|
R. M. Bell and Y. Koren. Lessons from the Netflix prize challenge. ACM SIGKDD Explorations Newsletter, 9(2):75–79, 2007. K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large- scale L2-loss linear SVM. Journal of Machine Learning Research, 9:1369–1398, 2008. URL http://www.csie.ntu.edu.tw/~cjlin/papers/cdl2.pdf. G. Dror, N. Koenigstein, Y. Koren, and M. Weimer. The Yahoo! music dataset and KDD-Cup 11. In JMLR Workshop and Conference Proceedings: Proceedings of KDD Cup 2011, volume 18, pages 3–18, 2012. R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factor- ization with distributed stochastic gradient descent. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 69–77, 2011. K. B. Hall, S. Gilpin, and G. Mann. MapReduce/Bigtable for distributed op- timization. In Neural Information Processing Systems Workshop on Leaning on Cores, Clusters, and Clouds, 2010. C.-J. Hsieh and I. S. Dhillon. Fast coordinate descent methods with variable se- lection for non-negative matrix factorization. In Proceedings of the Seventeenth ACM SIGKDD International Conference on Knowledge Discovery and Data Min- ing, 2011. J. Kiefer and J. Wolfowitz. Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics, 23(3):462–466, 1952. Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for rec- ommender systems. Computer, 42(8):30–37, 2009. A. Kyrola, G. Blelloch, and C. Guestrin. Graphchi: Large-scale graph computa- tion on just a pc. In Proceedings of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’12), Hollywood, October 2012. G. Mann, R. McDonald, M. Mohri, N. Silberman, and D. Walker. Efficient large- scale distributed training of conditional maximum entropy models. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 1231–1239. 2009. 40 &;#65532;R. McDonald, K. Hall, and G. Mann. Distributed training strategies for the struc- tured perceptron. In Proceedings of the 48th Annual Meeting of the Association of Computational Linguistics (ACL), pages 456–464, 2010. F. Niu, B. Recht, C. R &;#769;e, and S. J. Wright. HOGWILD!: A lock-free ap- proach to parallelizing stochastic gradient descent. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in Neural Informa- tion Processing Systems 24, pages 693–701, 2011. I. Pil &;#769;aszy, D. Zibriczky, and D. Tikk. Fast ALS-based matrix factorization for explicit and implicit feedback datasets. In Proceedings of the Fourth ACM Con- ference on Recommender Systems, pages 71–78, 2010. H. Robbins and S. Monro. A stochastic approximation method. The Annals of Mathematical Statistics, 22(3):400–407, 1951. H.-F. Yu, C.-J. Hsieh, S. Si, and I. S. Dhillon. Scalable coordinate descent ap- proaches to parallel matrix factorization for recommender systems. In Proceedings of the IEEE International Conference on Data Mining, pages 765–774, 2012. H. Yun, H.-F. Yu, C.-J. Hsieh, S. Vishwanathan, and I. S. Dhillon. Nomad: Non-locking, stochastic multi-machine algorithm for asynchronous and decentral- ized matrix completion. In International Conference on Very Large Data Bases (VLDB), 2014. Y. Zhou, D. Wilkinson, R. Schreiber, and R. Pan. Large-scale parallel collabo- rative filtering for the Netflix prize. In Proceedings of the Fourth International Conference on Algorithmic Aspects in Information and Management, pages 337– 348, 2008. Y. Zhuang, W.-S. Chin, Y.-C. Juan, and C.-J. Lin. A fast parallel SGD for matrix factorization in shared memory systems. In Proceedings of the ACM Rec- ommender Systems, 2013. URL http://www.csie.ntu.edu.tw/~cjlin/papers/ libmf.pdf. M. Zinkevich, M. Weimer, A. Smola, and L. Li. Parallelized stochastic gradient de- scent. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel, and A. Culotta, editors, Advances in Neural Information Processing Systems 23, pages 2595–2603. 2010.
|