跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.62) 您好!臺灣時間:2025/11/18 08:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林政興
研究生(外文):Cheng-hsing Lin
論文名稱:四氟硼酸鋰在乙烯醇乙二醇共聚物的導電度研究
論文名稱(外文):Ionic conductivity of Poly(vinyl alcohol-co-ethylene glycol)/LiBF4
指導教授:林宗榮林宗榮引用關係
指導教授(外文):Tsung-Jung Lin
學位類別:碩士
校院名稱:義守大學
系所名稱:生物技術與化學工程研究所碩士班
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:75
中文關鍵詞:四氟硼酸鋰聚乙烯乙二醇共聚物
外文關鍵詞:Lithium tetrafluoroboratepoly(vinyl alcohol-co-ethylene glycol)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:578
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是以聚乙烯醇乙二醇(poly(vinyl alcohol-co-ethylene glycol, PVAEG)做為薄膜的主體,再藉由四氟硼酸鋰(Lithium tetrafluoroborate, LiBF4)的加入來與乙二醇中的氧原子做配位,形成導電的機制。在薄膜的分析上、以X光繞射儀、透光率跟顯微鏡的觀察作薄膜結構上的特性鑑定、以四點探針與介電分析儀來作物性上的測試。
從實驗結果中發現,X光繞射儀的繞射峰強度與透光率隨四氟硼酸鋰含量增加而下降,在顯微鏡中發現在ethylene glycol (EG) 與鋰離子莫耳比是6,四氟硼酸鋰有開始析出的現象發生,此外,從四點探針中隨四氟硼酸鋰含量增加,其導電度也隨之上升,在EG/Li莫耳比是8導電度最大,可達2.34×10-7 S/cm左右,超過此莫耳比後,在將四氟硼酸鋰含量提升,其導電度開始下降,從顯微鏡中我們知道聚乙烯醇乙二醇與四氟硼酸鋰在EG/Li莫耳比是6開始有析出的現象,此種聚集現象影響薄膜內部Li+的傳導。在介電分析儀中的離子導電圖中也出現跟四點探針相符合的趨勢。我們知道在EG/Li莫耳比是8的薄膜為最佳比例。
The ionic conductivity of poly(vinyl alcohol-co-ethylene glycol) (PVAEG) doped with lithium tetrafluoroborate (LiBF4) was studied. Experimental techniques such as X-ray diffraction (XRD) spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy and optical microscopy were employed to characterize the film structure, while techniques such as dielectric spectroscopy and four point probe were used to study the ionic conductivity. The intensity of XRD peak decreased with increasing LiBF4 content. The optical microscopy study revealed that LIBF4 began to precipitate when the EG/Li molar ratio was greater than 6. There was an optimal LiBF4 concentration, EG/Li = 8, at which the ionic conductivity reached the maximum value of 2.34×10-7 S/cm. With LiBF4 concentrations higher than EG/Li=8, ion aggregation was favored and the conductivity began to decrease thereafter. The ionic conduction behaviors investigated using the dielectric spectroscopy technique also gave a result similar to that given by the 4-point probe method.
中文摘要Ⅰ
英文摘要Ⅱ
致謝Ⅲ
目錄Ⅳ
表索引VI
圖索引VI
第一章 序論1
1.1 前言1
第二章 文獻回顧與實驗原理3
2.1 高分子電解質3
2.1.1 高分子電解質之分類3
2.1.2 固態高分子電解質4
2.1.3 液態高分子電解質7
2.1.4 改善固高分子電解質導電度之研究9
2.1.5 複合材料10
2.1.6 複合式高分子電解質11
2.2 聚乙烯醇的簡介12
2.3 聚乙二醇的介紹18
2.3.1 聚乙二醇與金屬離子錯合的原理19
2.4 高分子的介電性質20
2.4.1 電介質的極化與介電常數20
2.4.2 電介質的介電損耗25
第三章 實驗方法36
3.1 實驗藥品36
3.2 設備與器材36
3.3 實驗方法37
3.3.1 薄膜的製備方法38
3.3.2 多功能X光繞射儀的鑑定38
3.3.3 紫外線可見光譜儀(UV)的分析38
3.3.4 顯微鏡觀察39
3.3.5 四點探針39
3.3.6 介電分析儀(DEA)的分析40
第四章 結果與討論42
4.1 X光射線繞射儀(X-Ray)分析42
4.2 透光率測試45
4.3 顯微鏡的觀察47
4.4 四點探針49
4.5 介電分析儀(DEA)分析52
第五章 結論64
第六章 參考文獻65
表索引
Table 3.1 薄膜的種類配方37
Table 3.2 相關電學模數列表41
圖索引
Figure 2.1 Conduction behavior of Li-ion in the polymer chain4
Figure 2.2 Conductivity of various polymer electrilytrs7
Figure 2.3 PVA結構式12
Figure 2.4 聚乙烯醇(PVA)的醚化反應13
Figure 2.5 聚乙烯醇(PVA)與丙烯腈之反應13
Figure 2.6 聚乙烯醇(PVA)與丙烯醯胺之反應13
Figure 2.7 聚乙烯醇( PVA)之酯化反應14
Figure 2.8 聚乙烯醇( PVA)之縮醛化反應15
Figure 2.9 聚乙烯醇( PVA)分子間之縮醛化反應15
Figure 2.10 平行板電容器於電場作用下的電荷分佈圖 23
Figure 2.11 (a)施加電場前 (b)施加電場後偶極子內電荷分佈24
Figure 2.12 各種極化行為示意圖25
Figure 2.13 交變電場與向位極化間的(a)同步 (b)滯後 響應變化圖26
Figure 2.14 (a)真空電容器 (b)引入介質之電容器 電流與電壓相味圖29
Figure 2.15 Debye介電頻散圖31
Figure 2.16 半圓曲線的Cole-Cole Plot32
Figure 2.17 各頻率範圍區下的極化現象33
Figure 2.18 各頻率下(a)介電常數 (b)介電損耗 與溫度之關係圖34
Figure 2.19 各種鬆弛理論的Cole-Cole Plot35
Figure 3.1 薄膜置於陶瓷黃金電極板示意圖40
Figure 4.1.1 PVA與PVAEG X-ray圖譜的比較42
Figure 4.1.2 不同比例LiBF4 –PVAEG膜的X-ray圖譜44
Figure 4.2.1 不同比例LiBF4 –PVAEG薄膜的透光率比較46
Figure 4.3.1 不同比例LiBF4 –PVAEG薄膜在顯微鏡下的觀察48
Figure 4.4.1 不同比例的LiBF4- PVAEG薄膜下的Cole-Cole Plot50
Figure 4.4.2 不同比例的LiBF4-PVAEG薄膜的導電係數51
Figure 4.6.1 EGLi0薄膜在不同頻率下(A)介電常數(B)介電損耗對溫度作圖53
Figure 4.6.1 EGLi12薄膜在不同頻率下(C)介電常數(D)介電損耗對溫度作圖54
Figure 4.6.1 EGLi10薄膜在不同頻率下(E)介電常數(F)介電損耗對溫度作圖55
Figure 4.6.1 EGLi8薄膜在不同頻率下(G)介電常數(H)介電損耗對溫度作圖56
Figure 4.6.1 EGLi6薄膜在不同頻率下(I)介電常數(J )介電損耗對溫度作圖57
Figure 4.6.1 EGLi4薄膜在不同頻率下(K)介電常數(L)介電損耗對溫度作圖58
Figure 4.6.1 EGLi2薄膜在不同頻率下(M)介電常數(N)介電損耗對溫度作圖59
Figure 4.6.2 不同EGLi比例在303K下(A)介電常數(B)介電損耗對頻率作60
Figure 4.6.3 不同EGLi比例在303K下 的離子導電對頻率作圖61
Figure 4.6.4 EGLi8在各溫度下的離子導電對頻率作圖62
Figure 4.6.5 不同比例EGLi在各溫度下的導電度63
中文部份
[1]何曼君,陳維孝,高分子物理,復旦大學出版社(2000)
[2]黃彥文,“聚乙二醇系統製備銀奈米粒子之研究”,國立成功大學化學工程學系研究所,碩士論文(1999)
[3]黃堯堂,“聚乙烯醇/碳酸鈣 奈米材料的製備與特性” 國立成功大學化學研究所,碩士論文(2007)
[4]黃雅雯,“幾丁聚醣/聚乙醇/聚乙烯四氫吡咯酮摻合膜結構及性質研究”,國立台灣科技大學高分子工程研究所,碩士論文(2003)
[5]楊家諭 ; 鄭程鴻 ; 邱永城 ;「鋰離子二次電解質介紹」,工業材料 110期,85年2月.
[6]楊凱能,偶氮系梳狀側鏈液晶高分子的光變色性與介電行為研究,私立輔仁大學化學系,碩士論文 (2000)
[7]楊智仲,“直接甲醇燃料電池用質子交換膜的製備:聚乙烯醇的磺酸化與導電度研究”,義守大學生物技術與化學工程研究所,碩士論文(2005)
[8]賴曉芬,“硫酸化軟骨素-丙烯酸甲酯與聚乙二醇-二丙烯酸酯共聚物水膠的製備及分析”,高雄醫藥大學醫藥暨應用化學研究所,碩士論文(2006)
[9]謝文瑜,“聚乙烯醇(PVA)其複合材料應用之研究” 國立虎尾科技大學光電與材料科技研究所,碩士論文(2007)
英文部份
[1]Armand M. B., Chabagno J. M., “Microscopic investigation of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts”, Solid State Ionics, 11, 91, 1983.
[2]Armstrong, R. D., “The electrochemical behavior of lithium iodine monohydrate and lithium bromide monohydrate”, Solid State Ionics, 5, 397, 1981.
[3]Baochen Wang, Li Feng., and Xinsheng Peng, “The impedance study of modified PEO polymer electrolyte”, Solid State Ionics 48, 203 , 1991.
[4]Binod K., Lawarence G. S.,“Polymer-ceramic composite electrolytes”, J. Power Sources 52, 261-268. 1994.
[5]Blonsky P. M., Shriver D. F., Austin P., Allcock H. R.,“Polyphosphazene solid electrolytes”, J. Am. Chem. Soc., 106,6854, 1984.
[6]Croce F., Scrosati B., “Interfacial Phenomena in Polymer Electrolyte Cells: Lithium Passivation and Cycleability”, J. power sources., 43, 9, 1993.
[7]D. E., Parker J. M., Wright,P. V. “Complexes of alkali metal ions with poly(ethylene oxide)", Polymer, 14, 589, 1973
[8]Ding L. M., Shi U. J., Yang C. Z., Synth. Met. 87(2)(1997)157.
[9]F. Muller-plathe, W. F. van Gunsteren, “Computer sim polymer electrolyte: Lithium iodide in amorphous poly(ethylene oxide)” J. Chem. Phys., 103, 4745, 1995.
[10]Hamaide T., Deore C. L., “Cationic conductivity and relaxation processes in solid polymer electrolytes with lithium perfluoroalkyl sulfonate or sulfonato e nd-capped poly(ethylene oxide) ” Polymer, 34, 5, 1038 ,1993.
[11]Hema M. , Selvasekarapandian S. , Arunkumar D., Sakunthala A. , Nithya H. “FTIR,XRD and ac impedance spectroscopic study on PVA based polymer electrolyte doped with NH4(X=Cl. Br, I)”,Journal of Non-Crystalline Solids 335 (2009) 84-90.
[12]Hermann P. P., Wildmann D., IEEE, J. Quantum Electron,
[13]Ji K. S., Moon H. S., Kim J. W., Kwang J. W., Park J. W., “Roleof functional nano-sized inorganic fillers in poly(ethylene) oxide-based polymer electrolytes”, J. Power Sources, 5441, 1,2003.
[14]Karan N.K. , Pradhan D.K. , ThomaR. s , Natesan B. ,KatiyarR.S “Solid polymer electrolytes bases on polyethylene oxide and lithium trifluoro- methane sulfonate (PEO-LiCF3SO3):Ionic conductivity and dielectric relaxation”,Solid State Ionics 179(2008)689-696.
[15]La Serra E. R., Charbouillot Y., Baudry P., Aegerter M. A., “Preparation and characterization of thin films of TiO2---PbO and TiO2---Bi2O3 compositions”,J. Non-Cryst Solids, 121, 323, 1990.
[16]Linford R. G., “Application of Electroactive”, Polymer, Scrosati, B.: Chapman & Hall, London, pp1-28, 1993.
[17]Lisong H., Sakka S., “Preparation and spectroscopic studies of alkoxide-derived V2O5---GeO2 sols and coatings”, J. Non-Crys Solids, 112,424. 1989.
[18]Matoba Y., Ikeda Y., Kohjiya S., “Ionic conductivity and mechanical properties of polymer networks prepared from high molecular weight branched poly(oxylethylene)s”, Solid State Ionics 147, 403, 2002.
[19]Murata K,Iznchi S., ” An overview of the research and development of solid polymer electrolyte batteries” ,Electrochim. Acta 45,1501,2000.
[20]Nafshun R. L., Lerner M. M., Hamel N. N., Nixon P. G., Gard G. L., “Ion Conductivity and Scanning Calorimetry of Poly(ethylene oxide) Complexes of the Plasticizing Salt LiSO3CF2SF5”, J. Electrochem. Soc., 142, L153, 1995.
[21]Okuyama K., “Electrical conduction in solid polymer electrolytes: t emperature dependence mechanism”, Microelectronics Journal 31 (2000)
[22]Persi L., Croce F., Scrosati B., Plichta E., Hendrickson M. A.,“Poly(ethylene oxide)-Based, Nanocomposite Electrolytes as Improved Separators for Rechargeable Lithium Polymer Batteries The Li/LiMn3O6 Case”, J. Electrochem. Soc. 149, 212, 2002.
[23]Quartarone E., Mustarelli P., Magistris A., “PEO-based composite polymer electrolytes”, Solid State Ionics, , 10, 1. 1998.
[24]Robitaille, C. D., Fauteux, D., “Phase diagrams and conductivity characterization of some PEO-LiX electrolytes”, J. Electrochem. Soc., 133, 315, 1986.
[25]Shriver D. F., Ratner M. A., Chem. Rev., 245, 4, 1988.1998.
[26]Stamm Ch., Lukosz W., Sensors and Actuators B: Chem., 11, 177, 1993.
[27]Weston, J. E., Steele, B. C., “Thermal history relationship in lithium salt-poly (ethylene oxide) complex polymer electrolytes", Solid State Ionics, 2, 347, 1981.
[28]William D. Callister, JR., Materials science and engineering an introduction,WILEY, 5th Edition.
[29]Xu Meizhen, Eyring Edward M., Petrucci Sergio, “Anion salvation effects in polymer-electrolytes: NaSCN and LiSCN in PEO-400 and in PEG-400”, Solid State Ionics, 83, 293 , 1996.12.
[30]Xue R., Huang H., Menetrier M., Chen L., “Impedance study for the interface and whole battery with PAN-based polymer electrolyte”, J. Power Sources, 44, 431, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top