跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.103) 您好!臺灣時間:2025/11/21 20:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:孫光東
研究生(外文):Kuang-Tung Sun
論文名稱:不同退縮距離對膠結不良砂岩淺基礎承載行為之影響
論文名稱(外文):Effect of Setback Distance on Loading Behavior of Shallow Foundation in a Poorly Cemented Sandstone
指導教授:廖志中廖志中引用關係
指導教授(外文):Jyh Jong Liao
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2004
畢業學年度:92
語文別:中文
論文頁數:207
中文關鍵詞:人造膠結不良砂岩模型承載試驗破壞機制基礎退縮距離主動壓力區被動壓力區輻射應力區完整區
外文關鍵詞:artificial poorly cemented sandstonefoundation model for loading testfailure mechanismsetback distanceactive zonepassive zonetransition zoneintact zone
相關次數:
  • 被引用被引用:3
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在由室內淺基礎模型承載試驗,探討當基礎置於膠結不良砂岩邊坡頂部時,不同退縮距離對承載行為之影響。藉由承載曲線及觀察窗(250mm×400mm)觀測承載試驗時人造膠結不良砂岩之裂縫產生順序,瞭解其破壞模式及不同退縮距離對基礎承載力的影響。
由觀察得知,基礎下方岩體破壞時,依應力種類及彈、塑性變形之不同,概略可分為基礎正下方三角楔形之主動壓力區,最外側鄰近自由表面之被動壓力區,於此兩區間傳遞應力及產生塑性變形之區域為輻射應力區。
當基礎置於水平地表,基礎兩側岩體均能提供概略相同之承載力,故基礎兩側之破壞模式概同,承載力亦較高;然當基礎置於邊坡頂部時,因基礎近邊坡側之岩體相較於平面側較小,因此當基礎下方主動壓力區向兩側推擠時,破壞較集中於邊坡側發展,往往當平面側尚未破壞,即其承載力尚未完全發揮時,邊坡處被動壓力區及輻射應力區之岩體因裂縫開裂擴大且相互連通而破壞,基礎下方主動區即因失去側向支撐向邊坡處滑動而達極限承載力。
邊坡頂部基礎承載力隨基礎位置不同而改變,緊鄰邊坡時承載力最低,隨基礎距離邊坡距離增加,承載力隨之漸增,當基礎與邊坡之距離大於滑動破壞弧時,基礎承載力便不受邊坡影響,就本研究膠結不良砂岩淺基礎承載試驗結果,當基礎距離20˚邊坡三倍基礎寬度時(15cm),承載力受邊坡之影響可以忽略,但承載行為仍受邊坡影響,其破壞模式與水平地表仍有不同。
關鍵字:人造膠結不良砂岩、模型承載試驗、破壞機制、基礎退縮距離
主動壓力區、被動壓力區、輻射應力區、完整區
This study aims to investigate the effect of setback distance on the loading behaviors of the shallow foundation located on the crest of a slope of poorly cemented sandstone. Based on the loading curves and the phenomena of crack development during loading, the effect of setback distance of foundation bearing stress and the failure mechanisms are explored.
From the observation, the foundation rock after failure can be categorized into three zones, the triangular active zone beneath the footing, the outer passive zone near the free surface and the transition zone between both.
For a footing located on a horizontal ground, a symmetric failure mode with respect to the footing is observed at the foundation rock. Due to the existence of a slope, the failure mode of foundation rock for the footing located on a crest of an inclined ground is different with the footing on a horizontal surface. Because the volume of active zone at the slope side is less than that in the side of level ground, major fractures are developed at the active zone of the slope side. Consequently, the passive and transition zones connect and induce ruptures in the slope side. The ultimate bearing stress measured is due to lack of lateral support at the slope side, meanwhile the rock in the level ground side does not contribute to the bearing stress.
Based on the experimental results, the fact reflects that the bearing capacity of the foundation on the slope crest varies with its setback distance. The bearing capacity increases with the increase of setback distance. The slope will not influence the bearing capacity while the failure surface does not extend to the slope. According to the results of loading tests conducted in this study, the bearing capacity is independent of the slope when the setback stance is more than 3 times of the width of the foundation (15 cm).
Keywords : artificial poorly cemented sandstone , soft rock, foundation model for loading test , failure mechanism, setback distance, active zone, passive zone, transition zone, intact zone
目錄
摘要.......................................................i
ABSTRACT.................................................iii
誌謝.......................................................v
目錄......................................................vi
圖目錄....................................................ix
表目錄...................................................xvi
第一章 前言................................................1
1.1研究動機................................................1
1.2研究目的................................................2
1.3研究內容與方法..........................................2
第二章 文獻回顧............................................4
2.1軟弱岩石之概述..........................................4
2.1.1軟岩的形成............................................4
2.1.2軟岩的定義............................................7
2.1.3軟岩之特性與工程性質..................................9
2.1.4台灣中北部軟弱砂岩簡介.......................13
2.2人造軟岩...............................................16
2.2.1人造膠結不良砂岩製作方法與成果.......................17
2.2.2模型相似率...........................................27
2.3岩石基礎概述...........................................28
2.3.1水平地表岩石基礎可能的破壞模式.......................28
2.3.2邊坡地形岩石基礎可能的破壞模式...............30
2.4承載力分析方法.........................................32
2.4.1基礎置於水平地表之承載力分析.........................32
2.1.1.1土壤中淺基礎之承載力理論分析.........32
2.1.1.2岩石中淺基礎之承載力理論分析.........47
2.4.2基礎置於邊坡頂部,不同退縮距離之承載力分析...........61
2.5人造軟岩承載試驗.......................................78
第三章 研究方法...........................................95
3.1試驗規劃...............................................95
3.1.1試體材料.............................................95
3.1.2試體製作.............................................95
3.1.3淺基礎模型試驗.......................................97
3.1.4模型相似律之檢核.............................99
3.1.5試驗結果與相關研究之比對.....................99
3.2試驗設備..............................................100
3.2.1製作試體設備........................................100
3.2.2模型承載試驗設備....................................104
3.3人造膠結不良砂岩的製作和試體的切削....................107
3.3.1人造膠結不良砂岩材料的組成..........................107
3.3.2人造膠結不良砂岩製作方法與流程......................108
3.4模型淺基礎承載試驗................................115
3.4.1試驗儀器之架設......................................115
3.4.2試驗方法與流程......................................118

第四章 試驗結果..........................................124
4.1模型相似律............................................124
4.1.1基本物性試驗........................................125
4.1.1基本力學性質........................................127
4.2淺基礎模型承載試驗結果................................132
4.2.1水平地表基礎承載試驗................................135
4.2.2基礎鄰近20˚邊坡之淺基礎承載試驗............143
4.2.3基礎距離20˚邊坡1.5倍基礎寬度之淺基礎承載試驗...... 148
4.2.4基礎距離20˚邊坡3倍基礎寬度之淺基礎承載試驗........ 152
4.3破壞機制探討..........................................156
4.3.1不同退縮距離之承載沉陷曲線..........................156
4.3.2不同退縮距離之破壞模式..............................161
4.3.3不同退縮距離之破壞機制......................168
4.4試驗結果與現有相關研究結果之比較......................174
4.4.1相關試驗結果之比較..................................174
4.4.2與相關承載理論或經驗公式相較........................176
4.4.3基礎置於邊坡頂部之安全退縮距離......................179
第五章 結論與建議........................................183
5.1結論..................................................183
5.2建議..................................................185
參考文獻.................................................186
附錄.....................................................194
附錄A 單壓試驗曲線......................................194
附錄B 三軸試驗結果......................................198
附錄C 淺基礎承載試驗結果................................201


圖目錄
圖1.1研究流程示意圖........................................3
圖2.1軟弱岩石成因示意圖(Dobereiner et al., 1986) ..........6
圖2.2 ISRM(1981)建議之大地材料單壓強度分類分級圖.........8
圖2.3岩石材料依單壓強度之分級圖(Bieniawski, 1984)..........8
圖2.4乾燥與飽和軟砂岩之單壓試驗軸向應力應變比較圖(Bell, 1993) ....................................................10
圖2.5細微裂縫及對圍壓之反應對軟岩應力應變特性的影響(Hight, 1995).....................................................12
圖2.6 Johnston and Choi製作人造軟岩之單壓與巴西試驗結果...21
圖2.7 Indrartna製作之人造軟岩單壓與三軸試驗結果...........22
圖2.8 Gu et al.製作之人造軟岩三軸試驗應力結果.............23
圖2.9天然與人造軟砂岩三軸試驗有效應力莫耳圓與破壞包絡線...26
圖2.10岩石基礎的破壞模式 (Ladanyi, 1972)..................29
圖2.11基礎置於坡地上之破壞型式............................31
圖2.12 Terzaghi之基礎承載模式示意圖(Terzaghi, 1943).......33
圖2.13 Meyerhof(1951,1963)理論之破壞圖形................35
圖2.14 Hansen & Vesic'承載力理論之傾斜、地面及基底因子之示意圖........................................................41
圖2.15 Bowles(1996)整理之基礎承載模式示意圖...............42
圖2.16 Hu (1964)承載力理論之破壞模式......................43
圖2.17 Hu (1964)承載力係數Nc、Nq、Nγ.....................43
圖2.18上限定理與下限定理關係圖(Chen & Drucker, 1968)......45
圖2.19具兩組裂面基礎破裂機制示意圖(Ladanyi & Roy, 1971)...49
圖2.20岩石承載力分析示意圖(Goodman, 1989)...............50
圖2.21 (a)岩石破壞模式,(b)岩石強度莫耳圓示意圖(Wyllie, 1999).....................................................52
圖2.22 (a)假設岩石破壞面示意圖,(b)配合Hoek-Broen破壞準則應力莫耳圓(Wyllie, 1999)......................................52
圖2.23 Hill(1950)假設基底岩石破壞機制示意圖…………………54
圖2.24假設岩石張裂破壞模式示意圖(Chen & Drucker, 1969)....56
圖2.25三角應力場求解下限解之示意圖(Chen & Drucker, 1969)..................56
圖2.26莫耳圓應力應變示意圖(葉贊育,1993)..................58
圖2.27水平基礎破壞時滑動曲線示意圖(葉贊育,1993)..........58
圖2.28水平基礎承載因數與岩石面傾角關係圖(葉贊育,1993)....58
圖2.29坡地地形與水平遞交接觸破壞滑動示意圖(葉贊育,1993)..59
圖2.30山坡地型之承載力因數與坡面角與地層傾角關係(葉贊育,1993).....................................................59
圖2.31 Meyerhof所提條形淺基礎置於邊坡頂部之破壞模式(1957)..................................................61
圖2.32條形淺基礎置於凝聚性土壤邊坡之承載力因數(Meyerhof,1957).........................................62
圖2.33條形淺基礎於無凝聚性土壤邊坡之承載力因數(Meyerhof,1957).........................................62
圖2.34基礎置於邊坡頂部,不同退縮距離之破壞滑動線..........63
圖2.35 Graham(1988) 之圖解承載力因數....................64
圖2.36 Saran(1989) 邊坡淺基礎破壞面機構圖...............67
圖2.37基礎位置及承載破壞示意圖(Bowles,1996).............69
圖2.38莫爾圓破壞包絡線應力分析圖(Serrano & Olalla, 1994)..74
圖2.39岩體應力狀態示意圖(Serrano & Olalla, 1994)..........74
圖2.40基礎邊界狀態示意圖(Serrano & Olalla, 1994)..........75
圖2.41假設不連續體邊界狀態(Serrano & Olalla, 1998) .......75
圖2.42水平地表不同載重下Nβ之值(Serrano & Olalla, 1998)...76
圖2.43傾角10度不同載重下Nβ之值(Serrano & Olalla, 1998)...77
圖2.44加載荷重與位移的關係圖..............................79
圖2.45立體對影像分析之破壞機制............................79
圖2.46基礎承載試驗儀器架設示意圖(卿建業,1995).............82
圖2.47不同階段之基礎破壞現象(卿建業,1995).................83
圖2.48製作試體設備圖(王乙翕, 2000)......................84
圖2.49基礎試驗箱及基腳尺寸示意圖(王乙翕, 2000)..........85
圖2.50試驗設備示意圖(Yamamoto & Kusuda , 2001)..........86
圖2.51承載試驗示意圖(Yamamoto & Kusuda , 2001)..........87
圖2.52模擬地盤之鋁棒配置圖(Yamamoto & Kusuda , 2001)....88
圖2.53影像漸進式分析結果(Yamamoto & Kusuda , 2001)......88
圖2.54 S/B= 0.12 , 0.28 , 0.44 三個階段所觀察破壞機制現象(Yamamoto & Kusuda , 2001)..............................89
圖2.55實驗觀察與數值分析結果的比較(Yamamoto & Kusuda , 2001)................................................... 90
圖2.56無束制條件之模型基礎承載破壞機制示意圖(劉英助2002)92
圖2.57束制條件之模型基礎承載破壞機制示意圖(劉英助2002)..94
圖3.1 人造膠結不良砂岩試體壓密曲線........................96
圖3.2 製作試體設備示意圖.................................102
圖3.3 5HP電動油壓泵.....................................102
圖3.4�400噸雙動型實心式油壓千斤頂.......................103
圖3.5 試驗盒完整組立狀...................................103
圖3.6 基礎承載試驗設備示意圖.............................105
圖3.7 土木結構試驗室之MTS-244.41S........................106
圖3.8 觀察窗.............................................106
圖3.9 人造膠結不良砂岩試體製作流程.......................111
圖3.10 壓密試驗儀器示意圖................................113
圖3.11 人造膠結不良砂岩壓密情形..........................113
圖3.12 人造膠結不良砂岩試體拆長邊模氣乾情形..............114
圖3.13 剛性基礎鎖上球型座後置於人造膠結不良砂岩試體......115
圖3.14 LVDT量測位置示意圖...............................116
圖3.15 LVDT量測系統之整體照.............................117
圖3.16 LVDT量測系統之位置近照...........................117
圖3.17 淺基礎承載試驗流{示意圖..........................120
圖3.18 網格繪製示意圖....................................121
圖3.19 側壁和試體間減低摩擦力方法之示意圖................121
圖3.20 物性試驗取樣位置..................................122
圖3.21 岩心取樣範圍......................................123
圖4.1 岩石完整應力-應變曲線(Goodman,1989)..............134
圖4.2 水平地表基礎承載試驗基礎位置示意圖.................135
圖4.3 水平地表淺基礎承載試驗之承載沉陷曲線...............136
圖4.4 No.0˚-1試驗承載沉陷曲線及破壞過程示意圖..........138
圖4.5 No.0˚-3試驗承載沉陷曲線及破壞過程示意圖..........140
圖4.6 No.0˚-1試驗破壞照片..............................141
圖4.7 No.0˚-3試驗破壞照片..............................141
圖4.8 水平地表淺基礎承載試驗破壞範圍.....................142
圖4.9 基礎鄰近20˚邊坡之淺基礎承載試驗示意圖.............143
圖4.10 基礎鄰近20˚邊坡淺基礎承載試驗之承載沉線曲線......144
圖4.11 基礎鄰近20˚邊坡淺基礎承載試驗之承載沉線曲線及破壞過程示N圖(No.20˚-1)....................................146
?.12 基礎下方主動壓力區之三角楔形體....................147
圖4.13 基礎Z離20˚邊坡1.5倍基礎寬度之淺基礎承載試驗示意圖.......................................................148
圖4.14基礎距離20˚邊坡1.5倍基礎寬度淺基礎承載試驗承載沉陷曲線.......................................................149
圖4.15 基礎距離20˚邊坡1.5倍基礎寬度之承載沉曲線及破壞過程示意圖(No.20˚-B1)....................................151
圖4.16 基礎距離20˚邊坡3倍基礎寬度之淺基礎承載試驗示意圖.152
圖4.17 水平地表及基礎距20˚邊坡3倍基礎寬度試驗之承載沉陷曲線......................................................153
圖4.18 基礎距20˚邊坡3倍基礎寬度之承載沉陷曲線及破壞過程示意圖(No.20˚-3B2)........................................155
圖4.19 承載沉陷曲線示意圖................................159
圖4.20 基礎於不同位置之承�沉線曲線比較圖................160
圖4.21 水平地表淺基礎承載試驗破壞示意圖..................165
圖4.22 基礎鄰近20˚邊坡淺基礎承載試驗破壞示意圖..........166
圖4.23 基礎距20˚邊坡1.5倍基礎寬度之淺基礎承載試驗破壞示意圖.......................................................167
圖4.24 基礎置於水平地表破壞示意圖........................169
圖4.25 基礎鄰近20˚邊坡處之破壞示意圖....................171
圖4.26 基礎距20˚邊坡1.5倍基礎寬度時之破壞示意圖.........173
圖4.27 本研究基礎置於不同位置之承載沉線曲線..............181
圖A.1 No.0˚-1試體單壓試驗曲線..........................195
圖A.2 No.0˚-3試體單壓試驗曲線..........................195
圖A.3 No.20˚-2試體單壓試驗曲線.........................196
圖A.4 No.20˚-B1試體單壓試驗曲線........................196
圖A.5 No.20˚-B2試體單壓試驗曲線........................197
圖B.1 No.0˚-1試體之三軸試驗莫耳圓及破壞包絡線..........199
B.2 No.20˚-1試體之三軸試驗莫耳圓及破壞包絡線.........199
圖B.3 No.20˚-B2試體之三軸試驗莫耳圓及破壞包絡線........200
圖C-1 No.20˚-2 試驗承載沉陷曲線及破壞過程..............203
圖C-2 No.20˚-3 試驗承載沉陷曲線及破壞過程..............205
圖C-3 No.20˚-B2 試驗承載沉陷曲線及破壞過程.............207

表目錄
表2.1 台灣西部麓山帶第三紀及更新世地層對比表(何春蓀, 1986).....................................................13
表2.2 人造軟岩之相關研究(劉英助,2002).....................20
表2.3 Indrartna製作之人造軟岩性質一覽表(Indrartna, 1990).....................................................22
表2.4 Gu et al.製作之人造軟岩與天然軟岩性質比較..........23
表2.5 人造岩體物理及力學性質(王乙翕, 2000)................24
表2.6 天然與人造軟砂岩試體單壓強度試驗結果(廖智偉,2003)...25
表2.7 巴西試驗結果(劉英助, 2002)..........................25
表2.8 Terzaghi 承載力因數(Terzaghi, 1943)..............34
表2.9 Meyerhof理論之承載力因數(Bowles,1996)............36
表2.10 Meyerhof理論之形狀因數sq、深度因數di、傾斜因數ii(Bowles,1996)...........................................36
表2. 11 Hansen & Vesic'承載力理論之形狀、深度影響因數比較關係(Bowles,1996)...........................................38
表2. 12 Hansen承載力理論之傾斜、地面及基底因數(Bowles, 1996).....................................................39
表2. 13 Vesic'承載力理論之傾斜、地面及基底因數(Bowles, 1996).....................................................40
表2.14 Bell承載公式形狀因子對照表(Wyllie 1992).........47
表2.15 Wyllie承載公式之修正因子(Wyllie, 1992)............53
表2.16 不同基礎深度、位置,各承載因數之剪力發揮度m(Saran,1989)............................................67
表2.17 基礎不受邊坡影響之退縮距離(Saran,1989)...........68
表2.18 Saran 與其他承載理論之 比較表(Saran,1989).......68
表2.19 Saran 與其他相關理論承載力之比較(Saran,1989)....68
表2.20 基礎位於邊坡頂部之 、 (Bowles,1996)..............70
表2.21 基礎位於邊坡頂部之 、 (Bowles,1996)..............70
表2.22 承載試驗之結果與條件(劉英助2002).................91
表3.1 本研究規劃試驗項目..................................98
表3.2 分階加載的目標荷重和對應的時間.....................112
表4.1 軟岩無因次項範圍(鄭富書, 1995) ....................124
表4.2 人造膠結不良砂岩試體及天然試體物性試驗之比較.......126
表4.3 單壓強度試驗結果比較一覽表.........................128
表4.4 三軸試驗結果比較一覽表.............................129
表4.5 本研究試體巴西試驗結果.............................131
表4.6 人造軟岩相關研究張力強度比較.......................131
表4.7 本研究承載試驗之結果...............................133
表4.8 水平地表淺基礎承載試驗結果.........................136
表4.9 基礎鄰近20˚邊坡淺基礎承載試驗結果比較.............144
表4.10 基礎距離20˚邊坡1.5倍基礎寬度之淺基礎承載試驗結果比較.......................................................149
表4.11 水平地表及基礎距20˚邊坡3倍基礎寬度之承載試驗結果比較.......................................................153
表4.12 本研究與相關實驗成果之比較........................175
表4.13 本研究試體之材料參數..............................176
表4.14 水平地表淺基礎承載試驗結果與各理論分析比較........177
表4.15 基礎置於不同位置承載力試驗結果....................180
表4.16 本研究基礎不受邊坡影響之退縮距離與相關文獻比較....182
參考文獻
Balla , A., 1961, " The Resistance to Breaking Out of Mushroom Foundation for Pylons," 5th Proceedings of International Conference on Soil Mechanics and Foundation Engineering, vol. 1, pp. 569-576.
Barton, M. E., 1993, "Cohesive sands: The natural transition from sands to sandstones," Proceedings of Geotechnical Engineering of Hard Soil-Soft Rocks, Anagnostopoulos et al. (end), 1993, Balkema, Rotterdam, pp. 367-374.
Barton, N. R., 1970, "A low strength material for simulation of the mechanical properties of intact rock in rock mechanics models," Proc. of the 2nd Cong. of ISRM, Beograd, pp.3-15.
Bell, F. G., 1992, Engineering in Rock Masses, Butterworth – Heinemann, Oxford.
Bell, F. G. and Culshaw M. G., 1993, "A survey of the geotechnical properties of some relatively weak Triassic sandstones," Proceedings of The Engineering Geology of Weak Rock, Cripps et al. (eds), Balkema, Rotterdam, pp. 139-148.
Bieniawski, Z. T., 1984, "Rock mechanics in mining and tunneling," Balkema, Boston, 272p.
Bieniawski, Z. T., 1974, "Estimating the strength of rock material," J. S. Afr. Inst. Min. Metall., Vol. 74, No. 8, pp. 312-320.
Bieniawski, Z. T., 1978,"Determining rock mass deformability", Int. J. Rock Mech. Mining Sci. and Geomech. Abstr., Vol. 15 pp.237-247.
Bolton, M. D. and C. K. Lau, 1993, "Vertical Bearing Capacity Factors for Circular and Strip Footings on Mohr-Coulomb Soil," Canadian Geotechnical Journal, vol. 30, no. 6, pp. 1024-1033.
Bowles, J.E., 1988, Foundation Analysis and Design, 4th Edition, McGraw-Hill, New York.
Chen, W.F. and William O. McCarron, “Bearing Capacity of Shallow Foundations,” in Foundation Engineering Handbook, Chapter 4, Ed. By Fang, Hsai-Yang, 2nd Edition, 1900, Van Nostrand Reinhold, New York, pp.144~165..
Chen, W.F., 1975, Limit Analysis and Soil Plasticity, Elsevier, Amsterdam
Chen, W. F., 1973, "Bearing Strength of Concrete Blocks," J. Eng. Mech. Div., ASCE, 99(EM6), Proc. Pap., 10187, pp. 1314-1321
Das, Braja M., 1994, Principal of Geotechnical Engineering Engineering, 3rd Edition PWS, Boston.
Davies, J.D. and Stagg, K.G., 1970, "Splitting tests on rock specimens",Second Int. Cong. on Rock Mech., ISRM, Belgarde, pp.3-48.
Deere, D. E., 1968, "Geological Considerations," Rock mechanics in engineering practice, London, John Wiley and Sons., pp. 1-20.
Dobereiner, L. and DE Freitas, M. H., 1986, "Geotechnical properties of weak sandstones," Geotechnique, Vol. 36, No.1, pp. 79-94.
Drucker, D. C., Greenberg, H. J. and Prager, W., 1952, "Extended Limit Theorems for Continuous Media," Q. Appl. Math, 9, pp. 381-389.
Graham,J Andrews,M and Shields,D.H ’’Stress Characteristics for shallow footing in cohessionless Slopes’’Journal of Canadian Geotech,Vol.25 pp.238-249
Goodman,1989, Introduction to rock mechanics, Wiley, New York.
Greenstein, J. and Livneh, M., 1974, "Slip line field of anisotropic soil," Journal of Applied Mechanics, Transactions ASME v 41 Ser E n 2 Jun 1974 p 453-458.
Gu, D. Z., Jafari, M. R. and Mostyn, G., 1993, "An artificial soft rock for physical modelling," Proceedings of Geotechnical Engineering of Hard Soil-Soft Rocks, Anagnostopoulos et al. (end), 1993, Balkema, Rotterdam, pp. 517-524.
Hight, D.W. and Higgins K.G., 1995, "An approach to the perdiction of ground movements in engineering practice: Background and application," Pre-failure Deformation of Geomaterials, Shibuya, Mitachi and Miura (eds), Balkema, Rotterdam, pp. 909-945.
ISRM,Brown E T.Rock characterization, testing method and monitoringSuggested Methods.Oxford:Pergamon Press,1981
Indraratna, B., 1990, "Development and application of a synthetic material to simulate soft sedimentary rocks," Geotechnique, Vol. 40, No. 2, pp. 189-200.
Johnston, I. W. and Choi, S. K., 1986, "A synthetic soft rock for laboratory model studies,: Geotechnique, Vol.36, No. 2, pp. 251-263.32.
Johnston, I. W., 1991, "Discussion on development and application of a synthetic material to simulate soft sedimentary rocks," Geotechnique, Vol. 41, No. 1, pp. 165-167.
Johnston, I.W., 1993, "Soft rock engineering," Comprehensive Rock Engineering, ED. J. A. Hudson, Vol. 1, pp. 367-393.
Kentaro Yamamoto & Koji Kusuda, 2001, "Failure mechanisms and bearing capacities of reinforced foundation," Geotextiles and Geomembranes, vol. 19, pp. 127-162.
Ko, H. Y. and L. W. Davidson, 1973, "Bearing Capacity of Footings in Plane Strain," Journal of Soil Mechanics and Foundation Division, ASCE, vol. 99, SM1, Jan, pp.1-23.
Kulhway, F. H. and Carter, J. P, 1988, "Settlement and bearing capacity of foundations on rock masses." Chapter 12 in Engineering in rock masses. F. G. Bell (ed.),1992.
Kulhway, F. H. and Goodman, R. E. , 1987, "Foundations in rock", Chapter 55 in Ground Engineers Reference Book, F. G. Bell(ed.), Butterworths, London
Kulhway, F. H., 1978, "Geomechanical model for rock foundation settlement", J.Geotect. Div. ASCE, Vol.104 (GT2), pp211-227.
Kulhway, F. H. and Goodman, R. E. 1980, "Design of Foundations on discontinuous rock ", Proc. Int. Conf. Structural Foundations on Rock, Sydney, 1, pp.209-220.
Kumbhojkar, A. S., 1933, "Numerical Evaluation of Terzaghi's Nγ," JGED, ASCE, GT3, March, pp598-607.
Ladanyi, B., 1966, "Failure Mechanism of rock under a Plate Load," Proc. 1st Int. Congr. Int. Soc. Rock Mech., Lisbon, 3, pp.415-420.
Ladanyi, B., 1972, "Rock failure under concentrated loading",
Proceedings 10th Symposium on Rock mechanics. pp.363-386
Langhaar, H. L., 1980, "Dimensional analysis and theory of models,' Robert E. Krieger Publishing Company, Huntington, New York.
Meyerhof, G. G., 1951, "The Ultimate Bearing Capacity of Foundation," Geotechnique, vol. 2, no. 4, pp. 301-331.
Meyerhof, G. G., 1957, "The Bearing Capacity of Foundation on Slopes" Proceeding, 4th International Conference on Soil Mechanics and Foundation Engineering, Vol. ,384-386
Meyerhof, G. G., 1963, "Some Recent Research on the Bearing Capacity of Foundation," Canadian Geotechnical Journal, vol. 1, no. 1, Sept, pp. 16-26.
Nelson, R. A., 1968, "Modeling a jointed rock mass," Master Thesis, M.I.T.
Oliveira R., 1993 "Weak rock materials," The Engineering Geology of Weak Rock, pp. 5-15.
Pells, P. J. N and Turner, R. M, 1978, "Theoretical and model studies related to footings and piles on rock", Research Report No.R314, The University Sydney.
Pells, P. J. N and Turner, R. M, 1980, "Endbearing on Rock with Particular Reference to Sandstone", International Conference on Structural Foundations on Rock, Sydney, pp. 181~190.
Pramdtl, L., 1920, "Űber die Härte plastischer Kőrper. Nachr. K. Ges. Wiss. Gott.," Math.-Phys. Kl. pp. 74-85
Rosenblad, J. L., 1969, "Development of equipment for testing models of jointed-rock masses," Soc. Mining Eng., AIME, Proc. 11th Symp. on Rock Mechanics, Calif., pp. 127-146.
Sokolovski, V. V., 1965, Statics of Granular Media. Pergamon Press, New York.
Serraon, A. and Olalla, C., 1994, “Utimate Bearing Capacity of Rock Masses, ” Int. J. Rock Mech. Min. Sci. & Geomech., Absir, Vol. 31, No. 2, pp. 93-106.
Serraon, A. and Olalla, C., 1996, “Allowable Bearing Capacity of Rock Foundations Using a Non-linear Failure Criterium ” Int. J. Rock Mech. Min. Sci. & Geomech., Absir, Vol. 33, No. 4, pp. 327-345
Serraon, A. and Olalla, C., 1998, “Utimate Bearing Capacity of Anisotropic Discontinuous Rock Masses.PartⅠ: Basic Model of Failure, ” Int. J. Rock Mech. Min. Sci. & Geomech., Absir, Vol. 35, No. 3, pp. 301-324.
Serraon, A. and Olalla, C., 2002, “Utimate Bearing Capacity at the Tip of a pile in rock - partⅠ: theory, ” Int. J. Rock Mech. Min. Sci. & Geomech., Absir, Vol. 39, pp. 833-846.
Sower,G.F.,1979,"Introductory Soil Mechanics and Foundations",Geotechnical Engineering(4th edn), MacMillan, New York.
Stimpson, B., 1970, "Modeling materials of engineering rock mechanics," Int. J. Rock Mech. Min. Sci., Vol 7, pp. 77-121.
Stimpson, B., O’Riordan N. J. and Croft D. D., 1979, "A computer model for the analysis of ground movements in London clay," Geotechnique, Vol.29, pp. 149-175.
Tatsuoka F., Kohata Y., 1995, "Stiffness of hard soils and soft rocks in engineering applications," Pre-failure Deformation of Geomaterials, Shibuya, Mitachi and Miura (eds), Balkema, Rotterdam, pp. 947-1061.
Terzaghi, K, 1943, Theoretical Soil Mechanics, Johm Wiley & Sons, New York.
Tien, Y. M. & Tsao P. F., 2000, "Preparation and mechanical properties of artificial transversely isotropic rock," International Journal of Rock Mechanics and Mining Sciences, Vol.37, pp. 1001-1012
Vesic', A. S., 1973, "Analysis of Ultimate Loads of Shallow Foundation," Journal of Soil Mechanics and Foundation Division, ASCE, vol. 99, SM1, Jan, pp. 45-73.
Vesic', A. S., 1975b, Chap. 3: Foundation Engineering Handbook, 1st ed., ed. Winterkorn and Fang, Van Nostrand Reinhold, 751 pp.
Williams, A. F., 1980a, The Design and Performance of Piles Socketed into Weak Rock, Ph.D. Thesis, Monash Univ. Australia.
Wilson, L. C., 1976, "Tests on Bored and Driven Piles in Cretaceous Mudstone at Port Elizabeth, South Afric,". Geotechnique 26, pp. 5-12.
Wyllie, D. C., 1992, Foundations on Rock, Chapman & Hall, London.
何春蓀,1986,「台灣地質概論及台灣地質圖說明書」,經濟部中央地質調查所,第99-102頁。
王孟熙,1991「斜坡上淺基礎的承載力」私立淡江大學土木工程研究所碩士論文。
赤井浩一, 1993, “General aspect of soft rocks,” 土壤基礎(日本), 41期, 1-6頁.
葉贊育,1993 「橫向等向性岩石基礎之承載力解析解-利用滑動線法」 國立交通大學土木工程研究所碩士論文。
鄭富書,1994,「軟弱岩盤承載行為研究(Ι)」,行政院國家科學委員會專題研究計畫成果報告,NSC83-0410-E002-004。
鄭富書,1995,「軟弱岩盤承載行為研究(Π)」,行政院國家科學委員會專題研究計畫成果報告,NSC84-2211-E002-053。
卿建業,1995,「人工軟弱岩石承載行為研究」,國立台灣大學土木工程研究所碩士論文。
應傳智,1995,「人工軟弱岩石之研究」,國立台灣大學土木工程研究所碩士論文。
陳賀瑞,1997,「中北部地區籍軟弱砂岩之物理與力學性質之初步探討」, 國立交通大學土木工程研究所碩士論文。
林銘郎、林煜卿,1998,「新竹寶山地區泥質岩石力學性質研究」,岩盤工程研討會,新竹,國立交通大學,第139-148頁。
王乙翕,1999,「層狀岩盤之承載力」,國立中央大學土木工程研究所碩士論文。
張志勇,1999,「軟弱岩石之張力行為」,國立交通大學土木工程研究所碩士論文。
林景民,2001,「軟弱岩石之應力應變與屈服行為」,國立交通大學土木工程研究所碩士論文。
鍾峻偉,2001,「人造軟砂岩之研製與性質」,國立交通大學土木工程研究所碩士論文。
劉英助,2002,「人造膠結不良砂岩之基礎荷重模型試驗設備建立與試驗」,國立交通大學土木工程研究所碩士論文。
廖智偉,2003,「膠結不良砂岩淺基礎模型承載行為」,國立交通大學土木工程研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊