strongin, “a-Si:H Produced by High-Temperature Thermal Decomposition of Silane,” J. Appl. Phys., vol. 50, pp. 3752-3754, 1979.
[19]H. Matsumura and H. Tachibana, “Amorphous Silicon Produced by a New Thermal Chemical Vapor Deposition Method Using Intermediate Species SiF2,” J. Appl. Phys., vol. 47, pp. 833-835, 1985.
[20]A. H. Mahan, J. Carapella, B. P. Nelson, and R. S. Crandall, “Deposition of Device Quality, Low H Content Amorphous Silicon,” J. Appl. Phys., vol.69, pp. 6728-6730, 1991.
[21]H. Matsumura, “Formation of Polysilicon Films by Catalytic Chemical Vapor Deposition (Cat-CVD) Method,” Jpn. J. Appl. Phys., Vol. 30, pp. 1522-1524, 1991.
[22]H. Matsumura, “Silicon Nitride Produced by Catalytic Chemical Vapor Deposition Method,” J. Appl. Phys., vol. 66, pp. 3612-3617, 1989.
[23]R. E. I. Schropp, “Hot Wire Chemical Vapor Deposition: Recent Progress Present State of the Art and Competitive Opportunities”, p. 216, 2009.
[24]Y. Komura, A. Tabata, T. Narita, M. Kanaya, A. Kondo, and T. Mizutani, “Film Properties of Nanocrystalline 3C–SiC Thin Films Deposited on Glass Substrates by Hot-Wire Chemical Vapor Deposition Using CH4 as a Carbon Source,” J. Appl. Phys., vol. 46, pp. 46-50, 2007.
[25]H. Matsumura, “Formation of Polysilicon Films by Catalytic Chemical Vapor Deposition (Cat-CVD) Method,” Jpn. J. Appl. Phys., Vol.30, pp. L1522-L1524, 1991.
[26]G. Saggio, E. Verona, P. D. Rosa, S. L. Monica, R. Salotti, L. Schirone, “Reactive Ion Etching Characterization of a-SiC:H in CF4/O2 Plasma,” Materials Science and Engineering B, Vol. 29, Issues 1-3, 1995.
[27]許樹恩、吳泰伯,X光繞射原理與材料結構分析,民全書局, 1993。
[28]M. Zhu, X. Guo, G. Chen, H. Han, M. He, K. Sun, “Microstructures of Microcrystalline Silicon Thin Films Prepared by Hot Wire Chemical Vapor Deposition,” Thin Solid Films, vol. 360, pp. 205-212, 2000.

[29]A. Tabata, M. Mori, “Structural Changes of Hot-Wire CVD Silicon Carbide Thin Films Induced by Gas Flow Rates,” Thin Solid Films, vol. 516, pp. 626-629, 2008.
[30]B. P. Swain, R. O. Dusane, “Multiphase Structure of Hydrogen Diluted a-SiC:H Deposited by HWCVD,” Materials Chemistry and Physics , vol. 99, pp. 240–246, 2006.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top