跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/16 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡又元
研究生(外文):You-yuan Hu
論文名稱:多重結晶性嵌段共聚物之薄膜結晶行為研究
論文名稱(外文):Crystallization of Multiple-Crystalline Block Copolymers in Thin Film
指導教授:蔣酉旺
指導教授(外文):Yeo-Wan Chiang
學位類別:碩士
校院名稱:國立中山大學
系所名稱:材料與光電科學學系研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:107
中文關鍵詞:單晶嵌段共聚物溶劑誘導結晶溫度誘導結晶磊晶方向性
外文關鍵詞:epitaxysingle crystalmelt crystallizationblock copolymersolvent-induced crystallizationorientation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:306
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文是利用多重結晶性嵌段共聚物PEO-PCL-PLLA,經由控制結晶溫度和溶劑誘導時間來研究在薄膜狀態下的結晶行為,由DSC和in-situ WAXD結果確定PEO、PCL、PLLA鏈段都會結晶,再藉由TEM及SAED來探討薄膜狀態下的形態和繞射分析。在溫度誘導的過程中,都只能得到單一結晶層板,無法獲得雙層或三層的結晶層板,亦即在高溫結晶可以得到PLLA的單晶,室溫可以得到PCL的單晶,而在低溫結晶則可以得到PEO的單晶,然而,只要其中一個鏈段先結晶,之後不管怎麼調控溫度都無法再讓另外兩個鏈段結晶,這是因為先結晶的鏈段會形成一個堅固的結晶層板,而這個結晶層板會對其他鏈段造成局限效應,使另外兩個鏈段在溫度的控制下也無法結晶,所以在溫度誘導的製程最終只能得到單一鏈段結晶所形成的單晶。從SAED中可以分析結晶方向性,PLLA和PCL兩個結晶方向性的方向都是垂直基材表面的;在較低溫成長的PEO則是出現平行基材表面的現象。
此外,我們利用溶劑誘導的方法,選用不同的溶劑和誘導的時間來製備單晶,然而在溫度調控下無法得到的雙層和三層的結晶層板,在溶劑誘導的製程中可以利用時間的調控來得到。我們選用三種溶劑,分別是chlorobenzene,toluene和n-hexanol,其中chloobenzene對PEO和PCL都是相容性很好的溶劑;toluene則是較偏PCL選擇性溶劑,但是chlorobenzene和toluene對PLLA都是溶解度很差的溶劑;n-hexanol則是PLLA選擇性溶劑且對PCL是溶解度很差的溶劑。在chlorobenzene和toluene溶劑誘導結晶的過程中,結晶的順序是由PLLA先聚集結晶誘導PCL結晶,PCL再誘導PEO結晶,即PLLA→PCL→PEO,而在n-hexanol誘導結晶的過程中則是PCL先結晶在誘導PLLA結晶,即PCL→PLLA,這邊PEO不會結晶是因為PEO和n-hexanol都具有極性,n-hexanol對PEO溶解性很好使得PEO無法結晶,此結晶順序在另一個PLLA分子鏈較短不會結晶的樣品PEO-PCL-PLLA也可以得到,由此可知,在溶劑誘導結晶的過程中,結晶的順序性和溶劑的相容性有很大的關係。和前段溫度控制不同,利用溶劑誘導出來的單晶,單層、雙層、三層結晶層板中的PLLA,PCL和PEO的結晶方向性都是垂直於基材表面。
最後,我們發現PLLA和PCL有磊晶的現象,兩個結晶的a軸互相夾0o和90o的磊晶,還有夾角是30o的”soft epitaxy”,這是利用PLLA的(110)結晶面和PCL的b軸相互平行而磊晶;PCL和PEO也有磊晶的現象,互相夾20o,利用PEO的(120)結晶面平行PCL的(110)結晶面磊晶,稱作”soft epitaxy”。
In this study, crystal growths of multiple-crystalline poly(ethylene oxide)-block-poly(ε-caprolactone)-block-poly(L-lactide) (PEO-PCL-PLLA) triblock copolymers in thin films are investigated by melt and solvent-induced crystallizations. Differential scanning calorimetry (DSC) and in-situ wide angle X-ray diffraction (WAXD) results indicate that the PEO, PCL, and PLLA blocks are able to sequentially crystallize in bulk state. The crystalline morphologies of the PEO-PCL-PLLA in thin films were explored using transmission electron microscopy (TEM) associated with selected-area electron diffraction (SAED). Only single crystallization of PLLA, PCL or PEO, i.e., one of the blocks is crystallizable and the others are non-crystalline, can be found in the melt-crystallized PEO-PCL-PLLA thin films. This might be due to a crystalline template driven by the first-crystallized block, giving a robust confined environment for the subsequent crystallization. Notably, the PLLA and PCL single crystals with flat-on orientation (i.e., c-axis is perpendicular to substrate surface) can be observed, whereas the PEO single crystal possess edge-on (i.e., c-axis is parallel to substrate surface) orientation due to low crystallization temperature. Most interestingly, single- double- or/and triple-crystalline morphologies can be observed in the PEO-PCL-PLLA thin films by solvent-induced crystallization. After solvent annealing by neutral chlorobenzene and PCL-selective toluene, the development of crystalline morphologies from single to double and to triple crystallization in sequence, that is PLLA → PCL → PEO, is carried out due to solvent selectivity. By contrast, after solvent annealing by n-hexanol, the evolution of crystalline morphologies from single to double crystallization in sequence, that is PCL → PLLA, is accomplished. The non-crystalline PEO block is attributed to strong polar interaction between PEO and n-hexanol, giving rise to dissolution of the PEO. Similar crystalline tendency can be observed in the PEO-PCL-PLLA BCP thin film having non-crystalline PLLA block due to short chain length. In contrast to melt crystallization, the solvent-induced formation of single crystals all exhibit flat-on chain orientation consistent to that obtained from solution crystallization. Most interestingly, these solvent-induced crystalline morphologies exhibit epitaxial crystallization associated with the crystallization sequence. In the double-crystalline morphologies, i.e., PLLA → PCL or PCL → PLLA, two cases with the angle θ = 0o or 90o between aPLLA and aPCL are found, indicating the lattice matching between the PLLA and PCL crystals. In addition, the angle θ = 30o between the aPLLA and aPCL, in which the dimension of (110)PLLA is almost identical to bPCL, is obtained, namely, “soft epitaxy”. In the triple-crystalline morphologies, the third-crystallized PEO exhibits soft epitaxy with the preformed second-crystallized PCL crystal, in which the growth plane of (120)PEO is parallel to that of (110)PCL. As a result, the control of crystalline morphologies associated with different crystallization sequences and chain orientations can be achieved in the multiple-crystalline PEO-PCL-PLLA thin films by melt and solvent-induced crystallizations.
摘要...................................................................................................................................I
Abstract...........................................................................................................................III
Table of Contents...........................................................................................................VI
List of Tables..................................................................................................................IX
List of Figures..................................................................................................................X
Chapter 1. Introduction....................................................................................................1
1.1 Self-assembly............................................................................................................1
1.2 Self-assembly of Block Copolymers..........................................................................2
1.3 Crystalline Diblock Coplymers...................................................................................4
1.3.1 Microphase-Separated Morphology of Semicrystalline BCPs................................4
1.3.2 Double Crystalline BCPs.........................................................................................7
1.4 Polymeric Single Crystal............................................................................................8
1.4.1 Single Crystals from Self-assembly of Homopolymers...........................................8
1.4.2 Single Crystals from Self-assembly of Block Coplymers......................................14
Chapter 2. Objectives....................................................................................................21
Chapter 3. Materials and Experimental Methods...........................................................23
3.1 Materials..................................................................................................................23
3.1.1 Synthesis of Poly(ethylene oxide)-b-poly(ε-caprolactone)-b-poly(L-lactide) (PEO-PCL-PLLA).....................................................................................................................23
3.1.2 Sample Preparation..............................................................................................24
3.1.2.1 Bulk Samples Prepared by Solution Casting.....................................................24
3.1.2.2 Thin Films Prepared by Spin Coating ................................................................25
3.2 Characterization of Multiple-Crystalline Block Copolymers.....................................25
3.2.1 Differential Scanning Calorimetry (DSC)..............................................................25
3.2.2 Small-Angle X-ray Scattering (SAXS) and Wide-Angle X-ray Diffraction (WAXD)..........................................................................................................................26
3.2.3 Transmission Electron Microscopy (TEM)............................................................27
Chapter 4. Results and Discussion................................................................................29
4.1 Crystallization Behaviors of PEO-PCL and PEO-PCL-PLLA...................................29
4.1.1 Crystallization Sequence......................................................................................29
4.1.2 Isothermal Crystallization......................................................................................36
4.2 Self-assembled Morphology....................................................................................38
4.3 Melt-Crystallized Morphology in Thin Film...............................................................42
4.3.1 Crystallization of PEO5-PCL3 in Thin Film...........................................................42
4.3.2 Crystallization of PEO5-PCL3-PLLA6 in Thin Film...............................................44
4.4 Solvent-Induced Crystallization in BCP Thin Film....................................................54
4.4.1 As-spun Thin Film Morphologies..........................................................................55
4.4.2 Morphologies after Solvent Annealing by Neutral Solvent for PEO and PCL blocks.............................................................................................................................56
4.4.3 Morphologies after Solvent Annealing by PCL-selective Solvent.........................62
4.4.4 Morphologies after Solvent Annealing by PLLA-selective Solvent.......................66
4.5 Epitaxial Crystallization............................................................................................72
Chapter 5. Conclusions..................................................................................................79
Chapter 6. References...................................................................................................82
1.Prockop, D. J.; Fertala, A. J. Struct. Biol. 1998, 122, 111.
2.Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
3.Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
4.Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
5.Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
6.Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
7.Bates, F. S.; Fredrickson, G. H. Phys. Today 1999, 52, 32.
8.Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
9.Loo, Y. L.; Register, R. A.; Ryan, A. J. Macromolecules 2002, 35, 2365.
10.Ho, R. M.; Lin, F. H.; Tsai, C. C.; Lin, C. C.; Ko, B. T.; Hsiao, B. S.; Sics, I. Macromolecules 2004, 37, 5985.
11.Hamley, W.; Castelletto, V.; Castillo, R. V.; Müller, A. J.; Martin, C. M.; Pollet, E.; Dubois, Ph. Macromolecules 2005, 38, 463.
12.Castillo, R. V.; Müller, A. J; Lin, M. C.; Chen, H. L.; Jeng, U. S.; Hillmyer, M. A. Macromolecules 2008, 41, 6154.
13.Keller, A. Philos. Mag. 1957, 2, 1171.
14.Bassett, D.C.; Olley, R.H.; Al Raheil IAM. Polymer 1988, 29, 1539.
15.Reneker, D. H.; Geil, P. H. J. Appl. Phys. 1960, 31, 1916.
16.McMahon, P. E.; McCullough, R. L.; Schlegel, A. A. J. Appl. Phys. 1967, 38, 4123.
17.Petraccone, V.; Corradini, P.; Allegra, L. J. Polym. Sci. 1972, 32, 419.
18.Oyama, T.; Shiokawa, K.; Ishimaru, T. J. J. Macromol. Sci., Phys. 1973, 8, 229.
19.Mazur, J.; Khoury, F.; Fanconi, B. Bull. Am. Phys. Soc. 1982, 27, 289.
20.Balta Calleja, F.J.; Keller, A. J. Polym. Sci. 1964, A2, 2171.
21.Yang, J. P.; Liao, Q.; Zhou, J. J.; Jiang, X.; Wang, X. H.; Zhang, Y.; Jiang, S. D.; Li, L. Macromolecules 2011, 44, 3511.
22.Bittiger, H.; Marchessault, R. H. Acta Crystallogr. 1970, B26, 1923.
23.Chatani, Y.; Okita, Y.; Tadokoro, H.; Yamashita, Y.; Polymer J 1970, 1:555.
24.Mareau, V.H.; Prud’homme R. E. Macromolecules 2005, 38, 398.
25.Bassett, D. C.; Frank, F. C.; Keller, A. Philos. Mag. 1963, 8, 1753.
26.Iwata, T.; Doi, Y. Polym Int 2002, 51, 852.
27.Iwata, T.; Doi, Y. Macromolecules 1998, 31, 2461.
28.Jacodine, R. Nature (London) 1955, 176, 305.
29.Hocquet, S.; Dosière, M.; Thierry, A.; Lotz, B.; Koch, M. H. J.; Dubreuil, N.; Ivanov, D. A. Macromolecules 2003, 36, 8376.
30.Chen, W. Y. Cheng, S.Z.D. Macromolecules 2004, 37, 5292.
31.Chen, W. Y.; Zheng, J. X.; Cheng, S.Z.D.; Li, C. Y.; Huang, P.; Zhu, L.; Xiong, H.; Ge, Q.; Geo, Y.; Quirk, R. P.; Lotz, B.; Deng, L.; Wu, C.; Thomas, E. L. Phys. Rev. Lett. 2004, 93,028301.
32.Zheng, J. X.; Xiong, H.; Chen, W. Y.; Lee, K.; Van Horn, R. M.; Quirk, R. P.; Lotz, B.; Thomas, E. L.; Shi, A. C.; Cheng, S. Z. D. Macromolecules 2006, 39, 641.
33.Yang, J.; Zhao, T.; Zhou, Y.; Liu, L.; Li, G.; Zhou, E.; Chen X. Macromolecules 2007, 40, 2791.
34.Sun, J.; Chen, X.; He, C.; Jing, X. Macromolecules 2006, 39, 3717.
35.Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L,; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957.
36.Van Horn, R. M.; Zheng, J. X.; Sun, H. J.; Hsiao, M. S.; Zhang, W. B.; Dong, X. H.; Xu, J.; Thomas, E. L.; Lotz, B.; Cheng, S. Z. D. Macromolecules 2010, 43, 6113.
37.Xiong, H.; Zheng, J. X.; Van Horn, R. M.; Jeong, K. U.; Quirk, R. P.; Lotz, B.; Thomas, E. L.; Brittain, W. J.; Cheng, S. Z. D. Polymer 2007, 48, 3732.
38.Li, J. G.; Chang, Y. H.; Lin, Y. S.; Kuo, S. W. RSC Adv. 2012
39.Hoogsteen, A.; Postema, A. R.; Pennings, A. J.; Brinke, G. T; Zugenmaier, P. Macromolecules 1990, 23, 634.
40.Chatani, Y.; Okita, Y.; Tadokoro, H.; Yamashita, Y. Polymer J 1970, 1, 555-562.
41.Takahashi, Y.; Tadokoro, H. Macromolecules 1973, 6, 672.
42.Cecchet, F.; Meersman, B. D.; Champagne, S. D.; Nysten, B.; Jonas, A. M. Langmuir 2006, 22, 1173.
43.Nakagawa, S.; Kadena, K. I.; Ishizone, T.; Nojima, S.; Shimizu, T.; Yamaguchi, K.; Nakahama, S. Macromolecules 2012, 45, 1892.
44.Crescenzi, V.; Manzini, G.; Calzilari, G.; Borri, C.; Eur. Polym. J. 1972, 8 449.
45.Hsu, J. Y.; Hsieh, I. F.; Nandan, B.; Chiu, F. C.; Chen, J. H.; Jeng, U. S.; Chen, H. L. Macromolecules 2007, 40, 5014.
46.Lorenzo, A. T.; Muller, A. J.; Lin, M. C.; Chen, H. L; Jeng, U. S.; Priftis, D.; Pitsikalis, M.; Hadjichristidis, N. Macromolecules 2009, 42, 8353.
47.Yang, J.; Liang, Y.; Luo, J.; Zhao, C.; Han, C. C. Macromolecules 2012, 45, 4254.
48.Pallandre, A.; Glinel, K.; Jonaas, A. M.; Nysten, B. Nano Lett. 2004, 4, 365.
49.Arys, X.; Laschewsky, A.; Jonas, A. M. Macromolecules 2001, 34, 3318.
Brandrup, J.; Immergut, E. H.; Grulke, E. A. Polymer Handbook, 4th ed. 1999 Wiley-Interscience, New York.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top