[1] A. A. Schmidt, H. Eggers, K. Herwig, R. Anton,“Comparative investigation of the nucleation and growth of fcc-metal particle (Rh, Ir, Ni, Pd, Cu, Ag, Au) on amorphous carbon and SiO2 substrate during vapor deposition at elevated temperatures,” Surface Science, 349, 301-316 (1996).
[2] B. J. Alder and T. E. Wainwright,“Decay of the velocity autocorrelation function,” Phys. Rev. A, 1, 18 (1970).
[3] B. J. Alder and T. E. Wainwright,“Phase transition for a hard sphere system,”J. Chem. Phys., 27, 1208 (1957).
[4] B. J. Alder and T. E. Wainwright,“Phase transition in elastic disks,”Phys. Rev., 127, 359 (1962).
[5] B. J. Alder and T. E. Wainwright,“Studies in molecular dynamics VIII. The transport coefficients for a hard-sphere fluid,”J. Chem. Phys., 53, 3813 (1970).
[6] B. J. Alder and T. E. Wainwright,“Velocity autocorrelation for hard spheres,”Phys. Rev. Lett., 18, 088 (1967).
[7] B. J. Lee, M. I. Baskes, H. Kim, Y. K. Cho,“Second nearest-neighbor modified embedded atom method potentials for bcc transition metals,”Phys. Rev. B, 64, 184102 (2001).
[8] C. R. Metz,“Theory and problem of Physical Chemistry,” McGraw-Hill, (1989).
[9] D. Frenkel and B. Smit,“Understanding Molecular Simulation:From Algorithms to Applications,”Academic Press Inc. (London) Ltd (2001).
[10] D. C. Rappaport,“The Art of Molecular Dynamics Simulation,”Cambridge, 2nd Ed. ( 2004).
[11] D. Conrad and K. Scheerschmidt,“Empirical bond-order potential for semiconductors,”Phys. Rev. B, Vol. 58, 8 (1998).
[12] D. J. Oh and R. A. Johnson,“Simple embedded atom method model for fcc and hcp metals,”J.Mater. Res., Vol. 3, No.3, 471 (1988).
[13] M. W. Finnis, J. E. Sinclair,“A Simple Empirical N-Body Potential For Transition Metals,”Philosophical Magazine A, Vol. 50, 45-55, (1984).
[14] G.. H. Gilmer, H. Huang,“Christopher Roland,Thin film deposition:fundamentals and modeling,”Computational Materials Science, 12, 354-380 (1998).
[15] H. Zhang, Z. N. Xia,“Molecular dynamics simulation of cluster beam Al deposition on Si(100) substrate,”Nuclear Instruments and Methods in Physics Research B, 160 , 372-376 (2000).
[16] J. J. Duderstadt, L. J. Hamilton,“Nuclear Reactor Analysis,”Hohn Wiely & Sons, Inc. (1976)
[17] J. E. Lennard-Jones,“The Determination of Molecular Fields I. From the Variation of Viscosity of Gas with Temperature,”Proc. Roy. Soc. (lond.), 106A, 441, 1924;“The Determination of Molecular Fields II. rom the Variation of Viscosity of Gas with Temperature,”Proc. Roy. Soc. (lond.), 106A, 463 (1924).
[18] J. K. Johnson, J. A. Zollweg and K. E. Gubbins,“The Lennard-Jones equation of stat revisited,”Molecular Physics, Vol. 78, No. 3 591-618 (1993).
[19] J. M. Haile,“Molecular Dynamics Simulation:Elementary Methods,”John Wiely& Sons, Inc., USA (1992).
[20] J. Tersoff,“New Empirical Model for the Structural Properties of Sillicon,”Phys. Rev. Lett., 56, 632 (1986).
[21] J. L. Rodrguez-Lpez, J. M. Montejano-Carrizales, M, Jos-Yacamn,“Molecular dynamics study of bimetallic nanoparticles: the case of AuxCuy alloy cluster,”Applied Surface Science, 219, 56-63 (2003).
[22] J. Emsley,“The Elements,”Clarendon Press, Oxford, 3rd Ed. (1998).
[23] K. Shintani, Y. Taniguchi, and S. Kameoka,“Molecular-dynamics analysis of morphological evolution of softly deposited Au nanoclusters,”J. Appl. Phys., Vol. 95, NO. 12, 14, June 2004.
[24] K. Tsujimoto, S. Mitani, T. Teraji, T. Ito,“Fabraction of non-sized platinum particle self-assembled on and in CVD diamond films,”Applied Surface Science, 237, 488-493 (2004).
[25] L. Verlet,“Computer 'Experiments' on Classical Fuilds II, Equilibrium Correlation Function,”Phys. Rev., Vol. 165, pp. 201~214(1968).
[26] M. Hwang, J. H. Hanh, D. Y. Yoon,“Charged cluster model in the low pressure synthesis of diamond,”Journal of Crystal Growth, 162 , 55-68 (1996).
[27] M. S. Daw, M. I. Baskes,“Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals,”Phys. Rev. B, 29 , 6443 (1984).
[28] M. P. Allen,D. J. Tidesley,“Computer Simulation of Liquids,”Clarendon Press, Oxford (1996).
[29] M. C. Barnes, In-D. Jeon, D.Y. Kim, N. M. Hwang,“Generation of charged cluster during thermal evaporation of gold,”Journal of Crystal Growth, 242 , 455-462 (2002).
[30] M. Welsb, M. K. Dalbeimer, L. Kaufman,“Running Linux, 3/e,”O'Relly & Associates INC. (1999).
[31] Microsoft,“UNIX Application Migration Guide,”Microsoft Press (2003).
[32] M. Ohring,“Materials Science of Thin Films :Deposition and structure 2nd,”San Diego, CA :Academic Press,c (2002).
[33] N. M. Hwang, J. H, Hahn,D. Y. Yoon,“Chemical potential of carbon in the low pressure synthesis of diamond,”Journal of Crystal Growth, 160 , 87-97(1996).
[34] N. M. Hwang, J. H. Hahn, D. Y. Yoon,“Charged cluster model in the low pressure synthesis of diamond,”Journal of Crystal Growth, 162, 55-68 (1996).
[35] N. M. Hwang,“Deposition and simulation etching of Si in the Chemical vapor deposition (CVD) process:approach by the charged cluster model,”Journal of Crystal Growth, 205 , 59-63(1999).
[36] P. M. Agrawl, B. M. Rice, D. L. Thompson,“Predicting trends in rate parameters for self-diffusion on FCC metal surfaces,”Surface Science, 515 , 21-35(2002).
[37] Ph. Buffat and J.P. Borel,“Size effect on the melting temperature of gold particles,”Phys. Rev. A, 13, 2287–2298 (1976).
[38] R. E. Reed-Hill and R. Abbaschian,“Physical Metallurgy Principles,3rd ed. ,”PWS-KENT (1992).
[39] R. W. Cahn and P. Hassen eds.,“Physical Metallurgy,3rd ed. ”,Elsevier (1983).
[40] S. Ozgen, E. Duruk,“Molecular dynamics simulation of solidification kinetics of aluminum using Sutton-Chen version of EAM,”Materials Letters, 58 ,1071-1075 (2004).
[41] S. Ozawa, Y. Sasajima, D. W. Heermann,“Monte Carlo Simulation of film growth,”Thin Soild Films, 272, 172-183 (1996).
[42] S .C. Lee, B. D. Yu, D.Y. Kim, N. M. Hwang,“Effects of cluster sizer and substrate temperature on the homopitaxial deposition of Au cluster,”Journal of Crystal Growth, 242 , 463-470(2002).
[43] S. C. Lee, N. M. Hwang, B. D. Yu, D.Y. Kim,“Molecular dynamics simulation on the deposition behavior of nanometer-sized Au clusters on a Au(001) surface,”Journal of Crystal Growth, 223 , 311-320 (2001).
[44] S. Maruyama,“Molecular Dynamics Method for Microscale Heat Transfer,”Begell house (2002).
[45] S. B. Lippman,J. Lajoie,“C++ Primer 3rd,” Addison Wesley (1998).
[46] A. P. Sutton, and J. Chen,“Long-rnage Finnis-Sinclair potential,”Philos. Mag. Lett., 61, 139 (1990).
[47] T. ağın,“Thermai and mechanical properties of some fcc transition metals,”Phys. Rev. B, Vol. 59(5) (1991).
[48] T. R. Forest, W. Smith,“DL_POLY_2 reference manual,”Version 2.13 (2001).
[49] W. C. Swope, H. C. Andersen,P. H. Berens and K. R. Wilson,“Computer simulation method for the calculation of equilbritum of constants for the formation of phyical clusters of molecules:application to small water cluster,”J. Chem. Phys., 76, p637~649(1982)
[50] W. Sarlet,“Exact invariants for time-dependent Hamiltonian system with one degree-of-freedom,”J. Phys. A: Math. Gen., Vol. 11, No 5, (1978).
[51] W. A. Tiller,“The science of crystalline:microscopic interfacial phenomena,”Cambridge University Press (1991).
[52] Y. Shibnta and S. Maruyama,“Molecular Dynamics Simulation of Growth Process,”Chem. Phys. Lett., 382, 381 (2003).
[53] 林惠娟,“計算奈米科技簡介,”材料會訊 電腦模擬專輯 ,2000[民91]年12月。
[54] 林慧祈,“細微粒子在化學蒸氣沉積反應器之成長,”國立清華大學,化學工程研究所碩士論文,1996[民85]年。[55] 洪仕偉,“以分子動力學模擬自組裝單分子膜之表面特性,”國立清華大學,工程與系統科學系碩士論文,2005[民94]年。[56] 馬遠榮,“奈米科技,”周商出版,2005[民94]年5月七刷。
[57] 張金泉,“奈米模擬技術---動力蒙地卡羅方法於薄膜沉積模擬之應用,”工業雜誌2001[民92]年12月204期‧p159~165。
[58] 彭國倫,“Fortran 95 程式設計,”碁峰資訊,2001 [民90] ,初版。
[59] 劉國雄、林樹均、鄭晃忠、葉鈞蔚,“工程材料學,”全華科技圖書,1995[民84再版]。
[60] 徐義人,“工程機率統計學,”國立編譯館主編,華泰文化事業印行,2001[民90],修訂版。
[61] W. F. Smith著/李春穎、許煙明、陳忠仁 譯,“材料科學與工程,”高立圖書,1994[民83]。
[62] http://www.kernel.org
[63] http://web.mit.edu/8.333/www/solutions/sol1.pdf