跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 07:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林大淵
研究生(外文):Lin, Da-Yuan
論文名稱:溫度、溼度、族群生物量、巢材對黃肢散白蟻及黑翅土白蟻呼吸速率之影響
論文名稱(外文):Effects of temperature, humidity, population biomass, and nest material on the respiratory rates of Reticulitermes flaviceps Oshima and Odontotermes formosanus Shiraki
指導教授:吳文哲吳文哲引用關係
指導教授(外文):Wu, Wen-Jer
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:昆蟲學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
論文頁數:39
中文關鍵詞:溫度溼度族群生物量巢材黃肢散白蟻黑翅土白蟻呼吸速率
外文關鍵詞:TemperatureHumidityPopulation biomassNest materialReticulitermes flavicepsOdontotermes formosanusRespiratory rate
相關次數:
  • 被引用被引用:2
  • 點閱點閱:519
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究探討不同的溫度、溼度、族群生物量、巢材處理等因子,對於黃肢散白蟻 (Reticulitermes flaviceps Oshima)及黑翅土白蟻 (Odontotermes formosanus Shiraki)呼吸速率的影響。試驗結果顯示兩種白蟻的呼吸速率會隨溫度升高而提高,黑翅土白蟻的呼吸速率在各溫度下皆高於黃肢散白蟻;此外,在低溫時黑翅土白蟻會有群體效應產生,而黃肢散白蟻並沒有發現此種情形。而在不同的溼度環境下,此兩種白蟻皆會受到低溼度的影響而使呼吸速率降低,其中黑翅土白蟻對於溼度變化的反應較黃肢散白蟻強烈。而在巢材的影響上,完整的巢材對於兩種白蟻皆有提高呼吸速率的作用,但隔離巢材及消毒巢材對兩種白蟻的影響則完全不同。
Effects of temperature, humidity, population biomass, and nest materials on the respiratory rate of termites Reticulitermes flaviceps Oshima and Odontotermes formosanus Shiraki were studied. The respiratory rate of Odontotermes formosanus was significantly higher than that of Reticulitermes flaviceps under four constant temperatures. In low temperature, Odontotermes formosanus with a larger population biomass consumed more oxygen than the same species with a small population biomass, indicating that group effects may involved in the process of respiration. The respiratory rate was also influenced by humidity. In low humidity, respiratory rate of Odontotermes formosanus would had a more significant decrease than that of Reticulitermes flaviceps. When termites incubated with their intact nest materials in the incubation vessel, the respiratory rates of these two species were rising significantly. However, screened or sterilized nest materials had distinct effects on the respiratory rates of these termites.
壹、緒言...................................1
貳、往昔研究...............................3
一、白蟻的食性分類及概述...................3
二、白蟻之氣體釋出研究.....................4
三、環境條件對呼吸之影響...................7
參、材料與方法............................11
一、研究對象..............................11
二、氣相層析儀之操作和設定................11
三、白蟻的採集處理與試驗器材設計..........12
四、溫度對白蟻呼吸速率之影響..............16
五、族群大小白蟻對呼吸速率之影響..........16
六、溼度對白蟻呼吸速率之影響..............16
七、巢材對白蟻呼吸速率之影響..............17
肆、結果..................................18
一、試驗過程對白蟻之影響..................18
二、溫度對白蟻呼吸速率之影響..............18
三、族群大小對白蟻呼吸速率之影響..........23
四、溼度對白蟻呼吸速率之影響..............24
五、巢材對白蟻呼吸速率之影響..............25
伍、討論..................................27
一、群體效應是否影響呼吸速率..............27
二、溫度對白蟻呼吸速率之影響..............28
三、溼度對白蟻呼吸速率之影響..............29
四、巢材對白蟻呼吸速率之影響..............30
五、試驗過程對白蟻之影響..................31
陸、結論..................................32
柒、參考文獻..............................33
捌、誌謝..................................39
Anderson, J. F., and G. R. Ultsch. 1987. Respiratory gas concentrations in the microhabitats of some Florida arthropods. Comp. Biochem. Physiol. 88A: 585-588.
Anklin-Muhlemann, R., D. E. Bignell, and P. C. Veivers. 1995. Morphological, microbiological and biochemical studies of the gut flora in the fungus-growing termite Macrotermes subhyalinus. J. Insect Physiol. 41: 929-940.
Beenakkers, A. M. T., D. J. Van der Horst, and W. J. A. Van Marrewijk. 1981. Role of lipid in energy metabolism. pp. 53-100. in: R. H. Downer. ed. Energy Metabolism in Insects. Plenum Press, New York.
Bignell, D. E. 1994. Soil-feeding and gut morphology in higher termites. pp. 131-158. in: J. H. Hunt, and C. A. Nalepa. Eds. Nourishment and Evolution in Insect Societies. Westview Press, Boulder.
Bignell, D. E., P. Eggleton, L. Nunes, and K. L. Thomas. 1997. Termites as mediators of carbon fluxes in tropical forest: budgets for carbon dioxide and methane emissions. pp. 109-134. in: A. D. Watt, N. E. Stork, and M. D. Hunter. eds. Forests and Insects. Chapman & Hall, London.
Bignell, D. E., M. Slaytor, and P. C. Veivers. 1994. Functions of symbiotic fungus gardens in higher termites of the genus Macrotermes: evidence against the acquired enzyme hypothesis. Acta Microbiologia et Immunologica Hungarica 41: 391-401.
Bouillon, A. 1970. Termites of the Ethiopian region. pp. 153-280. in: K. Krishna, and F. M. Weesner. eds. Biology of Termites. Vol. Ⅱ. Academic Press, New York.
Brauman, A., M. D. Kane, M. Labat, and J. A. Breznak. 1992. Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257: 1384-1387.
Breznak, J. A., and A. Brune. 1994. Role of microorganisms in the digestion of lignocellulose by termites. Ann. Rev. Entomol. 39: 453-487.
Cabrera, B. J., and M. K. Rust. 1994. The effect of temperature and relative humidity on the survival and wood consumption of the western drywood termite, Incisitermes minor (Isoptera: Kalotermitidae). Sociobiology 24: 95-113.
Castro, M. S., J. M. Melillo, P. A. Steuder, and J. W. Chapman. 1994. Soil moisture as a predictor of methane uptake by temperate forest soil. Can. J. Forest. Res. 24: 1805-1810.
Chen, S. C. 1937. Social modification of the activity of ants in nest-building. Physiol. Zool. 10: 437-455.
Clayton, D. A. 1978. Socially facilitated behavior. Quart. Rev. Biol. 53: 373-392.
Collins, N. M. 1981. The role of termites in the decomposition of wood and leaf litter in the southern Guinea savanna of Nigeria. Oecologia 51: 389-399.
Collins, N. M., and T. G. Wood. 1984. Termites and atmospheric gas production. Science 224: 84-86.
Curtis, A. D., and D. A. Waller. 1996. The effects of decreased pO2 and increased pCO2 on nitrogen fixation rates in termites (Isoptera: Rhinotermitidae). J. Insect Physiol. 42: 867-872.
Davis, R. W., and S. T. Kamble. 1994. Low temperature effects on survival of the eastern subterranean termite (Isoptera: Rhinotermitidae). Environ. Entomol. 23: 1211-1214.
De Souza, O. F. F., and V. K. Brown. 1994. Effects of habitat fragmentation on Amazonian termite communities. J. Trop. Ecol. 10: 197-206.
Edney, E. B. 1977. Water Balance in Land Arthropods. Springer-Verlag, Berlin.
Eggleton, P., and D. E. Bignell. 1995. Monitoring the response of tropical insects to changes in the environment: troubles with termites. pp. 434-497. in: R. Harrington, and N. E. Stork. Eds. Insects in a Changing Environment. Academic Press, London.
Eggleton, P., D. E. Bignell, and W. A. Sands. 1995. The species richness of termites (Isoptera) under differing levels of forest disturbance in the Mbalmayo Forest Reserve, Southern Cameroon. J. Trop. Ecol. 11: 85-98.
Eggleton, P., D. E. Bignell, and T. G. Wood. 1996. The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, South Cameroon. Phil. Trans. R. Soc. Lond. B. 251: 51-68.
Fraser, P. J., R. A. Rasmussen, and J. W. Creffield. 1986. Termites and global methane — another assessment. J. Atmosph. Chem. 4: 295-310.
Hangartner, W. 1969. Carbon dioxide, releaser for digging behavior in Solenopsis geminata (Hymenoptera: Formicidae). Psyche 76: 58-67.
Holt, J. A. 1987. Carbon mineralization in semi-arid Northeastern Australia: the role of termites. J. Trop. Ecol. 3: 255-263.
Jindra, M., and F. Sehnal. 1990. Linkage between diet humidity, metabolic water production and heat dissipation in the larvae of Galleria mellonella. Insect Biochem. 20: 389-395.
Jones, J. A. 1990. Termites, soil fertility and carbon cycling in dry tropical Africa — a hypothesis. J. Trop. Ecol. 6: 291-305.
Jones, J. A., and W. L. Nutting. 1989. Foraging ecology of subterranean termites in the Sonoran Desert. pp. 79-106. in: J. O. Schmidt. ed. Special Biotic Relationships in the Arid Southwest. University of New Mexico Press, Albuquerque.
Kahlil, M. A. K., R. A. Rasmussen, J. R. J. French, and J. A. Holt. 1990. The influence of termites on atmospheric trace gases: CH4, CO2, CHCl3, N2O, CO, H2, and light hydrocarbons. J. Geophys. Res. 95: 3619-3634.
Keller, M., M. E. Mitre, and R. F. Stallard. 1990. Consumption of atmospheric methane in soils of Central Panama: effect of agricultural development. Global Biogeochem. Cycle 4: 21-27.
Lawton, J. H., D. E. Bignell, and G. F. Bloemers. 1996. Carbon flux and diversity of nematodes and termites in Cameroon forest soils. Biodiversity and Conservation 5: 261-273.
Martius, C. 1994. Diversity and ecology of termites in Amazonian forests. Pedobiologia 38: 407-428.
Martius, C., R. Wassmann, and U. Thein. 1993. Methane emission from wood-feeding termites in rain forests of Amazonia. Chemosphere 26: 623-632.
Nunes, L., D. E. Bignell, N. Lo, and P. Eggleton. 1997. On the respiratory quotient (RQ) of termites (Insecta: Isoptera). J. Insect Physiol. 43: 749-758.
Peakin, G. J., and G. Josens. 1978. Respiration and energy flow. pp. 111-163. in: M. V. Brian. Ed. Production Ecology of Ants and Termites. Cambridge University Press, Cambridge.
Rasmussen, R. A., and M. A. K. Kahlil. 1983. Global production of methane by termites. Nature 301: 700-702.
Richardson, H. B. 1929. The respiratory quotient. Physiol. Rev. 9: 61-125.
Rouland, C., A. Brauman, M. Labat, and M. Lepage. 1993. Nutritional factors affecting methane emission from termites. Chemosphere 26: 617-622.
Rudolph, D., B. Glocke, and S. Rathenow. 1990. On the role of different humidity parameters for survival, distribution and ecology of various termite species. Sociobiology 17: 129-140.
Sen-Sarma, P. K. 1964. The effect of temperature and relative humidity on the longevity of pseudoworkers of Kalotermes flavicollis (Fabr.) (Isoptera) under starvation conditions. Proc. Natl. Inst. Sci. India. 30: 300-314.
Shelton, T. G., and A. G. Appel. 2001. Carbon dioxide release in Coptotermes formosanus Shiraki and Reticulitermes flavipes (Kollar): effects of caste, mass, and movement. J. Insect Physiol. 47: 213-224.
Sleaford, F., D. E. Bignell, and P. Eggleton. 1996. A pilot analysis of gut contents in termites from the Mbalmayo Forest Reserve, Cameroon. Ecol. Entomol. 21: 279-288.
Smith, J. L., and M. K. Rust. 1993. Influence of temperature on tunneling, feeding rates, and oxygen requirements of the western subterranean termite, Reticulitermes hesperus (Isoptera: Rhinotermitidae). Sociobiology 21: 225-236.
Stanier, M., and M. Forsling. 1990. Physiological Processes. McGraw-Hill, London.
Steele, J. E. 1981. The role of carbohydrate metabolism in physiological function. pp. 101-133. in: R. H. Downer. ed. Energy Metabolism in Insects. Plenum Press, New York.
Veivers, P. C., R. Muhlemann, and M. Slaytor. 1991. Digestion, diet and polyethism in two fungus-growing termites: Macrotermes subhyalinus and Macrotermes michaelseni Sjostedt. J. Insect Physiol. 37: 675-682.
Vogt, J. T., and A. G. Appel. 1999. Standard metabolic rate of the fire ant, Solenopsis invicta Buren: effects of temperature, mass, and caste. J. Insect Physiol. 45: 655-666.
Wheeler, G. S., M. Tokoro, R. H. Scheffrahn, and N. Y. Su. 1996. Comparative respiration and methane production rates in Nearctic termites. J. Insect Physiol. 42: 799-806.
Winston, P. W., and D. H. Bates. 1960. Saturated solution for the control of humidity in biological research. Ecology 41: 232-237.
Wood, T. G., and J. H. Lawton. 1973. Experimental studies on the respiratory rates of mites (Acari) from beech-woodland leaf litter. Oecologia 129: 169-191.
Wood, T. G., and W. A. Sands. 1978. The role of termites in ecosystems. pp. 245-292. in: M. V. Brain. Ed. Production Ecology of Ants and Termites. Cambridge University Press, Cambridge.
Zimmerman, P. R., J. P. Greenberg, S. O. Wandiga, and P. J. Crutzen. 1982. Termites, a potentially large source of atmospheric methane. Science 218: 563-565.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊