跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.41) 您好!臺灣時間:2026/01/13 16:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐俊傑
研究生(外文):Chun-Chieh Hsu
論文名稱:最佳線性非偏權估測法用於RSS定位研究
論文名稱(外文):Best linear unbiased estimator approach for RSS localization
指導教授:沈志昌沈志昌引用關係
指導教授(外文):Chih-Chang Shen
口試委員:張安成姜琇森
口試委員(外文):Ann-Chen ChangHsiu-Sen Chiang
口試日期:2012/01/12
學位類別:碩士
校院名稱:嶺東科技大學
系所名稱:資訊管理與應用研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:36
中文關鍵詞:接收信號強度(RSS)定位演算法最佳線性非偏權估測 (BULE)最小平方演算法(LS)Blind Minimax Estimation (BME) 均方誤差
外文關鍵詞:received signal strength (RSS)positioning algorithmbest linear unbiased estimator (BLUE)least square (LS)blind miniMax estimation (BME) mean-square-error
相關次數:
  • 被引用被引用:0
  • 點閱點閱:343
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全球定位系統(GPS),是最成功的室外環境定位系統,但在衛星信號覆蓋率較差的環境無法保持視線距離,會降低其準確性,因此無線感測定位近年來是一門相當熱門的研究項目,其定位技術分別為接收訊號強度(RSS)、到達時間(TOA)、到達時間差(TDOA)、到達角度(AOA),而在其定位性能上,因為有非視線及多重路徑的關係,所以要以定位演算法來降低其誤差和提高精準度。
因RSS不需要時間同步,且較容易實現的定位估測方法,在實際建置成本上,較其他定位方法低,直接透過訊號強度衰減來轉換距離,同時定位出目標物。因此,本研究運用接收訊號強度(RSS)定位技術,透過比較定位演算法探討較精準的演算法與訊號模型。本研究使用最佳線性非偏權估測 (BULE) 為訊號模型,以最小平方演算法(LS),加權最小平方演算法(WLS)與 Blind Minimax Estimation (BME) 均方誤差演算法,來進行比較,其模擬結果顯示Blind MiniMax Estimation (BME) 均方誤差的性能比最小平方法(LS)與加權最小平方法(WLS)較佳。

The Global Positioning System (GPS) is a successful and best satellite navigation system that provides mobile location in all environments of outdoor. But it cannot keep the best line of sight, and the accuracy of location will be degraded in the environment of poor satellite signal. Thus, the wireless sensor network is a popular research project in recent years. The location technologies include received signal strength (RSS), time of arrival (TOA), time difference of arrival (TDOA), and angle of arrival (AOA). However, the non-line of sight and the multiple path will effect positioning performance, the positioning algorithm is necessary to reduce the errors and improve the estimation accuracy.

However, the received signal strength (RSS) does not require time synchronization. Therefore, we can easy to get the positioning estimation. In establish and development costs, RSS is lower than other positioning methods; and it through the signal strength to transfer the distance, and the location of the target can be obtained. This study is based on RSS positioning technology to discuss the accurate algorithms and signal model by positioning algorithms. This study uses the best linear unbiased estimator (BLUE) for the signal model. By comparing the positioning performance, we use the least square (LS) method, the weighted least squares (WLS) method, and blind minimax estimation (BME) mean-square-error method. Finally, the simulation results show that the performance of blind minimax estimation (BME) mean-square-error method is better than the least square (LS) method and the weighted least squares (WLS) method.

摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VI
圖目錄 VII
符號說明與縮寫 VIII
1. 緒論 1
1.1研究背景 1
1.2定位技術的評估標準 2
1.3研究動機與目的 2
1.4論文架構 3
2. 文獻探討與相關研究 5
2.1無線感測網路(Wireless Sensor Network)介紹 5
2.2蜂巢式定位 5
2.3無線定位技術 6
2.3.1 RSS (Received Signal Strength) 7
2.3.2 TOA (Time of Arrival) 7
2.3.3 TDOA(Time Different of Arrival) 8
2.3.4 AOA/DOA (Angle of Arrival /Direction of Arrival) 9
2.3.5 混合TOA/AOA模型 10
2.4定位精準度分析 11
2.5影響無線感測網路定位因素 12
3. 研究方法 16
3.1接收訊號強度定位法 16
3.2最小平方演算法(Least Squares , LS) 17
3.3最佳線性非偏權估測-最小平方校準演算法 18
3.4最佳線性非偏權估測-最小平方演算法 20
3.5最小最大均方誤差演算法 21
3.6 Blind MiniMax Estimation 均方誤差演算法 22
4. 實驗模擬與比較 25
5. 結論 33
參考文獻 34

[1] J. Reed and T. Rappaport, “An overview of the challenges and progress in meeting the E-911 requirement for location service,” IEEE Communications Magazine, vol. 36, no. 4, pp. 30-37, April 1998.
[2] 李俊賢,2006,”無線感測網路與ZigBee協定介紹”,電信國家型科技計畫,元月號/77期。
[3] 潘貞君,林致廷,2009,”無線感測網路概論與示範應用”,自動化科技學會會刊,p10-17,04。
[4] S. R. Theodore, Wireless Cmmunications: Orinciples & Practice, Prentice Hall Incorporation, New Jersey, pp. 102-104, December 1996.
[5] C. Sammarco, F. H. P. Fitzek, G.. P. Perrucci, A. Iera, and A. Molinaro, “Localization
information retrieval exploiting cooperation among mobile eevices,” IEEE International Communications Workshops, pp. 149-153, February 2008.
[6] E. Elnahrawy, X. Li and R.P. Martin, “The limits of localization using signal strength: A comparative study,” Proceedings of the First IEEE International Conference on Sensor and Ad hoc Communication and Networks, pp. 406-414, October, 2004.
[7] P. Bahl and V. N. Padmanabhan, “ Radar: An in-building rf-based user location and tracking system,” Proceedings of the 2000 IEEE International Conference on Computer Communication, pp. 775-784, March 2000.
[8] P. Enge and P. Misra, “Global Positioning System: Signals, Measurements and Performance,” Ganga-Jamuna Pr 2001.
[9] N. Priyantha, A. Chakraborty and H. Balakrishnan, “The cricket location-support system,” Proceedings of the Forth ACM International Conference on Mobile Computing and Networking, August 2000.
[10] D. Niculescu and B. Nath, “ Ad Hoc Positioning System (APS) Using AOA,” Proceedings of 2003 International Conference of the IEEE Computer and Communications, vol. 3, pp. 1734-1743, April 2003.
[11] S. R. Theodore, “ Wireless Cmmunications: Orinciples & Practice,” Prentice Hall Incorporation, New Jersey, pp. 102-104, December 1996.
[12] C. Knapp and G.. Carter, “The generalized correlation method for estimation of time delay,” IEEE Trans. Acoustics, Speech, and Signal Processing, vol. 24, no. 4, pp. 320-327, August 1976.
[13] J. C. Liberti and T. S. Rappaport, “ Optimum Array Processing (Detection, Estimation, and Modulation Theory, Part IV),” Wiley Incorporation, New York, March 1999.
[14] S. Al-Jazzar, M. Ghogho, and D. McLernon,“ A joint TOA/AOA constrained minimization method for locating wireless devices in non-line-of-sight environment,” IEEE Trans. Vehicular Technology, vol. 58, no. 1, pp. 468-472, November 2009.
[15] S. Venkatraman and J. Jr. Caffery, “ Hybrid TOA/AOA techniques for mobile location in non-line-of-sight environments,” IEEE Wireless Communications and Networking Conference, vol. 1, pp. 274 - 278, November 2004.
[16] J. Caffery, “Wireless Location in CDMA Cellular Radio Systems,” Kluwer Academic Publishers, Boston, pp. 55-63, October 1999.
[17] P. C. Chen, “A non-line-of-sight error mitigation algorithm in location estimation,” IEEE Wireless Communications and Networking Conference, vol. 1, New Orleans, LA, pp. 316-320, September 1999.
[18] S. M. Kay, Fundamentals of Statistical Signal Processing : Estimation Theory, NJ: Prentice-Hall, Englewood Cliffs, April 1993.
[19] F.K.W Chan, H.C. So, J. Zheng and K.W.K. Lui, “Best linear unbiased estimator approach for time-of-arrival based localization,” IET Signal Process., vol. 2, no. 2, pp. 156-162, 2008.
[20] K. W. Cheung, H. C. So, W.-K. Ma, and Y. T. Chan ,”Least squares algorithms for time-of-arrival based mobile location,” IEEE Trans. Signal Process., vol. 52, no. 4, pp. 1121–1128, 2004.
[21] J.C. Chen, R.E Hudson. And K. Yao , “Maximum-likelihood source localization and unknown sensor l ocation estimation for wideband signals in the near field,” IEEE Trans. Signal Process., vol. 50, no. 8, pp. 1843–1854, 2002.
[22] M. Mcguire and K. N. Plataniotis, “A comparison of radiolocation for mobile terminals by distance measurements,” Proc. Int. Conf. Wireless Communications, pp. 1356–1359, 2000.
[23] A.Urruela, J. Sala. and J. Riba, “Average performance analysis of circular and hyberbolic geolocation,” IEEE Trans. Veh. Technol., vol. 55, no. 1, pp. 52–66, 2006.
[24] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, “Robust mean-squared error estimation in the presence of model uncertainties,” IEEE Trans. Signal Processing, vol. 53, no. 1, pp. 168-181, January 2005.
[25] Y. C. Eldar, A. Ben-Tal, and A. Nemirovski, “Linear minimax regret estimation of deterministic parameters with bounded data uncertainties,” IEEE Trans. Signal Processing, vol. 52, no. 8, pp. 2177-2188, August 2004.
[26] M. S. Pinsker, “Optimal filtering of square-integrable signals in Gaussian noise,” Problems of information transmission, vol. 16, pp. 120-133, 1980.
[27] Y. C. Eldar, “Comparing between estimation approaches: admissible and dominating linear estimators,” IEEE Trans. Signal Processing, vol. 54, no. 5, pp.1689-1702, May 2006.
[28] Z. Ben-Haim and Y. C. Eldar, “Maximum set estimators with bounded estimation error,” IEEE Trans. Signal Processing, vol. 53, no. 8, pp. 3172-3182, August 2005.
[29] J. R. Thompson, “Some shrinkage techniques for estimating the mean,” J. Amer. Statist. Assoc., vol. 63, no. 321, pp. 113–122, March 1968.
[30] A. J. Baranchik, “A family of minimax estimators of the mean of a multivariate normal distribution,” Ann. Math. Statist., vol. 41, no. 2, April 1970.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top