跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/06 14:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:Azharul Alom
研究生(外文):Azharul Alom
論文名稱:藉由改良多層金屬感應晶片提升表面電漿共振生物檢測器病毒即時偵測能力
論文名稱(外文):Real-time detection of viruses by portable surface plasmon resonance biosensor with multi-metallic sensor chip
指導教授:劉國辰
指導教授(外文):K. C. Liu
學位類別:碩士
校院名稱:長庚大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:英文
論文頁數:84
中文關鍵詞:實時檢測表面等離子體共振生物傳感器多金屬傳感器芯片
外文關鍵詞:Surface plasmon resonanceVP1 protein of EV71Zika NS1 proteinLODmulti-metallic sensor chip
相關次數:
  • 被引用被引用:0
  • 點閱點閱:812
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
Surface plasmon resonance (SPR) is a promising technology for real-time, label-free monitoring of biomolecules in biomedical applications. We have developed portable SPR sensor platform based on Kretschmann prism configuration to the rapid detection of different viruses in real-time. Our proposed multi-metallic (Al-Au-Ag-Au) sensor chip performed well with detection and quantification of VP1 protein of EV71 virus, Zika NS1 protein, and EV 71 virus species. We have compared the simulation result of the different thin metal structure, and Al-Au-Ag-Au layer sensor chip has the better quality factor than all other thin metal structure. Our multi-metallic sensor chip gives optimum resonance wavelength around 610 nm, which is same as our light source peak wavelength. At first, we successfully quantified the EV 71 virus species with a limit of detection (LOD) around 43 VP/mL. Further, we have detected the VP1 protein of EV 71 virus with our multi-metallic sensor chip successfully. We achieved the limit of detection (LOD) around 46 pg/mL. We also detected Zika NS1 protein successfully with a limit of detection around 35 pg/mL.
Recommendation Letter from the Thesis Advisor……………………………
Thesis Oral Defense Committee Certification………………………………..
Preface and Acknowledgement……………………………………………iii
Abstract…………………………………………………………..................v
Table of Contents…………………………………………………………..vi
List of Figures…………………………………………………....................x
List of Tables……………………………………………………………...xiv
Chapter (I) Introduction…………………………………………..................1
1.1) Overview of the SPR sensor Development……………………1
1.2) Motivation of the Research…………………………………….2
1.3) Research objective……………………………………………..3
1.4) Thesis Organization…………………………………................4
Chapter (II) Surface Plasmon Resonance Biosensor Theory………………..5
2.1) Introduction……………………………………………………...5
2.2) Surface plasmon dispersion relation……………………………..6
2.2.1) Derivation of dispersion equation for SPR .....................6
2.2.2) Surface Plasmon on Metal–Dielectric
Medium………………………………………………………12

2.3) Resonance condition of SPR sensor……………………………13
2.4) SPR system requirements………………………………………15
2.4.1) Sensor Chip Surface details…………………...............15
2.4.2) Contribution of light source in SPR sensor…...............16

2.4.3) PDMS flow cell details………………………………..17

2.5) Different configuration of SPR sensor…………………………18

2.5.1) Prism coupled total reflection configuration………….19

2.5.2) Optical fibers…………………………………………..20

2.5.3) Grating coupled configuration………………...............21

2.6) Different methodology of Surface Plasmon resonance sensor………………………………………………………………..22

2.6.1) SPR Sensors Based on Wavelength Interrogation Method……………………………….....................................23

2.6.2) SPR Sensors Based on Angular Interrogation Method………………………………………………………..24

2.6.3) SPR Sensors Based on Intensity Interrogation Method………………………………………………………..25

2.7) SPR sensor surface Modification process for biomolecules detection…………………………………………………………….26

2.7.1) Sensor surface modification by Self-Assembled Monolayer……………………………………………………26

2.7.2) Different types of surface immobilization process......................................................................................27

2.7.3) Amine coupling immobilization……………................28

2.8) SPR sensor performance……………………………................29

2.9) Introduction to enteroviruses and Zika viruses…………………31
2.9.1) Genomic structure of EV71…………………................33

2.9.2) Quantification………………………............................34

2.9.3) Biomarker detection…………………………………...35
2.9.4) VP1 Protein of EV 71 Virus………………..................36
2.9.5) NS1 protein of Zika virus……………………………...37
Chapter (III) Experimental design and Methodology...................................38

3.1) SPR sensor platform configuration…………………................38
3.1.1) Experimental set up…………………………………..38
3.1.2) Trapezoid prism……………………………................39
3.1.3) OLED light source…………………………................40
3.1.4.) Microstructure of BEF and DBEF…………………….41
3.1.5) Sensor Chips………………………………..................43
3.1.5.1) Conventional Au Monolayer………................43
3.1.5.2) Novel Multilayer (Al-Au-Ag-Au) sensor chip fabrication for our experiment…………………………44
3.2) Measurement Objective………………………………………......46
3.3) EV 71 virus Culture procedure…………………………………….46
3.4) Enterovirus Antigen VP1 Plasmid, Protein expression and purification process………………………………………………………...47
Chapter (IV) Result and Discussion ………………………………………48
4.1) Further improvement…………………………………………..48
4.1.1) Experiment with conventional sensor chip…................48
4.1.2) Simulation result of single layer, bi-layer and multilayer sensor chip……………………………………………………53
4.1.3) Alcohol solution measurement with multilayer (Al-Au-Ag-Au) sensor chip………………………..............................57
4.2) EV 71 virus series dilution by viral plaque assay….………….59
4.3) EV 71 virus measurement with Al-Au-Ag-Au layer sensor chip…………...……………………………………………………..60
4.3.1) EV 71 virus quantification experiment………………..60
4.4) Attachment of EV 71 virus in sensor surface observed by SEM……...……………………………………………….................64
4.4.1. SEM image……………..……………………………...64

4.5) Enterovirus Antibody VP1 and Enterovirus Antigen VP1 Experiment by surface immobilization process………64

4.5.1) Biochemical materials and Preparation process………………………………………………………..65

4.5.2) Sensor surface modification by amine coupling
process………………………………………………………..65

4.5.3) Enterovirus VP1 experiment details………………….68

4.6) Detection of NS1 protein of Zika virus by Al-Au-Ag-Au sensor chip......................................................................................................70

Chapter (V) Conclusion & Future work……………………………………73
5.1) Conclusion …………………………..........................................73
5.2) Future work……………………………………………………73
Bibliography……………………………………………………………….75



List of Figures
Figure 2.1: SPR Reflectivity curve (Line A and Line B) of two different refractive indices of analyte flow on the metal sensor chip……………………………………………………………………………………6
Figure 2.2: SPP propagation geometry at the interface between metal (Medium2) and a dielectric medium (Medium1)…………..............................7
Figure2.3. (a): Dispersion relation of surface plasmon where surface plasmon wave vector is not equal to the light wave vector………………………………………………………………………………..14

Figure2.3. (b): Dispersion relation of surface plasmon where surface plasmon wave vector is equal to the light wave vector………………………………………………………………………………..15

Figure 2.4: Schematic view of PDMS flow cell……………………………….17

Figure 2.5: Schematic image of Prism coupling configuration. (a) Otto configuration. (b) Kretschmann configuration………………………………..19

Figure 2.6: Schematic design and characteristics of fiber optic sensor……………………………………………………………………………….20

Figure2.7: Schematic view of grating coupled SPR configuration……………………………………………………………………….21

Figure 2.8: The concept of surface plasmon resonance sensors with different methods…………………………………………………………………..22

Figure 2.9(a): Schematic of SPR sensor based on wavelength interrogation method………………………………………………………………………………23

Figure 2.9 (b): The design of the SPR sensor based on angular interrogation method………………………………………………………………………………24

Figure 2.9 (c): The design of SPR sensor based on Intensity interrogation method………………………………………………………………………………25

Figure 2.10: Different surface immobilization techniques with the carboxylic modified sensor surface………………………………………………………….28

Figure 2.11: Sensorgram from an amine coupling in Biacore 3000, which is described the amounts of ligand bound and the amount immobilized during the immobilization process………………………………………………………29

Figure 2.12: Direct and indirect process of SPR sensors to find out the characteristics……………………………………………………………………..29

Figure 2.13: Schematic of the genome structure of EV71……………………34

Figure3.1: Schematic design of our portable SPR sensor system……………………………………………………………………………….39
Figure 3.2: BK7 Trapezoidal Prism………………………………………39
Figure 3.3: Image of OLED light source………………………………………40
Figure 3.4: Integration of BEF and DBEF with OLED light source……………………………………………………………………………….41
Figure 3.5(a):Mechanism of brightness enhancement film (BEF)………………………………………………………………………………..42
Figure 3.5(b): Mechanism of dual brightness enhancement film (DBEF)……………………………………………………………………………...43
Figure 3.6: Schematic of (a) Conventional Au monolayer and (b) proposed Multilayer sensor chip……………………………………………………………43
Figure 4.1: OLED light source spectra. Peak wavelength is 610 nm……………………………………………………………………………………49

Figure 4.2: Simulation result of Cr-Au layer sensor chip with different thickness (47 nm, 45 nm, 40 nm). Light source spectra peak wavelength not matched with the resonance wavelength………………………………………..50

Figure 4.3: Intensity signal curve with the flow of 0 wt% to 5 wt% alcohol solution for Cr = 3nm, Au = 47nm sensor chip……………………………….51

Figure 4.4: Real time intensity curve observed from normalizing A-B value for Cr = 3nm, Au = 47 nm sensor chip…………………………………………51

Figure 4.5: Calibration curve for alcohol solution measurement with Cr = 3 nm, Au = 47 nm sensor chip……………………………………………………..52

Figure 4.6: Simulation result of Cr-Au sensor chip (Cr=3nm,Au= 47)………………………………………………………………............................53
Figure 4.7: Simulation result of Al-Au sensor chip (Al = 3nm, Au = 47)……………………………………………………………………………………54
Figure 4.8: Simulation result of Al-Ag-Au sensor chip (Al = 3nm, Ag = 20 nm, Au = 20 nm)………………………………………......................................55
Figure 4.9: Simulation result of Al-Au-Ag-Au sensor chip(Al = 3nm, Au = 10 nm, Ag =20 nm, Au = 20 nm).................................................................56
Figure 4.10: Experimental SPR dip with alcohol solution for multilayer sensor chip………………………………………………………………………….57
Figure 4.11: Intensity signal curve with the flow of 0 wt% to 5 wt% alcohol solution for Al-Au-Ag-Au layer sensor chip……………………………………58

Figure 4.12: Real-time intensity signal curve from A-B for Al-Au-Ag-Au layer sensor chip………………………………………………………………….58

Figure 4.13: Calibration curve for alcohol solution measurement with Al-Au-Ag-Au layer sensor chip……………………………………………………..59

Figure 4.14: SPR signal for ‘A’ and ‘B’ integration area from EV 71 quantification experiment………………………………………………………...61

Figure 4.15: SPR signal from normalized A and B value (A-B)…………………………………………………………………………………….62

Figure 4.16: Calibration curve for EV 71 quantification experiment with Al-Au-Ag-Au layer sensor chip………………….................................................63

Figure 4.17: SEM result for (a) bare sensor surface without virus particle, (b) incubated sensor surface with virus particle………………………………64
Figure 4.18: Real-time signal, chemical treatment of sensor surface activation and enterovirus VP1 antibody immobilization……………………66

Figure 4.19: Schematic of enterovirus VP1 detection process with chemical treatment and antigen-antibody binding………………………………………..67

Figure 4.20: Experimental result of series concentration of enterovirus VP1 detection…………………………………………………………………………….69

Figure 4.21: Curve fitting calibration of the SPR signal for VP1 protein of EV 71 virus detection……………………………………………………………..70

Figure 4.22: Real-time signal, chemical treatment of sensor surface activation and Zika NS1 antibody immobilization result…………………….71

Figure 4.23: The experimental result of the series concentration of Antigen Zika NS1 detection…………………………………………...............................71

Figure 4.24: Curve fitting calibration of the SPR signal for NS1 protein of Zika virus detection……………………………………………………………….72

List of Tables
Table 1.1: Clinical diseases of enterovirus serotypes…………....................33

Table 1.2: Preparation of different concentration of EV 71 virus solution for our experiment……………………………………………………………………..60
Table1.3: Detection process and experiment steps……………………………68
[1]. Wood, R. W. "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4.21 (1902): 396-402.
[2]. Fano, U. "The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves)." JOSA 31.3 (1941): 213-222.
[3]. Turbadar, T. "Complete absorption of light by thin metal films." Proceedings of the Physical Society 73.1 (1959): 40.
[4]. Otto, Andreas. "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection." Zeitschrift für Physik 216.4 (1968): 398-410.
[5]. Kretschmann, Erwin, and Heinz Raether. "Notizen: radiative decay of non radiative surface plasmons excited by light." Zeitschrift für Naturforschung A 23.12 (1968): 2135-2136.
[6]. Liedberg, Bo, Claes Nylander, and Ingemar Lunström. "Surface plasmon resonance for gas detection and biosensing." Sensors and actuators 4 (1983): 299-304.

[7]. Jönsson, U., et al. "Real-time biospecific interaction analysis using surface plasmon resonance and a sensor chip technology." Biotechniques 11.5 (1991): 620-627.

[8]. Wassaf, Dina, et al. "High-throughput affinity ranking of antibodies using surface plasmon resonance microarrays." Analytical biochemistry 351.2 (2006): 241-253.

[9]. Rich, Rebecca L., and David G. Myszka. "Higher-throughput, label-free, real-time molecular interaction analysis." Analytical biochemistry 361.1 (2007): 1-6.

[10]. Schmitt, Hans-Martin, et al. "An integrated system for optical biomolecular interaction analysis." Biosensors and Bioelectronics 12.8 (1997): 809-816.

[11]. Hegnerová, K., et al. "Detection of bisphenol A using a novel surface plasmon resonance biosensor." Analytical and bioanalytical chemistry 398.5 (2010): 1963-1966.

[12]. Mauriz, Elba, et al. "Multi-analyte SPR immunoassays for environmental biosensing of pesticides." Analytical and bioanalytical chemistry 387.4 (2007): 1449-1458.

[13]. Shimomura, Mifumi, et al. "Simple and rapid detection method using surface plasmon resonance for dioxins, polychlorinated biphenylx and atrazine." Analytica Chimica Acta 434.2 (2001): 223-230.

[14]. Glynn, Barry, et al. "Current and emerging molecular diagnostic technologies applicable to bacterial food safety." International Journal of Dairy Technology 59.2 (2006): 126-139.

[15]. Patel, Pradip D. "Overview of affinity biosensors in food analysis." Journal of AOAC International 89.3 (2006): 805-818.

[16]. Brault, Norman D., et al. "Ultra-low fouling and functionalizable zwitterionic coatings grafted onto SiO2 via a biomimetic adhesive group for sensing and detection in complex media." Biosensors and Bioelectronics 25.10 (2010): 2276-2282.

[17]. Wu, Jie, et al. "Biomedical and clinical applications of immunoassays and immunosensors for tumor markers." TrAC Trends in Analytical Chemistry 26.7 (2007): 679-688.

[18]. Huang, Lieven, et al. "Prostate-specific antigen immunosensing based on mixed self-assembled monolayers, camel antibodies and colloidal gold enhanced sandwich assays." Biosensors and bioelectronics 21.3 (2005): 483-490.

[19]. Zhao, Xihong, et al. "Optical fiber sensor based on surface plasmon resonance for rapid detection of avian influenza virus subtype H6: Initial studies." Journal of virological methods 233 (2016): 15-22.
[20]. Vidic, Jasmina, et al. "Surface plasmon resonance immunosensor for detection of pb1-f2 Influenza A Virus protein in infected biological samples." Journal of Analytical & Bioanalytical Techniques 2013 (2013).
[21]. Yakes, Betsy Jean, et al. "Surface plasmon resonance biosensor for detection of feline calicivirus, a surrogate for norovirus." International journal of food microbiology 162.2 (2013): 152-158.
[22]. Victoria, Shpacovitch. "Application of surface plasmon resonance (SPR) for the detection of single viruses and single biological nano-objects." Journal of Bacteriology & Parasitology 2012 (2012).
[23]. Sikarwar, Bhavna, et al. "Surface plasmon resonance immunosensor for recombinant H1N1 protein." Plasmonics 10.1 (2015): 77-85.
[24]. Peyghambarian, Nasser, Stephan W. Koch, and Andre Mysyrowicz. Introduction to semiconductor optics. Prentice-Hall, Inc., 1993.
[25]. Li, Chung-Tien, et al. "Ag/Au bi-metallic film based color surface plasmon resonance biosensor with enhanced sensitivity, color contrast and great linearity." Biosensors and Bioelectronics 36.1 (2012): 192-198.
[26]. Chen, Y., et al. "Bimetallic chips for a surface plasmon resonance instrument." Applied optics 50.3 (2011): 387-391.
[27]. Xia, Liangping, et al. "Sensitivity enhancement for surface plasmon resonance imaging biosensor by utilizing gold–silver bimetallic film configuration." Plasmonics 6.2 (2011): 245-250.
[28]. Lin, Wen Bin, et al. "Development of a fiber-optic sensor based on surface plasmon resonance on silver film for monitoring aqueous media." Sensors and Actuators B: Chemical 75.3 (2001): 203-209.
[29]. Choi, Seung Ho, Young L. Kim, and Kyung Min Byun. "Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors." Optics express 19.2 (2011): 458-466.
[30]. Liedberg, B., I. Lundström, and E. Stenberg. "Principles of biosensing with an extended coupling matrix and surface plasmon resonance." Sensors and Actuators B: Chemical 11.1 (1993): 63-72.
[31]. Shumaker-Parry, Jennifer S., and Charles T. Campbell. "Quantitative methods for spatially resolved adsorption/desorption measurements in real time by surface plasmon resonance microscopy." Analytical chemistry 76.4 (2004): 907-917.
[32]. Šípová, Hana, and Jiří Homola. "Surface plasmon resonance sensing of nucleic acids: a review." Analytica chimica acta 773 (2013): 9-23.
[33]. Prabowo, Briliant Adhi, et al. "Performance of white organic light-emitting diode for portable optical biosensor." Sensors and Actuators B: Chemical 222 (2016): 1058-1065.
[34]. Nakamura, Shuji, Takashi Mukai, and Masayuki Senoh. "Candela‐class high‐brightness InGaN/AlGaN double‐hetero structure blue‐light‐emitting diodes." Applied Physics Letters 64.13 (1994): 1687-1689.
[35]. Nakamura, Shuji. "Blue lasers meet tough commercial requirements." Photonics spectra 32.5 (1998).
[36]. Chen, Kuo-Ju, et al. "The influence of the thermal effect on CdSe/ZnS quantum dots in light-emitting diodes." Journal of Light wave Technology 30.14 (2012): 2256-2261.
[37]. Chen, Kuo-Ju, et al. "White light emitting diodes with enhanced CCT uniformity and luminous flux using ZrO2 nanoparticles." Nanoscale 6.10 (2014): 5378-5383.
[38]. Capitan-Vallvey, Luis Fermin, and Alberto J. Palma. "Recent developments in handheld and portable optosensing—A review." Analytica chimica acta 696.1 (2011): 27-46.
[39]. Chinowsky, Timothy M., et al. "Compact, high performance surface plasmon resonance imaging system." Biosensors and Bioelectronics 22.9 (2007): 2208-2215.
[40]. Chung, Seungjun, et al. "Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes." Applied Physics Letters 94.25 (2009): 253302.
[41]. Gaab, Michael R. "Instrumentation: endoscopes and equipment." World neurosurgery 79.2 (2013): S14-e11.
[42]. Chang, Moon-Hwan, et al. "Light emitting diodes reliability review." Microelectronics Reliability 52.5 (2012): 762-782.
[43]. Lu, Ming-Kuan, et al. "Compact light-emitting diode lighting ring for video-assisted thoracic surgery." Journal of biomedical optics 19.10 (2014): 105004-105004.
[44]. Manz, Andreas, et al. "Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip." Journal of Chromatography A 593.1 (1992): 253-258.
[45]. Reyes, Darwin R., et al. "Micro total analysis systems. 1. Introduction,theory, and technology." Analytical chemistry 74.12 (2002): 2623-2636.
[46]. Jakeway, Stephen C., Andrew J. de Mello, and Emma L. Russell. "Miniaturized total analysis systems for biological analysis." Fresenius' journal of analytical chemistry 366.6-7 (2000): 525-539.
[47]. Otto, A. "A new method for exciting non-radioactive surface plasma oscillations." Phys. Stat. Sol 26 (1968): K99-K101.
[48]. Otto, Andreas. "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection." Zeitschrift für Physik 216.4 (1968): 398-410.
[49]. Kretschmann, Erwin, and Heinz Raether. "Notizen: radiative decay of non radiative surface plasmons excited by light." Zeitschrift für Naturforschung A 23.12 (1968): 2135-2136.
[50]. Lukosz, W., and K. Tiefenthaler. "Embossing technique for fabricating integrated optical components in hard inorganic waveguiding materials." Optics letters 8.10 (1983): 537-539.
[51]. Homola, Jiří. "Present and future of surface plasmon resonance biosensors." Analytical and bioanalytical chemistry 377.3 (2003): 528-539.
[52] Nuzzo, Ralph G., and David L. Allara. "Adsorption of bifunctional organic disulfides on gold surfaces." Journal of the American Chemical Society 105.13 (1983): 4481-4483.
[53]. Bergstrom, Jan, Stefan Lofas, and Bo Johnsson. "Sensing surfaces capable of selective biomolecular interactions, to be used in biosensor systems." U.S. Patent No. 5,242,828. 7 Sep. 1993.
[54]. Ulman, Abraham, ed. Thin films: advances in research and development. 24.Self-assembled monolayers of thiols. Academic Press, 1998.
[55]. Bishop, Adeana R., and Ralph G. Nuzzo. "Self-assembled monolayers: Recent developments and applications." Current Opinion in Colloid & Interface Science 1.1 (1996): 127-136.
[56]. Ostuni, Emanuele, et al. "A survey of structure-property relationships of surfaces that resist the adsorption of protein." Langmuir 17.18 (2001): 5605-5620.
[57]. Biacore Sensor Surface Handbook BR-1005-71 Edition AB
[58].Melnick J.L. 1996a. Enteroviruses: Polioviruses, Coxsackieviruses, Echoviruses, and Newer Enteroviruses. In: B.N. Fields, D.M. Knipe, P.M. Howley (eds.). Fields Virology, 3rd edn. Chap. 22. pp. 655-712. Lippincott-Raven Publishers, Philadelphia.

[59]. King, A. M. Q., et al. "Picornaviridae." Virus taxonomy. Seventh report of the International Committee for the Taxonomy of Viruses (2000): 657-673.

[60]. Lindberg, A. Michael, and Susanne Johansson. "Phylogenetic analysis of Ljungan virus and A-2 plaque virus, new members of the Picornaviridae." Virus research 85.1 (2002): 61-70.

[61]. Li, Linlin, et al. "Genetic characteristics of human enterovirus 71 and coxsackievirus A16 circulating from 1999 to 2004 in Shenzhen, People's Republic of China." Journal of clinical microbiology 43.8 (2005): 3835-3839.

[62]. Rotbart, Harley A. "Treatment of picornavirus infections." Antiviral research 53.2 (2002): 83-98.

[63].Melnick J.L. (1996b) “Poliovirus and other enteroviruses. In: A.S. Evans, R.A.Kaslow (eds.). Viral Infections of Humans, 4th edn. Chap. 21. pp. 583-664.Plenum Publishing Corporation, New York.

[64].Yin-Murphy M., Almond J.W. (1996) Picornaviruses. In: Baron S. and Schuenke S (eds). Medical microbiology, 4th edition. Chap. 53. The University of Texas Medical Branch at Galveston. Galveston, Texas.

[65]. Faye, Oumar, et al. "Molecular evolution of Zika virus during its emergence in the 20 th century." PLoS Negl Trop Dis 8.1 (2014): e2636.

[66]. Faria, Nuno Rodrigues, et al. "Zika virus in the Americas: Early epidemiological and genetic findings." Science 352.6283 (2016): 345-349.

[67]. Li, Jiandong, et al. "Zika Virus in a Traveler Returning to China from Caracas, Venezuela, February 2016." Emerging infectious diseases 22.6 (2016): 1133.

[68]. Chan, Y. F., and Bakar S. Abu. "Virucidal activity of Virkon S on human enterovirus." The Medical journal of Malaysia 60.2 (2005): 246-248.

[69]. De Jesus, Nidia H. "Epidemics to eradication: the modern history of poliomyelitis." Virology journal 4.1 (2007): 1.
[70]. Brown, Betty A., and Mark A. Pallansch. "Complete nucleotide sequence of enterovirus 71 is distinct from poliovirus." Virus research 39.2 (1995): 195-205.

[71]. Sawyers, Charles L. "The cancer biomarker problem." Nature 452.7187 (2008): 548-552.

[72]. Hawkridge, Adam M., and David C. Muddiman. "Mass spectrometry–based biomarker discovery: toward a global proteome index of individuality." Annual review of analytical chemistry (Palo Alto, Calif.) 2 (2009): 265.

[73]. Lee, Brian W., et al. "ELISA method for detection of influenza A infection in swine." Journal of Veterinary Diagnostic Investigation 5.4 (1993): 510-515.

[74]. Lal, Sunil K., et al. "The VP1 protein of human enterovirus 71 self‐associates via an interaction domain spanning amino acids 66–297." Journal of medical virology 78.5 (2006): 582-590.

[75]. Foo, D. G. W., et al. "Identification of immune dominant VP1 linear epitope of enterovirus 71 (EV71) using synthetic peptides for detecting human anti‐EV71 IgG antibodies in western blots." Clinical Microbiology and Infection 14.3 (2008): 286-288.

[76]. Ke, Yi‐Yu, Yun‐Chu Chen, and Thy‐Hou Lin. "Structure of the virus capsid protein VP1 of enterovirus 71 predicted by some homology modeling and molecular docking studies." Journal of computational chemistry 27.13 (2006): 1556-1570.

[77]. Li, Chin, et al. "The efficacy of viral capsid inhibitors in human enterovirus infection and associated diseases." Current medicinal chemistry 14.8 (2007): 847-856.

[78]. Sivasamugham, Lalita Ambigai, et al. "Recombinant Newcastle Disease virus capsids displaying enterovirus 71 VP1 fragment induce a strong immune response in rabbits." Journal of medical virology 78.8 (2006): 1096-1104.

[79]. Tan, C-S., and M. J. Cardosa. "High-titred neutralizing antibodies to human enterovirus 71 preferentially bind to the N-terminal portion of the capsid protein VP1." Archives of virology 152.6 (2007): 1069-1073.

[80]. Youn, Soonjeon, et al. "Evidence for a genetic and physical interaction between nonstructural proteins NS1 and NS4B that modulates replication of West Nile virus." Journal of virology 86.13 (2012): 7360-7371.

[81]. Gutsche, Irina, et al. "Secreted dengue virus nonstructural protein NS1 is an atypical barrel-shaped high-density lipoprotein." Proceedings of the National Academy of Sciences 108.19 (2011): 8003-8008.

[82]. Akey, David L., et al. "Flavivirus NS1 structures reveal surfaces for associations with membranes and the immune system." Science 343.6173 (2014): 881-885.

[83]. Frischeisen, Jörg, et al. "Surface plasmon resonance sensor based on a planar polychromatic OLED light source." Photonics Europe. International Society for Optics and Photonics, 2008.

[84]. Chung, Seungjun, et al. "Substrate thermal conductivity effect on heat dissipation and lifetime improvement of organic light-emitting diodes." Applied Physics Letters 94.25 (2009): 253302.

[85]. Lin, Hoang-Yan, et al. "Improvement of the outcoupling efficiency of an organic light-emitting device by attaching microstructured films." Optics communications 275.2 (2007): 464-469.

[86]. Joo, Byung-Yun, and Dong-Ho Shin. "Design guidance of backlight optic for improvement of the brightness in the conventional edge-lit LCD backlight." Displays 31.2 (2010): 87-92.

[87]. Prabowo, Briliant Adhi, et al. "Application of an OLED integrated with BEF and giant birefringent optical (GBO) film in a SPR biosensor." Sensors and Actuators B: Chemical 198 (2014): 424-430.

[88]. Sharma, Anuj K., and B. D. Gupta. "On the performance of different bimetallic combinations in surface plasmon resonance based fiber optic sensors." Journal of Applied Physics 101.9 (2007): 093111.

[89]. Ong, Biow Hiem, et al. "Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor." Sensors and Actuators B: Chemical 114.2 (2006): 1028-1034.

[90]. Wang, Zhiyou, et al. "Stable and sensitive silver surface plasmon resonance imaging sensor using trilayered metallic structures." Analytical chemistry 86.3 (2014): 1430-1436.

[91] Nur Hasiba, et al. "Enhancement of chitosan-graphene oxide SPR sensor with a multi-metallic layers of Au–Ag–Au nanostructure for lead (II) ion detection." Applied Surface Science 361 (2016): 177-184.

[92].C.-J. Liu, “Sensitivity and noise improvement of portable surface Plasmon resonance biosensor system,” Master Theis, Chang Gung University, 2015.

[93]. Khari Secario, “Portable Surface Plasmon Resonance Biosensor for Rapid Detection of Enterovirus 71 Viral Particles” Chang Gung University, Master Thesis, 2016.

[94].M. Barquins and J. Cognard, “Adhesion characteristics of gold - 81 - surfaces,” Gold Bull., vol. 19, no. 3, pp. 82–86, 1986.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top