跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.10) 您好!臺灣時間:2025/10/01 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:潘時瑜
研究生(外文):Shih-yu Pan
論文名稱:數位信號處理技術分析井壓測試資料之研究
論文名稱(外文):Analysis of Transient Pressure Testing Data Using Digital Signal Processing
指導教授:林再興林再興引用關係
指導教授(外文):Zsay-Shing Lin
學位類別:博士
校院名稱:國立成功大學
系所名稱:資源工程學系碩博士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:115
中文關鍵詞:流率邊界條件反迴旋積分迴旋積分完井水驅
外文關鍵詞:Water driveConvolutionDeconvolutionBoundary conditionFlow ratePartial penetration
相關次數:
  • 被引用被引用:0
  • 點閱點閱:285
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
本研究的目的是要利用迴旋積分及反迴旋積分方法分析井壓測試資料。模擬井壓測試資料及推求流體在不同邊界條件地層之源函數。並研究各種不同邊界條件之源函數,以了解地層特性。
壓力、流率及源函數關係中,若已知源函數及流率,可利用迴旋積分求得壓力,若已知壓力及流率,可利用反迴旋積分求得源函數。亦即已知壓力、流率及源函數之中的二個函數,就可利用迴旋積分或反迴旋積分求得另外一個函數。
本研究結果顯示,源函數與油層的邊界條件、完井狀況、地層中有無水及水驅有關。具有井筒效應的源函數(隨時間變化)之特性是在開始時為水平直線,井筒效應結束後,會與一般的無限表面圓柱源函數或無限線源函數相同。正值(大於零)的源函數不受膚表因子之變化而變化。但具有負值(小於零)之膚表因子的源函數在井壓測試初期也為水平直線,而且,不同的負值膚表因子,會有不同值的水平源函數,在膚表效應結束時也與無限表面圓柱源函數或無限線源函數一致。部份貫穿井的源函數則是開始時與無限表面圓柱源函數不同,貫穿比例越小越偏離無限表面圓柱源函數,但後來也會趨近無限表面圓柱源函數。
有限圓形邊界地層的源函數在初始的時間之特性與無限表面圓柱源函數或無限線源函數相同,但受到地層外邊界影響之後,其源函數會變成水平直線。部份貫穿井具有水錐效應的源函數開始時會與具有部分貫穿效應的源函數相同,並偏離無限表面圓柱源函數。具有邊際水驅的源函數則是開始時與無限表面圓柱源函數相同,當水驅效應開始影響時,源函數會向下偏離無限表面圓柱源函數,最後出水時,源函數會急遽的大於無限表面圓柱源函數。具有底水驅的源函數則是開始時會稍微大於無限表面圓柱源函數,有水流入地層底部後,源函數也會向下偏離無限表面圓柱源函數,當出水時,源函數會急遽的大於無限表面圓柱源函數。
The purpose of this study is to utilize the convolution and deconvolution to analyze the pressure testing data, including obtaining source functions with various boundary conditions from simulations and using source functions to study the characteristics of source functions of a producing well in the different types of reservoirs.
The solution of flowing fluid in the reservoir (or solutions of the diffusivity equation) can be represented by the relationship among the pressure, flow rate, and source function. With such relationship, in applying either convolution or deconvolution, the third unknown function can be obtained if the other two are known. The pressure drop can be obtained by convoluting flow rates and source functions. If the pressure drop and flow rates are known, the source functions can be derived by deconvoluting the other two.
The source function is dependent on the boundary conditions of the reservoir, including the inner and outer boundary conditions. The inner boundary conditions investigated in this study include wellbore storage effects, skin effects, and partial penetrations. The outer boundary conditions studied are no flow boundary for a closed boundary reservoir, such as a finite reservoir, and water influx to a reservoir from an aquifer, such as water drive. The source function, changing with time, for wellbore storage effects is characterized by a horizontal line at a very early time stage. Then this coincides to the source function of the infinite surface cylinder, for the well without wellbore storage in an infinite reservoir, after the end of wellbore storage effects. The source functions with damage effects, i.e. positive skin factors, are almost the same. For a negative skin factor, the source function is a horizontal line at an early time that subsequently coincides with the infinite line source or infinite surface cylinder source functions. The source functions from wells with various penetration ratios are higher than the infinite surface cylinder source function, and then coincide to the infinite surface cylinder source function at a later time.
The source functions for different external reservoir radii become horizontal lines at a late time or while the outer boundary is affected. The source function of the partially-penetrated well in the center of a reservoir with water coning is consistent with the source function of the partial penetration at an early time. Later, the source function for water coning is lower than the infinite surface cylinder source function. At a late time, when the water breaks through the wellbore, the source function is dependent on the reservoir permeability. The value of the source function for edgewater drive is lower than the infinite surface cylinder source function at a later time. Then the source function for a well producing water has higher value than it does for the infinite surface cylinder source function at a late time stage. The value of the source function for bottomwater drive coincides to the partially-penetrated source function at an early time, and then decreases dramatically at a late time. Finally, when the water breaks through the well, the source function suddenly becomes higher than the infinite surface cylinder source function.
Abstract --------------------------------------------------i
中文摘要--------------------------------------------------iv
Acknowledgements------------------------------------------vi
Table of Contents --------------------------------------viii
List of Tables -------------------------------------------xi
List of Figures ----------------------------------------xiii
Nomenclature -------------------------------------------xxii
Chapter 1 Introduction ------------------------------------1
1.1 Research background -----------------------------------1
1.2 Study purposes ----------------------------------------3
Chapter 2 Literature review -------------------------------4
2.1 Conventional solutions of the diffusivity equation ----4
2.2 Source function solutions of the diffusivity equation -6
2.3 Interpretation of pressure data affected by boundary conditions ---------10
2.4 Evaluation of completion of a well -------------------12
2.5 Interpretation of pressure data affected by water drives ------------------------13
2.6 Interpretation of water coning -----------------------15
Chapter 3 Basic theory and calculations ------------------18
3.1 Diffusivity equation ---------------------------------18
3.2 Pressure solutions from source functions -------------20
3.2.1 Convolution using the matrix method ----------------23
3.2.2 Convolution using the polynomial multiplication ----24
3.3 Source functions using the deconvolution method ------24
3.3.1 Deconvolution using the matrix method --------------25
3.3.2 Deconvolution using the polynomial multiplication --26
3.4 Fourier transformation -------------------------------27
Chapter 4 Results ----------------------------------------29
4.1 Analytical source functions and their characteristics 30
4.2 Pressure solutions from analytical source functions --34
4.3 Source functions from simulated pressure data --------36
4.3.1 Source functions from an infinite reservoir --------37
4.3.1.1 Pressure drawdown test ---------------------------37
4.3.1.2 Pressure buildup test ----------------------------38
4.3.1.3 Wellbore storage effects -------------------------38
4.3.1.4 Skin effects -------------------------------------40
4.3.1.5 Partial penetrations -----------------------------42
4.3.2 Source functions from the closed boundary reservoir 43
4.3.2.1 Circular reservoir -------------------------------43
4.3.2.2 Rectangular reservoir ----------------------------45
4.3.3 Source functions from a reservoir with an aquifer --48
4.3.3.1 Edgewater drive ----------------------------------48
4.3.3.2 Bottomwater drive --------------------------------50
4.3.3.3 Water coning -------------------------------------53
Chapter 5 Discussions ------------------------------------56
Chapter 6 Conclusions ------------------------------------60
6.1 Conclusions ------------------------------------------60
6.2 Suggestions for the future work ----------------------64
References -----------------------------------------------66
Abass, H. H., Bass, D. M., 1988. The critical production rate in water coning system.
Presented at the 1988 SPE Permian Basin Oil and Gas Recovery Conference,
Midland. (SPE 17311)
Agarwal, R. G., Al-Hussainy, R., Ramey, H. J., Jr., 1970. An investigation of wellbore
storage and skin effect in unsteady liquid flow: I. analytical treatment. AIME
Transactions, 249: 279-290.
Allard, D. R., Chen, S. M., 1988. Calculation of water influx for bottomwater drive
reservoirs. Society of Petroleum Engineers Journal: 369-379.
Andre, H., Bennion, D. W., 1970. A transform approach to the simulation of transient gas
flow in porous media. Society of Petroleum Engineers Journal, 10(2): 135-139.
Bilbro, G. L., Hall, L. C., Clements, M., Liu, W., 1999. Convolution, deconvolution, and
mean field annealing suitable for analog VLSI. Circuits and Systems II: Analog and
Digital Signal Processing, IEEE Transactions, 46(2): 120-128.
Bilhartz, H. L., Jr., Ramey, H. J., Jr., 1977. The combined effects of storage, skin, and
partial penetration on well test analysis. Paper presented at the 52nd Annual Fall
PDF created with pdfFactory trial version www.pdffactory.com
67
Technical Conference and Exhibition, Denver, Colorado, U.S.A. (SPE 6753)
Bourdet, D., Ayoub, J. A., Plrard, Y. M., 1989. Use of pressure derivative in well-test
interpretation. SPE Formation Evaluation, 4(2): 293-302.
Bourdet, D., Gringarten, A. C., 1980. Determination of fissure volume and block size in
fractured reservoir by type-curve analysis. SPE Annual Technical Conference and
Exhibition, Dallas, Texas, U.S.A. (SPE 9293).
Carslaw, H. S., 1921. Introduction to the Mathematical Theory of the Conduction of Heat
in Solids. Macmillan and Co., London, England. 268 pp.
Carter, R. D., Tracy, G. W., 1960. An improved method for calculating water influx.
Petroleum Transactions, AIME, 219: 415-417.
Chaney, P. E. et al., 1956. How to perforate your well to prevent water and gas coning. Oil
& Gas Journal, 54: 108-114.
Chierici, G. L., Ciucci, G. M., 1964. A systematic study of gas and water coning by
potentiometric models. JPT, Transactions, AIME, 225.
Cinco-Ley, H., Samaniego-V., F., 1977. Effect of wellbore storage and damage on the
transient pressure behavior of vertically fractured wells. SPE Annual Technical
PDF created with pdfFactory trial version www.pdffactory.com
68
Conference and Exhibition, Denver, Colorado, U.S.A. (SPE 6752).
Clonts, M. D., Ramey, H. J., Jr., 1986. Pressure transient analysis for wells with horizontal
drainholes. Society of Petroleum Engineers of AIME, 2: 215-230.
CMG, 2005. User’s Guide IMEX Advanced Oil/Gas Reservoir Simulator. Computer
Modelling Group Ltd., Calgary, Alberta Canada. 746 pp.
Coats, K. H., 1962. A mathematical model water movement about bottom-water-drive
reservoirs. Society of Petroleum Engineers Journal: 44-52.
Craft, B. C., Hawkins, M. F., Terry, R. E., 1991. Applied Petroleum Reservoir Engineering,
Second Edition, Prentice-Hall, Englewood Cliffs, NJ, U.S.A. 431 pp.
Earlougher, R. C., Jr., 1977. Advance in Well Test Analysis, Monograph vol. 5, Society of
Petroleum Engineers of the AIME, Dallas, Texas, U.S.A. 264 pp.
Earlougher, R. C., Jr., Kersch, K. M., 1974. Analysis of short-time transient test data by
type curve matching. Journal of Petroleum Technology, 793-800.
Earlougher, R. C., Jr., Ramey, H. J., Jr., 1973. Interference analysis in bounded systems.
Journal of Canadian Petroleum Technology, 33-45.
PDF created with pdfFactory trial version www.pdffactory.com
69
Fetkovich, M. J., 1971. A simplified approach to water influx calculations – finite aquifer
systems. J. Pet. Tech., 814-828.
Gilly, P., Horne, R. N., 1998. A new method for analysis of long-term pressure history. SPE
Annual Technical Conference and Exhibition, New Orleans, Louisiana, U.S.A. (SPE
48964).
Gringarten, A. C., Ramey, H. J., Jr., 1973. The use of source and Green’s functions in
solving unsteady-state flow petroleum in reservoir. Society of Petroleum Engineers of
AIME Journal, 13(5): 285-296.
Gringarten, A. C., Ramey, H. J., Jr., 1975. An approximate infinite conductivity solution
for a partially penetrating line-source well. SPEJ: 140-148.
Gringarten, A. C., Bourdet, D., Landel, P. A., Kniazeff, V. J., 1979. A comparison between
different skin and wellbore storage type curves for early-time transient analysis. SPE
Annual Technical Conference and Exhibition, Las Vegas, Nevada, U.S.A. (SPE
8205).
Gringarten, A. C., 2006. From straight lines to deconvolution: the evolution of the state of
the art in well test analysis. SPE Annual Technical Conference and Exhibition, San
PDF created with pdfFactory trial version www.pdffactory.com
70
Antonio, Texas, U.S.A. (SPE 102079).
Harikumar, G., Bresler, Y., 1999. Exact image deconvolution from multiple FIR blurs.
Image Processing, IEEE Transaction, 8(6): 846-862.
Horner, D. R., 1967. Pressure build-up in wells. Reprint Series, No. 9 – Pressure Analysis
Methods, Society of Petroleum Engineers of the AIME, Dallas, Texas, U.S.A.: 25-43.
Horner, R. N., 1990. Modern Well Test Analysis. Petroway Inc., Palo Alto, CA. U.S.A. 158
pp.
Izzetoglu, M., Akgul, T., 1998. Deconvolution of sensor array signals using scale
transform properties. Time-Frequency and Time-Scale Analysis, Proceedings of the
IEEE-SP International Symposium: 573-576.
Kuchuk, F. J., Carter, R. G., Ayestaran, L., 1990. Deconvolution of wellbore pressure and
flow rate. SPE Formation Evaluation, 5(1): 53-59. (SPE 13960)
Kuchuk, F. J., 1990. Applications of convolution and deconvolution to transient well tests.
SPE Formation Evaluation, 5(4): 375-384.
Lee, J., 1982. Well Testing. Society of Petroleum Engineers of the AIME, Dallas, Texas,
PDF created with pdfFactory trial version www.pdffactory.com
71
U.S.A. 159 pp.
MATLAB, 2005. Signal Processing Toolbox for Use with MATLAB User’s Guide. The
Math Works Inc., Natick, Massachusetts, U.S.A. 668 pp.
Meyer, J. I., Garder, A. O., 1954. Mechanics of two immiscible fluids in porous media. J.
Applied Phys., 25(11): 1400-1406.
Muskat, M., Wyckoff, R. D., 1935. An approximate theory of water coning in oil
production. Trans., AIME, 114: 144-163.
Muskat, M., 1946. The Flow of Homogeneous Fluids Through Porous Media.
McGraw-Hill Book Company, New York, 763 pp.
Oppenheim, A. V., Schafer, R. W., Buck, J. R., 1999. Discrete-Time Signal Processing.
Prentice-Hall, New Jersey. 1064 pp.
Olarewaju, J. S., 1989. A mathematical model of edgewater and bottomwater drives for
water influx calculations. SPE California Regional Meeting, Bakersfield, California,
U.S.A. (SPE 18764).
Onur, M., Hegeman, P. S., Kuchuk, F. J., 2002. Pressure-pressure convolution analysis of
multiprobe and packer-probe wireline formation tester data. SPE Annual Technical
PDF created with pdfFactory trial version www.pdffactory.com
72
Conference and Exhibition, San Antonio, Texas, U.S.A. (SPE 77343).
Orellana, E. N., Correa, A. C., 1992. Automation of pressure transient test in laboratory
using deconvolution. 2nd Latin American Petroleum Engineering Conference,
Caracas, Venezuela. (SPE 23702).
Pan, S. Y., Chilingar, G. V., Lin, Z. S., 2007. Source functions in early time pressure
transient analysis. Energy Sources, Part A: Recovery, Utilization, and Environmental
Effects, 29(11): 961-982.
Pan, S. Y., Hsieh, B. Z., Lu, M. T., Lin, Z. S., 2008. Identification of stratigraphic
formation interfaces using wavelet and Fourier transforms. Computers &
Geosciences, 34(1): 77-92.
Peres, A. M. M., Onur, M., Reynolds, A. C., 1993. A new general pressure-analysis
procedure for slug tests. SPE Formation Evaluation, 8(4): 292-298. (SPE 18801)
Pierre, J. W., 1996. A novel method for calculating the convolution sum of two finite
length sequences. Education, IEEE Transactions, 39(1): 77-80.
Polikar, R., 1999. The story of wavelets, in Physics and Modern Topics in Mechanical and
Electrical Engineering, (ed. Mastorakis, N), World Scientific and Eng. Society Press.
PDF created with pdfFactory trial version www.pdffactory.com
73
Raghavan, R., 1993. Well Test Analysis. PTR Prentice-Hall Englewood Cliffs, New Jersey.
558 pp.
Ramey, H. J., Jr., 1970. Short-time well test data interpretation in the presence of skin
effect and wellbore storage. Journal of Petroleum Technology, AIME. Transactions,
249:97-104.
Ramey, H. J., Jr., 1976. Practical use of modern well test analysis. SPE-AIME 46th Annual
California Regional Meeting. (SPE 5878)
Ramey, H. J., Jr., Kumar, A., Gulati, M. S., 1973. Gas Well Test Analysis under
Water-Drive Conditions. American Gas Association Monograph.
Rosa, A. J., Horne, R. N., 1996. Pressure transient behavior in reservoir with an internal
circular discontinuity. Society of Petroleum Engineers Journal, 1(1): 83-92.
Theis, C. V., 1935. The relationship between the lowering of piezometric surface and rate
and duration of discharge of wells using ground-water storage. AIME. Transactions,
2: 519-524.
Theuveny, B. C., Jack, W. A., Economides, M. J., 1985. Pressure transient analysis for
single well/reservoir configurations (considering partial penetration, mixed boundary,
PDF created with pdfFactory trial version www.pdffactory.com
74
wellbore storage, and skin effects. Society of Petroleum Engineers Journal: 387-404.
(SPE 13627)
Tiab, D., Kumar, A., 1980. Application of PD
’-function to interference analysis. JPT:
1465-1470.
Tiab, D., 1995. Analysis of pressure and pressure derivative without type-curve
matching — Skin and wellbore storage. Journal of Petroleum Science and
Engineering, 12(3): 171-181.
van Everdingen, A. F., Hurst, W., 1949. The application of Laplace transformation to fluid
problems in reservoir. AIME Petroleum Transactions, 189: 305-324.
van Everdingen, A. F., Timmweman, E. H., McMahon, J. J., 1953. Application of the
material balance equation to partial water drive reservoir. Petroleum Transactions,
AIME, 198: 51-60.
Zhou, J. P., Do, M. N., 2005. Multichannel FIR exact deconvolution in multiple variables.
Acoustics, Speech, and Signal Processing (ICASSP '05). IEEE International
Conference, 4: 1001-1004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 7. 梁百霖著,談人壽保險之產品策略,保險專刊,4輯,民國1986年06月
2. 4. 卓俊雄,保單貼現法制之探討─以美國經驗為論述中心,東海大學法學研究,22期,2005年06月
3. 2. 方明川、胡木成著,人壽保險保險契約轉換問題之分析,壽險季刊,100期,頁21-31
4. 8. 陳森松著,投資「保單貼現」保不保險?--非法的「死人保單」可能合法化嗎?,現代保險,186期,2004年,頁70-74
5. 張火燦、余月美(2008)。服務品質、顧客滿意度與顧客忠誠度關係之研究。已出版博碩士論文。明新學報,第34卷第1期,頁127-140。
6. 徐韻淑、黃韶顏(2004)。民宿遊客市場區隔分析之研究。餐旅暨家政學刊,第一期第1卷,頁67-86。
7. 陳宗玄、林靜芳(2006)。清境地區民宿遊客滿意度與再宿意願之研究。旅遊管理研究,第6卷第2期,21-44。
8. 林瑩昭(2010)。民宿消費行為對民宿需求相關因素之研究。運動與遊憩研究,已發表博碩士論文,第4卷第3期,頁85-105。
9. 林瑩昭(2010)。學校餐廳顧客滿意度之研究-以台南科技大學爲例。運動休閒餐旅研究,5卷2期,頁41-59
10. 10. 張冠群著,金融資產證券化與保險證券化之法律分析-以美國經驗與我國法治之評析,政大法學評論,77期,2004年02月,頁109-162
11. 11. 許夢賢著,確立契約持續性,壽險季刊,51期,民國1984年03月
12. 16. 潘秀菊,論保險契約利益之轉讓,保險專刊,46輯,1996年,頁159-167
13. 17. 黎曉英,保單貼現挑戰人性,現代保險,186期,2004年,頁22
14. 18. 賴登輝譯、井上哲也著,日本人壽保險契約轉換的研究(下),保險專刊,24輯,民國1991年06月
15. 20. 賴麗華著,逆選擇與道德危險之探跑,保險專刊,20輯,民國1987年06月