跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 22:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥儒
研究生(外文):Yen-JueChen
論文名稱:供獵能器之低漣波雙導通時間降壓電路
論文名稱(外文):Dual on Time (DOT) Buck Converters of Low Ripple for Energy Harvesters
指導教授:楊慶隆楊慶隆引用關係
指導教授(外文):Chin-Lung Yang
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:77
中文關鍵詞:固定導通時間降壓電路輕載
外文關鍵詞:constant on timebucklight load
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出一新穎供獵能器使用之低漣波雙導通時間降壓電路。本文針對切換式降壓穩壓電路之固定導通時間(Constant-On-Time, COT)控制技術進行探討與模擬實作。傳統之固定導通時間控制技術存有潛在的效率與漣波權衡限制,因而本論文提出「雙導通時間控制」(Dual On-Time)技術。利用兩個不同導通時間控制,可提供設計者在簡單之架構下,藉優化過程設計出最佳的導通時間,在極輕負載下同時實現低漣波且維持高效率的降壓穩壓電路。
本文中所模擬的雙導通時間控制電路工作電壓範圍為2.2 V ~ 3.3 V,負載電流範圍為0.5 mA ~ 2 mA,最大模擬轉換效率為94.6%;輸出電壓為1.3 V,輸出漣波〈 30 mV,在負載電流為0.05 mA時,模擬轉換效率仍有80%以上;適合於獵能技術之應用。

In this thesis, a novel low-ripple dual on-time (DOT) buck circuit for energy harvesters. Constant on-time (Constant-On-Time, COT)-typed control technologies for buck switching regulator circuits is investigated, simulated, and implemented. There are potential tradeoff limitations between efficiency and ripple for traditional constant on-time control technologies, so this thesis presents a 'Dual On-Time' (DOT) technology. By using two different on-time periods, the designer can achieve high efficiency buck regulator circuit while maintaining low ripple in an ultra-light load after optimization based on the simple architecture.
The proposed DOT control circuit is operated at the voltage ranging from 2.2 V to 3.3 V in simulation. The load current ranges from 0.5 mA to 2 mA. The maximum conversion efficiency is achieved to 94.6%. The output voltage is 1.3 V, and the output ripple is less than 30 mV. At the load current of 0.05 mA, simulated conversion efficiency remains more than 80%, so the proposed DOT circuit is suitable for energy harvesting technologies.

第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 目標與貢獻 2
1.4 論文架構 3
第二章 切換式降壓穩壓器的漣波控制技術 4
2.1 漣波控制技術[4]~ [6] 4
2.1.1 遲滯控制 5
2.1.2 固定導通/固定不導通時間控制 7
2.1.3 自適性導通時間控制[9] 13
2.1.4 電壓平方控制 14
2.1.5 特性比較與討論 16
2.2 漣波控制技術衍生的問題與改善方法 17
2.2.1 稍差的輸出電壓調節率 17
2.2.2 切換頻率不固定 19
2.2.3 極輕載下的效率表現 20
2.3 漣波控制降壓型轉換器之研究現況與討論 22
2.3.1 遲滯控制近年來相關研究 23
2.3.2 固定導通時間控制近年來相關研究 23
2.3.3 自適性導通/不導通時間控制近年來相關研究 24
2.3.4 電壓平方控制近年相關研究 25
第三章 固定導通時間控制電路設計與模擬 26
3.1 典型Power IC設計[22][23] 26
3.1.1 類比補償器設計[24][25] 27
3.1.2 PD補償設計 29
3.1.3 PI補償的設計考量 30
3.1.4 PID補償 32
3.2 系統架構 33
3.3 電路設計與模擬 33
3.2.1 固定導通時間控制器 33
3.2.2 比較器電路 35
3.2.3 零電流偵測電路 38
3.2.1 緩振盪電路 40
3.2.2 功率電晶體 40
第四章 雙導通時間控制 43
4.1 固定導通時間控制的潛在缺點 43
4.2 新型導通時間控制 45
4.2.1 Dual on Time與Pulse Train的差異 47
4.3 系統架構 48
4.4 整體電路模擬結果 54
4.4.1 線性調節度 (Line Regulation) 58
4.4.2 負載調節度(Load Regulation) 58
4.4.3 切換負載時的暫態響應 59
4.4.4 轉換效率 60
4.4.5 輸出漣波與效率 65
4.5 晶片佈局考量 66
4.5.1 晶片佈局 67
4.5.2 量測規劃 67
4.6 晶片量測結果 (COT) 71
第五章:結論與未來規劃 74
5.1 結論 74
5.2 未來改進方向 74
參考文獻 75


[1]Gene Frantz, et al . “Approaching the horizon of energy harvesting TI technology opens new frontiers for perpetual devices June, 2012.
[2]LTC3588 Nanopower Energy Harvesting Power Supply, Linear Technique, [Online]. Available: http://cds.linear.com/docs/en/datasheet/35881fc.pdf.
[3]BQ25504 Ultra Low Power Boost Converter with Battery Management for Energy Harvester, [Online]. http://www.ti.com/lit/ds/symlink/bq25504.pdf.
[4]R. Redl and S. Jian, “Ripple-Based Control of Switching Regulators-An Overview, IEEE Transactions on Power Electronics vol. 24, pp. 2669–2680, 2009.
[5]R. Redl (2009). Enhanced Ripple Regulators. pp.255–268 Available:http://link.springer.com/chapter/10.1007%2F978-1-4020-8944-2_14#page-1
[6]王禎佑, 漣波控制切換式升壓調節器之研究與設計: 國立成功大學碩士論文, 2012.
[7]J. Kim and C. Kim, “A DC-DC Boost Converter with Variation-Tolerant MPPT Technique and Efficient ZCS Circuit for Thermoelectric Energy Harvesting Applications, IEEE Transactions on Power Electronics vol. 28, no. 8, pp. 3827–3833, 2013.
[8]Y. H. Lee, S. C. Huang, S. W. Wang, and K. H. Chen, “Fast Transient (FT) Technique with Adaptive Phase Margin (APM) for Current Mode DC-DC Buck Converters, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, 2012
[9]W. C. Chen, C. S. Wang, Y. P. Su, Y. H. Lee, C. C. Lin, K. H. Chen and M.J. Du, “Reduction of Equivalent Series Inductor Effect in Delay-Ripple Reshaped Constant On Time Control for Buck Converter with Multilayer Ceramic Capacitors, IEEE Transactions on Power Electronics vol. 28, pp. 2366–2376, 2013
[10]Y. Y. Mai and P. K. T Mok, “A Constant Frequency Output-Ripple-Voltage-Based Buck Converter without Using Large ESR Capacitor, IEEE Transactions on Circuits System II, Exp. Briefs, vol. 55, no. 8, pp. 748–752, 2008.
[11]Y. H. Lee, S. J. Wang, and K. H. Chen, “Quadratic Differential and Integration Technique in V2 Control Buck Converter with Small ESR Capacitor, IEEE Transactions on Power Electronics vol. 25, no. 4, pp. 829–838, 2010.
[12]W. C. Chen, et al., “Reduction of Equivalent Series Inductor Effect in Delay-Ripple Reshaped Constant On-Time Control for Buck Converter with Multilayer Ceramic Capacitors, IEEE Transactions on Power Electronics vol. 28, no. 5, pp. 2366–2376, 2013.
[13]Siyuan Zhou, Gabriel A. Rincon-Mora, “A High Efficiency, Soft Switching DC–DC Converter With Adaptive Current-Ripple Control for Portable Applications, IEEE Transactions on Circuits and Systems II, vol. 53, no. 4, pp. 319–323, 2006
[14]Xiaocheng Jing and Philp K. T. Mok, “A Fast Fixed-Frequency Adaptive-On-Time Boost Converter With Light Load Efficiency Enhancement and Predictable Noise Spectrum, IEEE J. Solid-State Circuits, vol. 48, no 10, pp. 2442–2456, 2013.
[15]H. H. Huang, C. L. Chen and K. H. Chen, “Adaptive Window Control (AWC) Technique for Hysteresis DC-DC Buck Converters with Improved Light and Heavy Load Performance, IEEE Transactions on Power Electronics vol. 24, no. 6, pp. 1607–1617, 2009.
[16]L. K. Wong and T. K. Man, “Maximum Frequency for Hysteretic Control COT Buck Converters, International Power Electronics and Motion Control Conference (EPE-PEMC 2008), pp. 475–478.
[17]I. C. Wei, Y. C. Lin, C. J. Chen and Dan Chen, “Stability Issues and Modeling of Ripple-Based Constant on Time Control Schemes Operating in Discontinuous Conduction Mode, in IET Power Electronics 8th, 2013
[18]W. C. Chen, et al., “±3% Voltage Variation and 95% Efficiency 28nm Constant On-Time Controlled Step-down Switching Regulator Directly Supplying to Wi-Fi Systems, Symposium on VLSI Circuits Digest of Technical Papers, 2014
[19]C. H. Liu, C.Y. Hsieh, Y. C. Hsieh, T. J. Tai, and K. H. Chen, “SAR-Controlled Adaptive Off-Time Technique Without Sensing Resistor for Achieving High Efficiency and Accuracy LED Lighting System, IEEE Transactions on Circuits and Systems I, vol. 57, no. 6, pp. 1384–1394, 2010
[20]T. C. Huang, et al., “A Battery-Free 217 nW Static Control Power Buck Converter for Wireless RF Energy Harvesting With α-Calibrated Dynamic On/Off Time and Adaptive Phase Lead Control, IEEE J. Solid-State Circuits, vol. 47, no 4, pp. 852–862, 2012.
[21]C. H. Tsai, S. M. Lin, and C. S. Huang, “A Fast-Transient Quasi-V2 Switching Buck Regulator Using AOT Control With a Load Current Correction (LCC) Technique, IEEE Transactions on Power Electronics vol. 28, no. 8, pp. 3949–3957, 2013.
[22]Robert W. Erickson and Dragan Maksimove, Fundamentals of Power Electronics, 2nd ed., Norwell, MA: Kluwer Academic Publishers, 2001
[23]X. Zhang, P.-H. Chen, Y. Okuma, K. Ishida, Y. Ryu, K. Watanabe, T. Sakurai and M. Takamiya “A 0.6V Input CCM/DCM Operating Digital Buck Converter in 40nm CMOS IEEE Journal of Solid-State Circuits (JSSC), vol. 49, no. 11, pp. 2377–2386, 2014.
[24]蔡建泓,The Design and Implementation of Digitally Controlled 課程講義. 2014
[25]Introduction to MATLAB/Simulink for switched-mode power converters, CoPEC [online]. http://ecee.colorado.edu/~ecen5807/course_material/digital/5807_Simulink_tutorial.pdf
[26]V. Michal, “On the Low-power Design, Stability Improvement and Frequency Estimation of the CMOS Ring Oscillator, 22nd International Conference Radioelektronika 2012.
[27]C. C. Tsai, C. H. Yang, J. H. Shiau, and B. T. Yeh, “Digitally Controlled Switching Converter With Automatic Multimode Switching, IEEE Transactions on Power Electronics vol. 29, no. 4, pp. 1830–1839, 2014.
[28]Mark Telefus et al., “Pulse Train Control Technique for Flyback Converter, IEEE Transactions on Power Electronics vol. 19, no. 3, pp. 757–764, 2004.
[29]M. M. Nejad and M. Sachdev, “A Monotonic Digitally Controlled Delay Element, IEEE J. Solid-State Circuit, vol. 40, no. 11, pp. 2212–2219, 2005.
[30]Arbetter, B, Erickson, R.and Maksimovic, D. “DC-DC Converter Design for Battery-Operated System, Power Electronics Specialists Conference, Vol. 1, pp.104–109, 1995
[31]S. Bandyopadhyay, Y. K. Ramadass, and A. P. Chandrakasan, “20 μA to 100 mA DC-DC Converter With 2.8-4.2 V Battery Supply for Portable Applications in 45 nm CMOS, IEEE J. Solid-State Circuits, vol. 46, no 12, pp. 2807–2820, 2011.
[32]K. H. Chen, C. J. Chang, and T. H. Liu, “Bidirectional Current-Mode Capacitor Multiplies for On-Chip Compensation, IEEE Transactions on Power Electronics vol. 23, no. 1, pp. 180–188, 2008.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top