|
Aliev G., Seyidova D., Raina A.K., Obrenovich M.E., Neal M.L., Siedlak S.L., Lamb B.T., Vinters H., Lamanna J.C., Smith M.A. and Perry G. (2003) Vascular hypoperfusion, mitochondria failure and oxidative stress in Alzheimer disease. Proc. Indian Natl. Sci. Acad. B69:209-238. Arispe, N., Rojas, E. and Pollard, H.B. (1993) Alzheimer disease amyloid beta protein forms calcium channels in bilayer membranes: blockade by tromethamine and aluminum. Proc. Natl. Acad. Sci. USA. 90: 567-571. Atwood C.S., Moir R.D., Huang X., Scarpa R.C., Bacarra N. M., Romano D.M., Hartshorn M.A., Tanzi R.E. and Bush A.I. (1998) Dramatic aggregation of Alzheimer abeta by Cu(II) is induced by conditions representing physio-logical acidosis. J. Biol. Chem. 273:12817-12826. Atwood C.S., Scarpa R.C., Huang X., Moir R.D., Jones W.D., Fairlie D.P., Tanzi R.E. and Bush A.I. (2000) Characterization of copper interactions with alzheimer amyloid beta peptides: identification of an attomolar-affinity copper binding site on amyloid beta1–42. J. Neurochem. 75:1219-1233. Atwood C.S., Perry G., Zeng H., Kato Y., Jones W.D., Ling K.Q., Huang X., Moir R.D., Wang D., Sayre L.M., Smith M.A., Chen S.G. and Bush A.I. (2004) Copper mediates dityrosine cross-linking of Alzheimer’s amyloid-beta. Biochemistry. 43:560-568. Barger S.W. and Mattson M.P. (1996) Induction of neuroprotective kB-dependent transcription by secreted forms of the Alzheimer’s b-amyloid precursor. Brain Res. 40:116-126. Barnham K.J., Ciccotosto G.D., Tickler A.K., Ali F.E., Smith D.G., Williamson N.A., Lam Y.H., Carrington D., Tew D., Kocak G., Volitakis I., Separovic F., Barrow C.J., Wade J.D., Masters C.L., Cherny R.A., Curtain C.C., Bush A.I. and Cappai R. (2003) Neurotoxic, redox-competent Alzheimer’s {beta}-amyloid is released from lipid membrane by methionine oxidation. J. Biol. Chem. 278:42959-42965. Barnham K.J., Haeffner F., Ciccotosto G.D., Curtain C.C., Tew D., Mavros C., Beyreuther K., Carrington D., Masters C. L., Cherny R.A., Cappai R. and Bush A.I. (2004a) Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease beta-amyloid. FASEB J. 18:1427-1429. Barnham K.J., Masters C.L. and Bush A.I. (2004b) Oxidative Stress in Neurodegenerative diseases. Nat. Rev. Drug. Discov. 3:205-214. Behl C., Davis J., Cole G.M. and Schubert D. (1992) Vitamin E protects nerve cells from amyloid beta protein toxicity. Biochem. Biophys. Res. Commun. 186:944-950. Behl C., Davis J.B., Lesley R. and Schubert D. (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell. 77:817-827. Bezprozvanny I. (2009) Amyloid Goes Global. Sci. Signal. 2: pe16. Bossy-Wetzel E., Schwarzenbacher R. and Lipton S. (2004) Molecular pathways to neurodegeneration. Nat. Med.10 :S2-S9. Busche M.A., Eichhoff G., Adelsberger H., Abramowski D., Wiederhold K.H., HaassC., Staufenbiel M., Konnerth A. and Garaschuk O. (2008) Clusters of hyperactive neurons near amyloid plaques in a mouse model of Alzheimer''s disease. Science. 321:1686-1689. Bush A.I., Multhaup G., Moir R.D., Williamson T.G., Small D.H., Rumble B., Pollwein P., Beyreuther K. and Masters C.L. (1993) A novel zinc (II) binding site modulates the function of the βA4 amyloid protein precursor of Alzheimer’s disease. J. Biol. Chem. 268:16109-16112. Bush A.I., Pettingell W.H., Multhaup G., Paradis M.D., Vonsattel J.P., Gusella et al., (1994) Rapid induction of Alzheimer A beta amyloid formation by zinc. Science. 265:1464-1467. Bush A.I. (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci. 26:207-214. Butler M.S. (2004) The Role of Natural Product Chemistry in Drug Discovery. J. Nat. Prod. 6:2141-2153. Butterfield D.A. (1997) β-amyloid-associated free radical oxidative stress and neurotoxicity: Implications for Alzheimer’s disease. Chem. Res. Toxicol. 10:495-506. Butterfield D.A., Varadarajan S., Aksenova M., Link C. and Yatin S.M. (1999) On Methionine and Alzheimer''s Amyloid b-Peptide (1-42)-Induced Oxidative Stress. Neurobiol. Aging. 20:339-342. Butterfield D.A., Drake J., Pocernich C. and Castegna A. (2001) Evidence of oxidative damage in Alzheimer''s disease brain: central role for amyloid beta-peptide. Trends Mol. Med. 7:548-554. Caughey B. and Lansbury P.T. (2003) Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Ann. Rev. Neurosci. 26:267-298. Celsi F., Pizzo P., Brini M., Leo S., Fotino C., Pinton P. and Rizzuto R. (2009) Mitochondria, calcium and cell death: A deadly triad in neurodegeneration. Biochim. Biophys. Acta. 1787:335-44. Chandrasekaran K., Giordano T., Brady D.R., Stoll J., Martin L.J. and Rapoport S.I. (1994) Impairment in mitochondrial cytochrome oxidase gene expression in Alzheimer disease. Brain Res. 24:336-340. Chapman P.F., White G.L., Jones M.W., Cooper-Blacketer D., Marshall V.J. and Irizarry et al., (1999) Impaired synaptic plasticity and learning in aged amyloid precursor protein transgenic mice. Nat. Neurosci. 2:271-276. Cheng I.H., Scearce-Levie K., Legleiter J., Palop J.J., Gerstein H., Bien-Ly N., Puoliväli J., Lesné S., Ashe K.H., Muchowski P.J. and Mucke L. (2007) Accelerating amyloid-beta fibrillization reduces oligomer levels and functional deficits in Alzheimer disease mouse models. J. Biol. Chem. 282:23818-23828. Cherny R.A., Legg J.T., McLean C.A., Fairlie D.P., Huang X., Atwood C.S., Beyreuther K., Tanzi R.E., Masters C.L. and Bush A.I. (1999) Aqueous dissolution of Alzheimer’s disease Abeta amyloid deposits by biometal depletion. J. Biol. Chem. 274:23223-23228. Connor J.R., Snyder B.S., Arosio P., Loeffler D.A. and LeWitt P. (1995) A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer’s diseased brains. J. Neurochem. 65:717-724. Cotman C.W., Poon W.W., Rissman R.A. and Blurton-Jones M. (2005) The role of caspase cleavage of tau in Alzheimer disease neuropathology. J. Neuropathol. Exp. Neurol. 64:104-112. Cottrell D.A., Blakely E.L., Johnson M.A., Ince P.G. and Turnbull D.M. (2001) Mitochondrial enzyme deficient hippocampal neurons and choroidal cells in AD. Neurology. 57:260-264. Cuajungco M.P., Goldstein L.E., Nunomura A., Smith M.A., Lim J.T., Atwood C.S., Huang X., Farrag Y.W., Perry G. and Bush A.I. (2000) Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of Abeta by zinc. J. Biol. Chem. 275:19439-19442. Curtain C.C., Ali F., Volitakis I., Cherny R.A., Norton R.S., Beyreuther K., Barrow C.J., Masters C.L., Bush A.I. and Barnham K.J. (2001) Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J. Biol. Chem. 276:20466-20473. Dahlgren K.N., Manelli A.M., Stine W.B., Jr., Baker L.K., Krafft G.A. and LaDu M.J. (2002) Oligomeric and fibrillar species of amyloid-beta peptides differentially affect neuronal viability. J. Biol. Chem. 277:32046-32053. De Smet P.A. (2002) Herbal remedies. New. Eng. J. Med. 347: 2046-2056. Ding H., Matthews T.A. and Johnson G.V. (2006) Site-specific phosphorylation and caspase cleavage differentially impact tau-microtubule interactions and tau aggregation. J. Biol. Chem. 281:19107-19114. Dong J., Atwood C.S., Anderson V.E., Siedlak S.L., Smith M.A., Perry G. and Carey P.R. (2003) Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman Microscopic Evidence. Biochemistry. 42:2768-2773. Draczynska-Lusiak B., Chen Y.M. and Sun A.Y. (1998) Oxidized lipoproteins activate NF-κB binding activity and apoptosis in PC12 cells. Neuroreport. 9:527–532. Drake J., Link C.D. and Butterfield D.A. (2003) Oxidative stress precedes fibrillar deposition of Alzheimer’s disease amyloid beta-peptide (1–42) in a transgenic Caenorhabditis elegans model. Neurobiol. Aging. 24:415-420. Ekinci F.J., Malik K.M. and Shea T.B. (1999) beta-amyloid induces calcium influx and neurodegeneration by MAP kinasemediated activation of the L voltage-sensitive calcium channel. J. Biol. Chem. 274:30322-30327. Emerit J., Edeas M. and Bricaire F. ( 2004) Neurodegenerative diseases and oxidative stress. Biomed. Pharmacother. 58:39-46. Fawzi N.L., Kohlstedt K.L., Okabe Y. and Head-Gordon T. (2007) Protofibril assemblies of the Arctic, Dutch and Flemish mutants of the Alzheimer’s A{beta}1–40 Peptide. Biophys. J. 44:2007-2016. Ferrer I., Marti E., Lopez E. and Tortosa A. (1998) NF-kB immunore-activity is observed in association with Aβ diffuse plaques in patients with Alzheimer’s disease. Neuropathol. Appl. Neurobiol. 24:271-277. Fifre A., Sponne I., Koziel V., Kriem B., Yen Potin F.T., Bihain B.E., Olivier J.L., Oster T. and Pillot T. (2006) Microtubule-associated protein MAP1A, MAP1B, and MAP2 proteolysis during soluble amyloid beta-peptide-induced neuronal apoptosis. Synergistic involvement of calpain and caspase-3. J. Biol. Chem. 281: 229-240. Gamblin T.C., Chen F., Zambrano A., Abraha A., Lagalwar S., Guillozet A., Lu M., Fu Y., Garcia-Sierra F., LaPointe N., Miller R., Berry R.W., Binder L.I. and Cryns V.L.( 2003) Caspase cleavage of tau: linking amyloid and neurofibrillary tangles in Alzheimer''s disease. Proc. Natl. Acad. Sci. USA. 100:10032-10037. Garzon-Rodriguez W., Sepulveda-Becerra M., Milton S. and Glabe C.G. (1997) Soluble amyloid Abeta-(1-40) exists as a stable dimer at low concentrations. J. Biol. Chem. 272:21037-21044. Gastard M.C., Troncoso J.C. and Koliatsos V.E. (2003) Caspase activation in the limbic cortex of subjects with early Alzheimer''s disease. Ann. Neurol. 54:393-398. Gates B.C. (ed): Catalytic Chemistry, John Wiley & Sons, Inc. Singapore, (1991). Gibson G.E., Sheu K.F. and Blass J.P. (1998) Abnormalities of mitochondrial enzymes in Alzheimer’s disease. J. Neural. Transm. 105:855-870. Ginn-Pease M.E. and Whisler R.L. (1998) Redox signals and NF-kB activation in T cells. Free Rad. Biol. Med. 25:346-361. Gong Y., Chang L., Viola K.L., Lacor P.N., Lambert M.P., Finch C.E., Krafft G.A. and Klein W.L. (2003) Alzheimer''s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss, Proc. Natl. Acad. Sci. USA. 100 :10417-10422. Guan Z.Z., Miao H., Tian J.Y., Unger C., Nordberg A. and Zhang X. ( 2001) Suppressed expression of nicotinic acetylcholine receptors by nano molar beta-amyloid peptides in PC12 cells. J. Neural. Transm. 108:1417-1433. Guillozet-Bongaarts A.L., Garcia-Sierra F., Reynolds M.R., Horowitz P.M., Fu Y., Wang T., Cahill M.E, Bigio E.H., Berry R.W. and Binder L.I. (2005) Tau truncation during neurofibrillary tangle evolution in Alzheimer''s disease. Neurobiol. Aging. 26:1015-1022. Guo H., Albrecht S., Bourdeau M., Petzke T., Bergeron C. and LeBlanc A.C. (2004) Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer''s disease. Am. J. Pathol. 165: 523-531. Guyton A.C. (1996) Human Physiology and Mechanisms of Disease. W. B. Sunders Co., Philadelphia, Pennsylvania, USA. Hardy J. and Selkoe D.J. (2002) The amyloid hypothesis of Alzheimer''s disease:progress and problems on the road to therapeutics. Science. 297: 353-356. Hardy J.A. and Higgins G.A. (1992) Alzheimer''s disease: the amyloid cascade hypothesis. Science. 256:184-185. Hartley D.M., Walsh D.M., Ye C.P., Diehl T., Vasquez S., Vassilev P.M., Teplow D.B. and Selkoe D.J. (1999) Protofibrillar intermediates of amyloid β-protein induce acute electrophysiological changes and progressive neurotoxicity in cortical neurons. J. Neurosci. 19:8876-8884. Head E., Garzon-Rodriguez W., Johnson J.K., Lott I.T., Cotman C.W. and Glabe C. (2001) Oxidation of Abeta and plaque biogenesis in Alzheimer’s disease and Down syndrome. Neurobiol. Dis. 8:792–806. Heininger K. (2000) A Unifying Hypothesis of Alzheimer’s Disease. III. Risk Factors. Hum. Psychopharmacol. Clin. Exp. 15:1-70. Holmes-McNary M. and Baldwin A.S.Jr. (2000) Chemopreventive properties of trans-resveratrol are associated with inhibition of activation of the IkB kinase. Cancer Res. 60:3477-3483. Huang X., Cuajungco M.P., Atwood C.S., Hartshorn M.A., Tyndall J.D., Hanson G.R., Stokes K.C., Leopold M., Multhaup G., Goldstein L.E., Scarpa R.C., Saunders A.J., Lim J., Moir R.D., Glabe C., Bowden E.F., Masters C.L., Fairlie D.P., Tanzi R.E. and Bush A.I. ( 1999a) Cu(II) potentiation of Alzheimer Abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J. Biol. Chem. 274:37111-37116. Huang X., Atwood C.S., Hartshorn M.A., Multhaup G., Goldstein L.E., Scarpa R.C., Cuajungco M.P., Gray D.N., Lim J., Moir R.D., Tanzi R.E. and Bush A.I. (1999b) The Abeta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609-7616. Huang X., Atwood C.S., Moir R.D., Hartshorn M.A., Tanzi R.E. and Bush A.I. (2004) Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Aβ peptides. J. Biol. Chem. 9:954-960. Hung L.W., Ciccotosto G.D., Giannakis E., Tew D.J., Perez K., Masters C.L., Cappai R., Wade J.D. and Barnham K.J. (2008) Amyloid-beta peptide (Abeta) neurotoxicity is modulated by the rate of peptide aggregation: Abeta dimers and trimers correlate with neurotoxicity. J. Neurosci. 28:11950-11958. Hynd M.R., Scott H.L. and Dodd P.R. (2004) Glutamate-mediated excitotoxicity and neurodegeneration in Alzheimer’s disease. Neurochem. Int. 45:583-595. Ikonomovic M.D., Mizukami K., Warde D., Sheffield R., Hamilton R., Wenthold R.J. and Armstrong D.M. (1999) Distribution of glutamate receptor subunit NMDAR1 in the hippocampus of normal elderly and patients with Alzheimer’s Disease. Exptl. Neurol. 160:194-204. Jang J.H. and Surh Y.J. (2001) Protective effects of resveratrol on hydrogen peroxide-induced apoptosis in rat pheochromocytoma (PC12) cells. Mutat. Res. 496:181-190. Jang J.H. and Surh Y.J. (2005) b-Amyloid-induced apoptosis is associated with cyclogenase-2 up-regulation via the mitogen-activated protein kinase NF-kB signaling pathway. Free Rad. Biol. Med. 38:1604-1613. Japan Polymer Chemistry Association: Polymer Chemistry, 1st ed. Kyowentou, Tokyo, Japan (1984). Kamal A., Almenar-Queralt A., LeBlanc J.F., Roberts E.A. and Goldstein L.S. (2001) Kinesin-mediated axonal transport of a membrane compartment containing β-secretase and presenilin-1 requires APP. Nature. 414:643-648. Kamal A., Stokin G.B., Yang Z., Xia C.H. and Goldstein L.S. (2000) Axonal transport of amyloid precursor protein is mediated by direct binding to the kinesin light chain subunit of kinesin-1. Neuron. 28:449-459. Kang J., Park E.J., Jou I., Kim J.H. and Joe E.H. (2001) Reactive oxygen species mediate Aβ(25–35)-induced activation of BV-2 microglia. Neuroreport. 12:1449-1452. Kawahara M. and Kuroda Y. (2000) Molecular mechanism of neurodegeneration induced by Alzheimer‘s beta-amyloid protein: channel formation and disruption of calcium homeostasis. Brain Res. Bull. 53:389-397. Kayed R., Head E., Thompson J.L., McIntire T.M., Milton S.C., Cotman C.W. and Glabe C.G. (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science. 300:486-489. Koffie R.M., Meyer-Luehmann M., Hashimoto T., Adams K.W., Mielke M.L., Garcia-Alloza M., Micheva K.D., Smith S.J., Kim M.L., Lee V.M., Hyman B.T. and Spires-Jones T.L. (2009) Oligomeric amyloid beta associates with postsynaptic densities and correlates with excitatory synapse loss near senile plaques. Proc. Natl. Acad. Sci. USA. 106:4012-4017. Kontush A., Berndt C., Weber W., Akopyan V., Arlt S., Schippling S. and Beisiegel U. (2001) Amyloid-beta is an antioxidant for lipoproteins in cerebrospinal fluid and plasma. Free Rad. Biol. Med. 30:119-128. Kuchibhotla K.V., Goldman S.T., Lattarulo C.R., Wu, H.Y., Hyman B.T. and Bacskai B.J. (2008) Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron. 59:214-225. Kuo Y.M., Kokjohn T.A., Beach T.G., Sue L.I., Brune D., Lopez J.., Kalback W.M., Abramowski D., Sturchler- Pierrat C., Staufenbiel M. and Roher A.E. (2001) Comparative analysis of amyloid-beta chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s disease brains. J. Biol. Chem. 276:12991-12998. Laidler K.J. and Meiser J.H. (eds.), (1987) Physical Chemistry, Benjamin/Cummings Publishing Co., Inc. Philadelphia, USA. Lambert M.P., Barlow A.K., Chromy B.A., Edwards C., Freed R., Liosatos M., Morgan T. E., Rozovsky I., Trommer B., Viola K. L., Wals P., Finch C. E., Krafft G. A. and Klein W. L. (1998) Diffusible nonfibrillar ligands derived from Abeta1-42 are potent central nervous system neurotoxins. Proc. Natl. Acad. Sci. USA. 95:6448-6453. Lan L., Nakajima S., Oohata Y., Takao M., Okano S., Masutani M., Wilson S.H. and Yasui A. (2004) In situ analysis of repair processes for oxidative DNA damage in mammalian cells. Proc. Natl. Acad. Sci. USA. 101:13738-13743. Le Y., Gong W., Lee T. H., Tumanov A., Nedospasov S., Shen W., Dunlop N. M., Gao J. L., Murphy P. M., Oppenheim J. J. and Wang J. M. (2001) Amyloid (beta)42 activates a G-protein-coupled chemoattractant receptor, FPR-like-1. J. Neurosci. 21:RC123 (1-5). Lesné S., Koh M.T., Kotilinek L., Kayed R., Glabe C.G., Yang A., Gallagher M. and Ashe K.H. (2006) A specific amyloid-beta protein assembly in the brain impairs memory. Nature. 440:352-357. Li J. W.H. and Vederas J.C. (2009) Drug Discovery and Natural Products: End of an Era or an Endless Frontier? Science. 325:161-165. Lleó A., Greenberg S. M. and Growdon J.H. (2006) Current Pharmacotherapy for Alzheimer''s Disease. Annu. Rev. Med. 57: 513-533. Lockhart B.P., Benicourt C., Junien J.L. and Privat A. (1994) Inhibitors of free radical formation fail to attenuate direct beta-amyloid25-35 peptide-mediated neurotoxicity in rat hippocampal cultures. J. Neurosci. Res. 39:494-505. Loeffler D.A., Connor J.R., Juneau P.L., Snyder B.S., Kanaley L., DeMaggio A.J., Nguyen H., Brickman C.M. and LeWitt P.A. (1995) Transferrin and iron in normal, Alzheimer’s disease, and Parkinson’s disease brain regions. J. Neurochem. 65:710-724. Lombard D.B., Chua K.F., Mostoslavsky R., Franco S., Gostissa M. and Alt F.W. (2005) DNA Repair, Genome Stability, and Aging. Cell. 120:497-512. Malek S., Chen Y., Huxford T. and Ghosh G. (2001) IkB, but not IkB? functions as a classical cytoplasmic inhibitor of NFkB nuclear localization sequences in resting cells. J. Biol. Chem. 276:45225-45235. Malek S., Huang D.B., Huxford T., Ghosh S. and Ghosh G. (2003) X-ray crystal structure of an IkBb/NF-kB p65 homodimer complex. J. Biol. Chem. 278:23094-23100. Manna S.K., Mukhopadhyay A. and Aggarwal B.B. (2000) Resveratrol suppresses activation of TNF-induced nuclear transcription factors NF-κB, activator protein-1, and apoptosis: potential role of reactive oxygen intermediates and lipid peroxidation. J. Immunol. 164:6505-6519. Marccus D.M. and Grollman A.P. (2002) Botanical medicines—the need for new regulations. New. Eng. J. Med. 347:2073-2076. Mark R.J., Hensley K., Butterfield D.A. and Mattson M.P. (1995) Amyloid beta-peptide impairsion-motive ATPase activities: evidence for a role in loss of neuronal Ca2+ homeostasis and cell death. J. Neurosci. 15:6239-6249. Mark R.J., Lovell M.A., Markesbery W.R., Uchida K. and Mattson M.P. (1997) A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid beta-peptide. J. Neurochem. 68:255-264. Marlatt M., Lee H.G., Perry G., Smith M.A. and Zhu X. (2004) Sources and mechanisms of cytoplasmic oxidative damage in Alzheimer’s disease. Acta Neurobiol. Exp. 64:81-87. Masliah E. (2008) Neuropathology: Alzheimer’s in real time. Nature.451: 638-639. Masters C.L. and Beyreuther K. (2006) Alzheimer''s centennial legacy: prospects for rational therapeutic intervention targeting the Aß amyloid pathway. Brain. 129:2823-2839. Mattson M.P. (1997) Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol. Rev. 77:1081-1132. Mattson M.P. and Camandola S. ( 2001) NF-kB in neuronal plasticity and neurodegenerative disorders. J. Clin. Invest. 107:247-254. Mattson M.P. and Chan S.L. (2003) Neuronal and glial calcium signaling in Alzheimer’s disease. Cell Calcium. 34:385-397. Mattson M.P. (2004) Pathways towards and away from Alzheimer’s disease. Nature. 430:631-639. Maurer I., Zierz S. and Moller H.J. (2000) A selective defect of cytochrome c oxidase is present in brain of Alzheimer disease patients. Neurobiol. Aging. 21:455-462. McLean C.A., Cherny R.A., Fraser F.W., Fuller S.J., Smith M.J., Beyreuther K., Bush A.I. and Masters C.L. (1999) Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46:860-866. Meyer M., Schreck R. and Baeuerle P.A. (1993) H2O2 and antioxidants have opposite effects on activation of NFkB and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor. EMBO J. 12:2005-2015. Meyer-Luehmann M., Spires-Jones T. L., Prada C., Garcia-Alloza M., de Calignon A., Rozkalne A., Koenigsknecht-Talboo J., Holtzman D. M., Bacskai B. J. and Hyman B.T. (2008) Rapid appearance and local toxicity of amyloid-beta plaques in a mouse model of Alzheimer''s disease. Nature. 451:720-724. Michiels C., Minet E., Mottet D. and Raes M. (2002) Regulation of gene expression by oxygen: NF-kappaB and HIF-1, two extremes. Free Rad. Biol. Med. 33:1231-1242. Nagy Z., Esiri M.M., LeGris M. and Matthews P.M. (1999) Mitochondrial enzyme expression in the hippocampus in relation to Alzheimer-type pathology. Acta Neuropathol. 97:346-354. Nassif M., Hoppe J., Santin K., Frozza R., Zamin L. L., Sima˜o F., Horn A.P. and Salbego C. (2007) β-Amyloid peptide toxicity in organotypic hippocampal slice culture involves Akt/PKB, GSK-3β, and PTEN. Neurochem. Int. 50:229-235. Nicotra A., Lupo G., Giurdanella G., Anfuso C. D., Ragusa N., Tirolo C., Marchetti B. and Alberghina M. (2005) MAPKs mediate the activation of cytosolic phospholipase A2 by amyloid β(25–35) peptide in bovine retina pericytes. Biochim. Biophys. Acta.1733:172-186. Nunomura A., Perry G., Aliev G., Hirai K., Takeda A., Balraj E.K., Jones P.K., Ghanbari H., Wataya T., Shimohama S., Chiba S., Atwood C.S., Petersen R.B. and Smith M.A. (2001) Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60:759-767. Nunomura A., Perry G., Pappolla M.A., Wade R., Hirai K., Chiba S. and Smith M.A. (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci. 19:1959-1964. Opazo C., Huang X., Cherny R.A., Moir R.D., Roher A.E., White A.R., Cappai R., Masters C.L., Tanzi R.E.,Inestrosa N.C. and Bush A.I. (2002) Metalloenzyme-like activity of Alzheimer’s disease beta-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2. J. Biol. Chem. 277:40302-40308. Pan G. (ed) (1981) Physical Chemistry, Chung-Cheng Book Company, Taipei . Pardridge W.M. (2007) Blood–brain barrier delivery. Drug Discov.Today. 12:54-61. Parker W.D., Jr., Mahr N.J., Filley C.M., Parks J.K., Hughes D., Young D.A. and Cullum C.M.(1994) Reduced platelet cytochrome c oxidase activity in Alzheimer’s disease. Neurology. 44:1086-1090. Patrick G.N., Zukerberg L., Nikolic M., de la Monte S., Dikkes P. and Tsai L.H. (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature. 402:615-622. Perry G., Nunomura A., Hirai K., Zhu X., Perez M., Avila J., Castellani R.J., Atwood C.S., Aliev G., Sayre L.M., Takeda A. and Smith M.A. (2002) Is oxidative damage the fundamental pathogenic mechanism of Alzheimer’s and other neurodegenerative diseases? Free Rad. Biol. Med. 33:1475-1479. Perry G., Taddeo M.A., Petersen R.B., Castellani R.J., Harris P.L., Siedlak S.L., Cash A.D., Liu Q., Nunomura A., Atwood C.S. and Smith M.A. (2003) Adventiously-bound redox active iron and copper are at the center of oxidative damage in Alzheimer disease. Biometals. 16:77-81. Pinero D.J., Hu J. and Connor J.R.(2000) Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer’s diseased brains. Cell Mol. Biol. 46:761-776. Puglielli L., Tanzi R. E. and Kovacs D.M. (2003) Alzheimer''s disease: the cholesterol connection. Nat. Neurosci. 6: 345-351. Qi X.L., Xiu J., Shan K.R., Xiao Y., Gu R., Liu R.Y. and Guan Z.Z. (2005) Oxidative stress induced by beta-amyloid peptide (1–42) is involved in the altered composition of cellular membrane lipids and the decreased expres-sion of nicotinic receptors in human SH-SY5Y neuroblastoma cells. Neurochem. Int. 46:613-621. Rissman R.A., Poon W.W., Blurton-Jones M., Oddo S., Torp R., Vitek M.P., LaFerla F.M., Rohn T.T. and Cotman C.W. (2004) Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. J. Clin. Invest. 114:121-130. Roberson E.D. and Mucke L. (2006) 100 years and counting: prospects for defeating Alzheimer''s disease. Science. 314:781-784. Rohn1 T.T. and Head E. ( 2009) Caspases as Therapeutic Targets in Alzheimer’s Disease: Is It Time to “Cut” to the Chase? Int. J. Clin. Exp. Pathol. 2:108-118. Rosenblum W.I. (2002) Structure and location of amyloid beta peptide chains and arrays in Alzheimer''s disease: new findings require reevaluation of the amyloid hypothesis and of tests of the hypothesis. Neurobiol. Aging. 23:225-230. Rosenstock T.R., Carvalho A.C., Jurkiewicz A., Frussa-Filho R. and Smaili S.S. (2004) Mitochondrial calcium, oxidative stress and apoptosis in a neurodegenerative disease model induced by 3-nitropropionic acid, J. Neurochem. 88:1220-1228. Santos-Neto L.L.d., Vilhena Toledo M.A. d., Medeiros-Souza P. and Souza G.A. (2006) The Use of Herbal Medicine in Alzheimer''s Disease—A Systematic Review. eCAM. 3:441-445. Sayre L.M., Perry G., Harris P.L., Liu Y., Schubert K.A. and Smith M.A. (2000) In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J. Neurochem. 74:270-279. Schreck R., Albermann K. and Baeuerle P.A. ( 1992) Nuclear factor kB: an oxidative stress-responsive transcription factor of eukaryotic cells. Free Rad. Res. Commun. 17:221-237. Selkoe D.J. (2001) Alzheimer''s disease: genes, proteins, and therapy. Physiol. Rev. 81: 741-766. Selkoe D.J. (2002) Alzheimer’s disease is a synaptic failure. Science. 298: 789-791. Selkoe D.J. (2004) Alzheimer disease: mechanistic understanding predicts novel therapies. Ann. Intern. Med. 140: 627-638. Selkoe D.J. (2008) Soluble oligomers of the amyloid beta-protein impair synaptic plasticity and behavior. Behav. Brain Res. 192:106-113. Sen C.K. and Packer L. (1996) Antioxidant and redox regulation of gene transcription. FASEB J. 10:709 -720. Shankar G.M., Bloodgood B.L., Townsend M., Walsh D.M., Selkoe D.J. and Sabatini B.L. (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci. 27:2866-2875. Shen Y., He P., Zhong Z., Mcallister C. and Lindholm K. (2006) Distinct destructive signal pathways of neuronal death in Alzheimer’s disease. Trends Mol. Med. 12:574-579. Shivers B.D., Hilbich C., Multhaup G., Salbaum M., Beyreuther K. and Seeburg P.H. (1988) Alzheimer’s disease amyloidogenic glycoprotein: expression pattern in rat brain suggests a role in cell contact. EMBO J. 7:1365-1370. Smith M.A., Harris P.L., Sayre L.M. and Perry G. (1997) Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc. Natl. Acad. Sci. USA. 94:9866-9868. Smith M.A., Sayre L.M., Anderson V.E., Harris P.L., Beal M.F., Kowall N. and Perry G. (1998) Cytochemical demonstration of oxidative damage in Alzheimer disease by immunochemical enhancement of the carbonyl reaction with 2,4-dinitrophenylhydrazine. J. Histochem. Cytochem. 46:731-735. Smith M.A., Wehr K., Harris P.L., Siedlak S.L., Connor J.R. and Perry G. (1998) Abnormal localization of iron regulatory protein in Alzheimer’s disease. Brain Res. 788:232-236. Snyder E.M., Nong Y., Almeida C.G., Paul S., Moran T., Choi E.Y., Nairn A.C.,Salter M.W., Lombroso P.J., Gouras G.K. and Greengard P. (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat. Neurosci. 8:1051-1058. Song Y. S., Park H. J., Kim S. Y., Lee S. H., Yoo H. S., Lee H. S., Lee M. K., Oh K. W., Kang S.K., Lee S. E. and Hong J.T. (2004) Protective role of Bcl-2 on beta-amyloid-induced cell death of differentiated PC12 cells: reduction of NF-kappaB and p38 MAP kinase activation, Neurosci. Res. 49:69-80. Stern E.A., Bacskai B.J., Hickey G.A., Attenello F.J., Lombardo J.A. and Hyman B.T. (2004) Cortical synaptic integration in vivo is disrupted by amyloid-β plaques. J. Neurosci. 24:4535-4540. Tabner B.J., Turnbull S., El-Agnaf O.M. and Allsop D.(2002) Formation of hydrogen peroxide and hydroxyl radicals from (Abeta) and alpha-synuclein as a possible mechanism of cell death in Alzheimer’s disease and Parkinson’s disease. Free Rad. Biol. Med. 32:1076-1083. Terry R.D. (1996) The pathogenesis of Alzheimer disease: an alternative to the amyloid hypothesis. J. Neuropathol. Exp. Neurol. 55:1023-1025. Tsai S.H., Lin-Shiau S.Y. and Lin J.K. (1999) Suppression of nitric oxide synthase and the downregulation of the activation of NFkB in macrophages by resveratrol. Br. J. Pharmacol. 126:673- 680. Tso M.O.M. and Lam T.T. (1996) Method of Retarding and Ameliorating Central Nervous System and Eye Damage. U.S. Patent #5527533 Vaisid T., Kosower N.S., Elkind E. and Barnoy S. (2008) Amyloid-peptide toxicity in differentiated PC12 cells: calpain-calpastatin, caspase, and membrane damage. J. Neurosci. Res. 86:2314-2325. Voet D. and Voet J.G. (eds), (2004) Biochemistry, Vol.1, 3rd ed. --Biomolecular Mechanisms of Enzyme Action, and Metabolism, John Wiley & Sons, Inc. N. Y., USA. Walsh D. M. and Selkoe D.J. (2007) Aβ oligomers: A decade of discovery. J. Neurochem. 101:1172-1184. Walsh D.M., Hartley D.M., Condron M.M., Selkoe D.J. and Teplow D.B. (2001) In vitro studies of amyloid beta-protein fibril assembly and toxicity provide clues to the aetiology of Flemish variant (Ala692–>Gly) Alzheimer’s disease. Biochem. J. 355:869-877. Walsh D.M., Klyubin I., Fadeeva J.V., Cullen W.K., Anwyl R., Wolfe M.S., Rowan M.J. and Selkoe D.J. (2002) Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature. 416:535-539. Walsh D.M. and Selkoe D.J. (2004) Oligomers on the brain: the emerging role of soluble protein aggregates in neurodegeneration. Protein Pept. Lett. 11:213-228. Wolfe M.S. (2002) Therapeutic strategies for alzheimer’s disease. Nat. Rev. Drug Discov. 1:859-866. Xu J., Chen S., Ahmed S.H., Chen H., Ku G., Goldberg M.P. and Hsu C.Y. (2001) Amyloid-peptides are cytotoxic to oligodendrocytes. J. Neurosci. 21:RC118 (1-5). Yatin S. M., Varadarajan S., Link C. and Butterfield D.A. (1999) Neurobiol. Aging. 20:325-330. Yin H. and Kuret J. (2006) C-terminal truncation modulates both nucleation and extension phases of tau fibrillization. FEBS Lett. 580:211-215. Zhu X., Perry G., Moreira P.I., Aliev G., Cash A.D., Hirai K. and Smith V.A. (2006) Mitochondrial abnormalities and oxidative imbalance in Alzheimer disease. J. Alzheimers Dis. 9:147-153.
|