跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 20:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:涂家斌
論文名稱:利用緊束縛理論研究光子晶體波導之耦合行為與多工分波器設計
論文名稱(外文):Tight-Binding Theory for Coupling of Identical Photonic Crystal Waveguides and its application for Wavelength-Division Multiplexing design
指導教授:謝文峰謝文峰引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:英文
論文頁數:51
中文關鍵詞:光子晶體耦合分波多工器
外文關鍵詞:photonic crystalcouplerWDMresonant ring
相關次數:
  • 被引用被引用:1
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:1
利用固態物理中的能帶緊束縛(Tight-binding)理論,可以正確地描述一個光子晶體波導的傳輸行為。利用此理論得到的光子晶體波導的色散關係方程式,可以進一步去描述兩條耦合光子晶體波導的傳輸行為和色散關係方程,並正確地計算其耦合長度(coupling length),進而用以設計光通訊元件。
當兩個相同的光子晶體波導彼此靠得很近時,其能帶便會由於波導之間的耦合效應,而分裂為偶對稱與奇對稱的本徵模。由於耦合光子晶體波導與普通耦合光波導不同,除了橫向之耦合效應外,並具有縱向(傳播方向)之耦合,導致此兩種模態會發生能帶交叉的現象。因此,我們可以利用緊束縛理論所推導出來的色散關係方程式找到正確非耦合頻率(decoupled frequency)。利用此耦合波導的特殊特性,我們用“時域有限差分法(FDTD)"之數值模擬,完成了多工分波器(WDM)元件的設計。本論文中,我們可以將三道不同波長的光分開,且均達到光通訊的標準。
By using tight-binding theory of solid-state physics, we can analytically describe the dispersion relation of the propagation in a photonic crystal waveguide (PCW). In turn, we can derive the dispersion curves of two coupled identical PCWs .
Due to not only the transverse coupling as the conventional coupled waveguides but also the longitudinal coupling of two coupled identical PCWs. “Band-crossing” may occur at which the PCWs will not couple with each other (or decoupled) when the coupled PCWs are placed close enough to each other. By employing the tight-binding theory to this problem, we can accurately determine the decoupling frequency as well as calculate the coupling length for every frequency. We have designed a wavelength division multiplexer which can route three wavelengths into different channels with the power ratio of all outputs reach 20 dB, the specification of optical communication.
[1] J.D. Joannopoulos, R. D. Meade and J. N. Winn, Photonic Crystals─Molding the of Light (1995) [2] T. F. Krauss, and R. M. De La Rue, Prog. Quantum Electron. 23, 51-96 (1999) [3] E. Yablonovitch, Phys. Rev. Lett. 58, 2059-2062 (1987) [4] S. John, Phys. Rev. Lett. 58, 2486-2488 (1987) [5] A. Sharkawy, S. Shi, and D. W. Parther, Opt. Express 10, 1048-1059 (2002) [6] M. Soljačić, S. G. Johnson, S. Fan, M. Ibannescu, E. Ippen, and J. D. Joannopoulos, Opt. Lett. 19, 2052-2059 (2002) [7] S. Noda, M. Yokoyama, M. Imada, A. Chutinan, M. Mochizuki, Science 293 1123 (2001) [8] T. Baba, T. Matsuzaki, Japan. J. Appl. Phys. 35 (1996) [9] M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bha, E. Yablonovitch, Appl. Phys. Lett. 75, 1036 (1999) [10] S. Y. Lin, J. G. Fleming, M. M. Sigalas, R. Biswas, Ho KM, Phys. Rev. B 59, 15579 (1999) [11] J. Sharee, McNab, Nikolaj Moll, and Yurii A. Vlasov, Opt. Express 11, 2927-2939 (2003) [12] Kartik Srinivasan, Oskar Painter, Opt. Express 10, 670-684 (2002) [13] Tomoyuki Yoshie, Jelena Vučković, Axel Scherer, H. Chen, Dennis Deppe, Appl. Phys. Lett. 79, 4289-4291 (2001) [14] Thomas F. Krauss, Phys. Stat. Sol. 197, 688-702 (2003)
[15] R. D. Meade, A. Devenyi, J. D. Joannopoulos, O. L. Alerhand, D. A. Smith, K. Kash, J. Appl. Phys. 75, 4753-4755 (1994) [16] S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, Phys. Rev. B 62, 8212-8222 (2000) [17] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokahame, Phys. Rev. Lett., v.87, pp253902, (2001) [18] Koshiba, J. Lightwave Technol. 19, 1970 (2001) [19] Tokushima and H. Yamada, Electron. Lett. 37, 1454 (2001) [20] Boscolo, M. Midrio, and C. G. Someda, IEEE J. Quantum Electron. 38, 47 (2002) [21] Martinez, F. Cuesta, and J. Marti, IEEE Photonics Technol. Lett. 15, 694 (2003) [22] Qiu, M. Mulot, M. Swillo, S. Anand, B. Jaskorzynska, A. Karlsson, M. Kamp, A. Forchel, Appl. Phys. Lett. 83, 5121 (2003) [23] D. L. Lee, Electromagnetic Properties of Integrated Optics. (New York, Wiley, 1986) [24] A. W. Snyder and J. D. Love, Optical Waveguide Theory. (London, U. K. : Chapman & Hall, 1995) [25] Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall, and D. Nedel- jkovic, IEEE J. Quantum Electron. 38, 1349 (2002). [26] T. Søndergaard and K. H. Dridi, Phys. Rev. B 61, 688-696, 2000 [27] V. N. Astratov, R. M. Stevenson, I. S. Culshaw, D. M. Whittaker, M. S. Skolnick, T. F. Krauss, and R. M. De La Rue, Appl. Phys. Lett. 77, 178-180 (2000) [28] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, Phys. Rev. Lett. 87, 253902-1 (2001) [29] Dennis M. Sullivan, Electromagnetic Simulation Using the FDTD Method, (2000) [30] K. Yee, IEEE Transactions on Antennas and Propagation AP-14, 302-307 (1966) [31] E. P. Cunningham, Digital Filtering: An Introduction, 1992 [32] A. V. Oppenheim and R. W. Schafer, Digital signal Processing, 1975 [33] C. Kittel, Introduction to Solid State Physics, 1996 [34] S. Kuchinsky, V. Y. Golyatin, A. Y. Kutikov, T. P. Pearsall and D. Nedeljkovic, IEEE J. Quantum. Electron. 38, 1349-1352 (2002) [35] S. Boscolo, M. Midrio, C. G. Someda, IEEE J. Quantum Electron. 38, 47-53 (2002). [36] F. S.-S. Chien, Y.-J. Hsu, W.-F. Hsieh, and S.-C. Cheng, Opt. Express 12, 1119-1125 (2004). [37] T. Koponen, A. Huttunen, and P. Törmä, J. Appl. Phys. 96, 4039-4041 (2004) [38] S. G. Johnson, and J. D. Joannopoulos, Opt. Express 8, 173-190 (2001) [39] A. Yariv, Y. Xu, R. K. Lee, and A. Scherer, Opt. Lett. 24, 711-713 (1999) [40] M. Bayindir, B. Temelkuran, and E. Ozbay, Phys. Rev. Lett. 84, 2140-2143 (2000) [41] S. F. Mingaleev, Y. S. Kishar, J. Opt. Soc. Am. B 19, 2241-2249 (2002)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top