跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.152) 您好!臺灣時間:2025/11/05 11:27
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:何麗敏
研究生(外文):Myint Myint Aye
論文名稱:改善苦瓜種子發芽之研究
論文名稱(外文):Improvement of Bitter Gourd (Momordica charantic L.)
指導教授:張武男張武男引用關係宋妤
指導教授(外文):Woo-Nang ChangYu Sung
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2004
畢業學年度:93
語文別:英文
論文頁數:74
中文關鍵詞:苦瓜種子發芽率前處理
外文關鍵詞:Bitter GourdSeed germinationPresowing treatments
相關次數:
  • 被引用被引用:2
  • 點閱點閱:599
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
苦瓜種子胚約佔種子60%,子葉小,種皮厚,厚及硬之種皮限制其發芽。本試驗研究,利用種子前處理之方法促進種子發芽,利用果實成熟顏色、後熟時間及種子分級,提升苦瓜種子之品質。
以¢粉青¢、¢青皮¢及¢F-602¢三品種之苦瓜種子為試驗材料。掐開於胚根處之部分種皮並以流水浸種12小時,於30、25、20℃可得到最佳的發芽率。種子以50℃溫水浸種1小時較40或60℃及不同時間處理者有顯著較佳之發芽率。種子以濃硫酸浸漬處理30秒發芽率最高,但浸漬時間超過30秒發芽率則下降。將掐開種子以15%雙氧水浸種25分及未掐開種子以1%雙氧水為種子第一次之發芽水處理有較高之發芽率。利用種子、蛭石2號及0.1%NaOCl之混合,比例為9:12:18(重量百分比),滲調2天,種子發芽速度最快。以掐開種皮流水浸種12小時或不掐開種皮以50℃溫湯浸種1小時,可提高種子萌芽率。
將經過種子前處理之¢粉青¢和¢青皮¢苦瓜種子浸潤於水中,分析12小時期間種子滲漏液之導電度,對照組之種子滲漏液導電度最高,濃硫酸處理次之,流水浸種12小時及50℃溫湯浸種處理者滲漏液之導電度最低,於浸潤24小時後此二處理其內含之酚類物及游離氨基酸皆較其他處理者減少。當種子以50℃水浸種1小時,浸潤液中碳水化合物、總酚類化合物和游離氨基酸顯著較浸種於25℃者多。當種子浸種12小時後,種子內水分含量較浸種24小時者顯著少,呼吸率顯著高及可溶性碳水化合物含量增加。
密度高之種子重量重,且有較高之發芽率並可縮短平均發芽天數。全黃苦瓜果實之0.86-0.88g/cc種子密度者,經後熟24小時後顯著提高發芽率,且平均發芽天數明顯下降。半黃苦瓜果實經72小時後熟處理,於四種密度之種子發芽皆較後熟24天者發芽率較高。半黃苦瓜果實後熟後之種子較全黃苦瓜未後熟果實之種子含可溶性碳水化合物顯著較多。半黃苦瓜果實後熟72小時之種子其碳水化合物較後熟24小時者較高,澱粉含量則較低。半黃果實成熟度及後熟處理對種子密度為0.8 ~0.9g/cc者之種子萌芽力有顯著影響。
採收半黃苦瓜果實,後熟72小時,選擇密度於0.8~0.9g/cc種子,播種前種子以50℃溫湯浸種1小時或掐開種子流水處理12小時,提高發芽率。
Bitter gourd seeds have small cotyledons enclosed in a hard, thick seed coat. Which, limits germination to unacceptably low level. A number of pre-sowing treatments can increase germination by overcoming the limitations imposed by the seed coat.
For all three varieties of bitter gourd seeds used in this study, germination at 30, 25and 20℃ were the best when seeds were clipped and soaked in running water for 12 hrs. Seeds immersed in 50oC water for 60 min exhibited significantly higher germination than seeds immersed at other temperatures and for different times. The germination of seeds treated with H2SO4 was the highest after 30 sec of immersion. However, germination decreased as immersion time increased beyond 30 sec. Germination was higher for clipped seeds immersed in 15% H2O2 for 25 min and for unclipped seeds imbibed with 1% H2O2 water. Priming seeds for 2 days with vermiculite No. 2 and NaOCl at a seeds: vermiculite # 2: 0.1% NaOCl ratio of 9:12:18, by weight produced the highest germination rate. The highest emergence rate was achieved with two different treatments of soaking clipped seeds in running water for 12 hr or immersing unclipped seeds in 50°C water for 1 hr.
The conductivity of leachate from ‘Fen Ching’ and ‘Ching Pi’ bitter gourd seeds that were soaked prior to sowing was assayed during the first 12 hr of imbibition. The leachate from control seeds had the highest conductivity, while the leachate from seeds treated with H2SO4 exhibited the second highest conductivity. After imbibition for 12 hr, the lowest conductivity value was obtained from the leachate of seeds that soaked in running water or immersed in 50°C water. In addition, after soaking 24 hr, the leachate from the seeds in these two treatments contained significantly fewer phenolic compounds and free amino acids than the leachate from seeds that received other treatments.
When seeds soaked in water for one hr, the soluble carbohydrates, phenolic compound and free amino acids from seeds soaked in 50°C water were significantly more than those in 25°C water. Seeds soaked in water for 12 hr contained significantly less water and more soluble carbohydrates, and had a significantly higher respiration rate than seeds soaked for 24 hr.
The densest seeds were also the heaviest seeds and had the highest germination and shortest germination time (MDG). After-ripening significantly increased the germination and decreased the MDG of the densest seeds from completely yellow gourds. For seeds of a given density from half-yellow gourds, the germination of seeds after-ripened for 72 hr was significantly greater than the germination of seeds after-ripened for 24 hr. There were significantly more soluble carbohydrates in seeds from after-ripened, half-yellow gourds, than in seeds from untreated completely yellow gourds. Among seeds from half-yellow gourds, the soluble carbohydrates were highest in seeds from gourds after-ripened 72 hr, and starch content was highest in seeds from gourds after-ripened 24 hr. Seeds from fruit after-ripened 72 hr had the greatest emergence force.
The effective and cheap pre-sowing methods were demonstrated in this research for enhancing seeds germination. Bitter gourd seed quality was enhanced by adequate fruit maturity, after ripening and seed density grading. The pre-sowing treatment that increased germination the most and was least expensive was seeds immersed in 50oC water for 60 min.
Page
ACKNOWLEDGEMENTS ii
LIST OF TABLES v
LIST OF FIGURES vii
1. INTRODUCTION 1
2. REVIEW OF LITERATURE 3
Germination of Cucurbitaceae Seed 3
Effect of Seed Coat on Seed Germination 4
Artificial Softening of Seed Coats 6
Seed Viability 12
3. MATERIALS AND METHODS 19
4. EXPERIMENTAL RESULTS 27
Soaking and clipping treatment 27
Immersion in 50℃water 28
Immersion in sulfuric acid 29
Immersion in hydrogen peroxide 30
Matriconditionning 31
Conductivity test and analysis leachate 32
Effect of soaking duration 34
Fruit maturity and seed density 34
5. DISCUSSION 54
Treatments improving bitter gourd seed germination 54
Improving seed germination: key factors 58
Effect of fruit maturity and after-ripening on seed quality 60
6. SUMMARY 64
7. LITERATURE CITED 66
LIST OF TABLES
Table Page
1. Effect of Seed coat clipping and soaking time on seed germination of 36
‘Fen Ching’ bitter gourd at three temperatures.
2. Effect of Seed coat clipping and soaking time on seed germination of 37
‘Ching Pi’ bitter gourd at three temperatures.
3. Effect of immersion in warm water on ‘Fen Ching’ bitter gourd seed 38
germination at three temperatures.
4. Effect of immersion in warm water on ‘Ching Pi’ bitter gourd seed 39
germination at three temperatures.
5. Effect of immersion in sulfuric acid on ‘Fen Ching’ bitter gourd seed 40
germination at three temperatures.
6. Effect of immersion in sulfuric acid on ‘Ching Pi’ bitter gourd seed 40
germination at three temperatures.
7. Effect of immersion in H2O2 solution on ‘Fen Ching ’ bitter gourd seed 41
germination at three temperatures.
8. Effect of immersion in H2O2 solution on ‘Ching Pi ’ bitter gourd seed 42
germination at three temperatures.
9. Effect of matriconditionning y on ‘Fen Ching’ bitter gourd seed 43
germination at three temperatures.
10. Effect of matriconditionning y on ‘Ching Pi’ bitter gourd seed 43
germination at three temperatures.
11. ‘F- 602’ bitter gourd seed germination at 25℃ following different 44
seed treatments.
12. Germination and emergence of ‘Fen Ching’ bitter gourd seed following 45
different seed treatments.
13. Germination and emergence of ‘Ching Pi’ bitter gourd seed following 45
different seed treatments.
14. Soluble carbohydrate, phenolic compound, and free amino acid in 48
soaking solution of bitter gourd seed imbibition in water for 1 hr.
15. Soluble carbohydrate, phenolic compound, and free amino acid in 49
soaking solution of ‘Fen Ching’ bitter gourd seed imbibition in water
for 24 hrs.
16. Soluble carbohydrate, phenolic compound, and free amino acid in 49
soaking solution of ‘Ching Pi’ bitter gourd seed imbibition in water
for 24 hrs.
17. Soluble carbohydrate, phenolic compound, free amino acid in 50
soaking solution of ‘F-602’ bitter gourd seed imbibition in water
for 24 hr.
18. Effect of clipped and soaked of ‘Fen Ching’ bitter gourd seed on 52
water content, respiration rate, soluble sugar content and
starch content.
19. Effect of clipped and soaked of ‘Ching Pi’ bitter gourd seed on 52
water content, respiration rate, soluble sugar content and
starch content.
20. Fruit maturity and seed density on ‘Fen Ching’ bitter gourd seed 53
weight, germination and emergence force at 25℃.
21. Fruit maturing color on soluble glucose and starch amount and 53
emergence force of ‘Fen Ching ’ bitter gourd seed.
LIST OF FIGURES
Figure Page
1. Electrical conductivity of ‘Fen Ching’ bitter gourd seeds following 46
different seed treatments.
2. Electrical conductivity of ‘Ching Pi’ bitter gourd seeds following 46
different seed treatments.
3. Electrical conductivity of ‘F-602’ bitter gourd seeds following 47
different seed treatments.
4. Water content in germination of ‘Fen Ching’ bitter gourd seed 51
Under 25℃.
5. Water content in germination of ‘Ching Pi’ bitter gourd seed 51
Under 25℃.
Alvarenga, E. M., R. F. da. Silva, E. F. Araujo, and L. S. Leiro. 1991. Physiological ripening of squash seeds. Revista Brasileira de Sementes 13(2): 147-150.
Araujo, E. F., E. C. Mantovani, and R. F. da. Silva. 1982. Influence of fruit age and storage period on squash seed quality. Revista Brasileira de Sementes 4(1): 77-87.
Ballard, L. A. T. 1973. Physical barriers to germination. Seed Sci. Technol. 1: 285-303.
Baskin, C. C and J. M. Baskin. 1998. Germination ecology of seeds with physical dormancy, p. 101-124. Seeds. Academic Press, USA.
Berdahl, J. D. and Frank, A. B. 1998. Seed maturity in four cool-season forage grasses. Agro. J. 90: 483-488.
Bisognin, D. A., N. L. Menezes, R. Centenaro, and A. M. Albini. 1999. Influence of extraction time on the physiological quality of bottle gourd seeds. Ciencia Rural 29(1): 7-12.
Canttiffe, D. J., A. C. Than, and A. C. Guetdes. 1980. Seed treatment of hairy indigo (Indigofera hisute L.) to overcome hard seed dormancy. HortScience 15(4): 518-520.
Cervantes, V., J. Carabias, and C. Vazquez-Yanes. Seed germination of woody legumes from deciduous tropical forest of southern Mexico. Forest Ecol. and Manage. 82: 171-184.
Change, Y. K., J. H. Kim, Y. R. Yeoung, and S. H. Lee. 1996. Effects of fruit maturity and after ripening period on the germination of gourd seeds. J. Kor. Soc. Hort. Sci. 37(2): 197-200.
Chen, Y. W. 2001. Studies on successive cropping problem of celery (Apium graveolens L. var. dulce). Master Thesis. Dept. of Hort., National Chung Hsing University.
Chen, C. C. and J. M. Sung. 2001. Priming bitter gourd seeds with selenium solution enhances germinability and antioxidative responses under sub-optimal temperature. Physiologia Plantarum 111: 9-16.
Copeland, L. O. and M. B. McDonald. 1995. Seed Science and Technology. 3 rd ed. Chapman and Hall, New York.
Dahal, P., N. S. Kim, and K. J. Bradford. 1996. Respiration and germination rates of tomato seeds at suboptimal temperatures and reduced water potentials. J. Exp. Bot. 47: 941-947.
Demir, I. and Venter, H. A. 1999. The effect of priming treatments on the performance of watermelon (Citrullus Lanatus (Thunb.) Matsum. & Nakai) seeds under temperature and osmotic stress. Seed Sci. Technol. 27:871-875.
Duke, S. H., G. Kakefuda, C. A. Henson , N. L. Loeffler, and N. M. Van Hulle. 1986. Role of the testa epidermis in the leakage of intracellular substances from imbibing soybeans and its implication for seedling survival. Plant Physiol. 68: 624-631.
Duval, J. R. and D. S. NeSmith. 1999. Emergence of ‘Genesis’ triploid watermelon following mechanical scarification. J. Amer. Soc. Hort. Sci.. 124 (4): 430-432.
Duval, J. R. and D. S. NeSmith. 2000. Treatment with hydrogen peroxide and seed coat removal or clipping improves germination of ‘Genesis’ triploid watermelon. HortScience 35(1): 85-86.
Elmaki, H. B., E. E. Babiker, and A. H. E. Tinay. 1999. Changes in chemical composition, grain malting, starch and tannin contents and protein digestibility during germination of sorghum cultivars. Food Chem. 64: 331-336.
George, R. A. T. 1999. Cucurbitaceae, p. 164-188. Vegetable seed production. 2nd ed. CABI, UK.
Grange, S. L. and D. I. Leskovar. 2000. Excess moisture and seedcoat nicking influence germination of triploid watermelon. HortScience 35(7): 1355-1356.
Heydecker, W. and P. Coolbear. 1977. Seed treatments for improved performance-survey and attempted prognosis. Seed Sci. and Technol. 5: 353-425.
Katzman, L. S., A. G. Taylor, and R. W. Langhans. 2001. Seed enhancements to improve spinach germination. J. Amer. Soc. Hort. Sci. 36(5): 979-981.
Khan, A. A., J. D. Maguire, G. S. Abawi, and S. Ilyas. 1992. Matriconditioning of vegetable seeds to improve stand establishment in early fiend plantings. J. Amer. Soc. Hort. Sci. 117 (1): 41-47.
King, R. W. 1976. Abscisic acid in developing wheat grains and its relationship to grain growth and maturation. Planta 132: 43-51.
Klejdus, B. and V. Kuban. 2000. High performance liquid chromatographic determination of phenolic compounds in seed exudates of Festuca arundinacea and F. pretense. Phytochemical Analysis 11: 375-379.
Liao, C. T. and C. H. Lin. 1994. Effect of flooding stress on photosynthetic activities of Momordica charantia. Plant Physiol. Biochem. 32(4): 479-485.
Lin, J. M. 1998. The effect of suboptimal temperature on vigor of primed bitter gourd seeds. Master Thesis. Dept. of Horticulture, National Chung Hsing University.
Lin, J. M. and J. M. Sung. 2001. Pre-sowing treatments for improving emergence of bitter gourd seedlings under optimal and sub-optimal temperature. Seed Sci. Technol. 29: 39-50.
McDonald, M. B. 1999. Seed deterioration physiology repair and assessment. Seed Sci. Technol. 27:177-237.
Mckersie, B. D. and R. H. Stinson. 1980. Effect of dehydration on leakage and membrane structure in Lotus corniculatus L. seed. Plant Physiol. 66:316-320.
Mohamed-Yasseen, Y., S. A. Barringer, W. E. Splittstoesser, and S. Costanza. 1994. The role of seed coats in seed viability. Bot. Rev. 60(4): 426- 439.
Morgan, W. and D. Midmore. 2002. Bitter melon in Australia. RIRDC publication No 02/124. Rural Industries Research and Development Corporation 28pp.
Nada, E. S. Lotito, L. Quagliotti, and P. Belletti. 1994. Seed treatments against dormancy in okra (abelmoschus esculentus (L) Moench). Acta Hort. 362: 133-140.
Nerson, H., H. S. Paris, and Z. Karchi. 1985. Seed treatments for improved germination of tetraploid watermelon. HortScience 20(1): 897-899.
Ogawa, K. and M. Iwabuchi. 2001. A mechanism for promoting the germination of Zinnia elegans seeds by hydrogen peroxide. Plant and Cell Physiol. 42(3): 286-291.
Perez-Garcia, F. and A. Escudero. 1997. Role of the seed coat in germination of Cistus populifolius L. Israel J. Plant Sci. 45: 329-331.
Perkins-Veazie, P. and D. J. Cantliffe. 1984. Need for high-quality seed for effective priming to overcome thermodormancy in lettuce. J. Amer. Soc. Hort. Sci. 109 (3): 368-372.
Posmyk, M. M., F. Corbineau, D. Vinel, C. Bailly, and D. Come. 2001. Osmoconditioning reduces physiological and biochemical damage induced by chilling in soybean seeds. Physiologia Plantarum 111: 4473-482.
Prasad, P. and A. R. Nautiyal. 1996. Physiology of germination in Bauhinia: involvement of seed coat in inhibition of germination in B. racemosa Lam. Seeds. Seed Sci. Technol. 24: 305-308.
Puppala, N. and J. L. Fowler. 2002. Lesquerella seed pretreatment to improve germination. Industrial Crops and Products 17: 61-69.
Robinson, R. W. and D. S. Decker-Walters. 1996. Cucurbits. New. York, CAB International. 226pp.
Rolston, M. P. 1978. Water impermeable seed dormancy. Bot. Rev. 44: 365-395.
Schmidt, D. H. and W. F. Tracy. 1989. Duration of imbibition affects seed leachate conductivity in sweet corn. HortScience 24(1): 346-347.
Seiler, G. J. 1998. Seed maturity, storage time and temperature, and media treatment effects on germination of two wild sunflowers. Agro. J. 90: 221-226.
Singh, S. P. 2001. Seed viability, germination and seed testing techniques in vegetables, p. 22-32. Seed production of commercial vegetables. ATPA press, New Delhi.
Sung, J. M. and K. Y. Chiu. 1995. Hydration effect on seedling emergence strength of watermelon seeds differing in ploidy. Plant Sci. 110: 21-26.
Teketay, D. 1996. Germination ecology of twelve indigenous and eight exotic multipurpose leguminous species from Ethiopia. Forest Ecol. and Manage. 80: 209-223.
Taylor, A. G., A. M. Mccarthy, and E. M. Chirco. 1982. Density separation of seeds with hexane and chloroform. J. Seed Technol. 7(1): 78-83.
Taylor, A. G. and C. W. T. Broeck. 1988. Seedling emergence forces of vegetable crops. HortScience 23(2): 367-369.
Wang, H. Y., C. L. Chen, and J. M. Sung. 2003. Both warm water soaking and matriconditioning treatments enhance anti-oxidation of bitter gourd seeds germinated at sub-optimal temperature. Seed Sci. Technol. 31: 47-56.
Wann, E. V. 1986. Leaching of metabolites during imbibition of sweet corn seed of different endosperm genotypes. Crop Sci. 26: 731-733.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top