跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/10 05:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許庭瑋
研究生(外文):Ting-Wei Hsu
論文名稱:GLONASS衛星軌道演算及其定位方法
論文名稱(外文):GLONASS Orbit Determination and Positioning Method
指導教授:張帆人王立昇
指導教授(外文):Fan-Ren ChangLi-Sheng Wang
口試委員:王伯群卓大靖王和盛
口試日期:2013-07-24
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電機工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:90
中文關鍵詞:GLONASS衛星軌道模型龍格-庫塔數值積分法偽距觀測量定位法電離層模型修正法高度限制條件式
外文關鍵詞:GLONASS Orbit ModelRunge-Kutta MethodPseudorange MeasurementKlobuchar ModelAltitude-Hold Constraint
相關次數:
  • 被引用被引用:2
  • 點閱點閱:510
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
全球導航衛星系統(Global Navigation Satellites System; GNSS)乃泛指所有以衛星為基礎之導航系統。目前發展較為成熟之導航衛星系統包括美國的GPS(Global Positioning System)以及俄羅斯的GLONASS(Global Navigation Satellites System)。
隨著科技的演進,不同領域的應用對於導航與定位之精度需求越加精細。提升定位精度最直接之方法即為提升可視衛星數目,而整合GPS 及GLONASS 可達此目的。由於GPS 及GLONASS 兩系統不可完全兼容,在整合前需對各別系統有相當程度之了解。因此,吾人對GLONASS 進行研究,嘗試運用該系統作定位,並觀察其結果。
在本文中,吾人從能量之觀點推導GLONASS 衛星軌道模型,找出衛星運動方程式,並將該系統之廣播星曆代入求解,藉龍格-庫塔數值積分法取得準確之衛星位置。其後,利用衛星位置與偽距於偽距觀測量定位法進行定位。偽距觀測量定位法中,需修正電離層延遲誤差,才能使定位精度提高,而GLONASS 並無廣播電離層模型之參數予以修正誤差,故吾人將GPS 廣播之電離層模型參數應用於GLONASS 定位之上。最後,引入高度限制條件式於定位方程中,而定位精度與穩定度均有相當改善。
本文除顯示運用GLONASS 定位之結果外,也詳細描述整個定位過程。從接收到廣播星曆開始直至定位完成,期間計算所需注意之部分皆於本文當中。此舉將便於未來相關應用。

In general, GNSS (Global Navigation Satellites System) is described as the satellites-based navigation system. Presently, the available systems include GPS (Global
Positioning system) of United States and GLONASS (Global Navigation Satellites System) of Russia.
With more available satellites, the accuracy of positioning could become more precise, and the combination of GPS and GLONASS could easily reach it. Although GPS and GLONASS are similar to each other, the both systems are not entirely compatible. Before combining these two systems, it is important to be familiar with each system in great details. Therefore, we made a study of GLONASS and attempted to specify the position by means of only GLONASS.
In this paper, we determine the satellite position through GLONASS ephemeris by using Runge-Kutta Method, and then obtain the receiver position with pseudorange measurement. To correct ionosphere delays on GLONASS satellites, we applied Klobuchar Model with little modification. Afterward, we also applied altitude-hold
constraint to positioning equations, and consequently, the results of positioning point have become more precise and stable.
It shall be noted that we not only demonstrated the results but also elaborated on the whole process of positioning. This will benefit the future studies and some relative applications.

目 錄
誌謝 ................................................. i
摘要 ................................................. ii
Abstract ............................................ iii
目錄 ................................................. iv
圖目錄 ................................................ vi
表目錄 ................................................ ix
第一章 緒論 ............................................ 1
1.1 研究動機 ........................................... 1
1.2 研究方向 ........................................... 2
1.3 論文架構 ........................................... 3
第二章 GLONASS全球導航衛星系統概述 ........................ 5
2.1 系統架構與衛星種類 ................................... 5
2.1.1 太空部分 ......................................... 6
2.1.2 地面控制部分 ...................................... 6
2.1.3 使用者部分 ....................................... 7
2.1.4 衛星種類 ......................................... 8
2.2 衛星訊號與導航訊息 ................................... 9
2.2.1 載波頻率之分配 .................................... 10
2.2.2 虛擬隨機測距碼 .................................... 10
2.2.3 導航訊息之產生 .................................... 12
2.2.4 導航訊息內容 ...................................... 15
2.2.5 導航訊息架構 ...................................... 19
2.3 座標系統與時間系統 ................................... 22
2.3.1 座標系統類別 ...................................... 23
2.3.2 PZ-90.02 座標系統 ................................ 24
2.3.3 UTC(SU)時間系統 .................................. 25
第三章 GLONASS衛星軌道模型 ............................... 27
3.1 衛星軌道方程式之推導 ................................. 27
3.2 數值積分法 ......................................... 33
3.3 演算之結果 ......................................... 36
3.3.1 與網站數據相較之誤差分 ............................. 36
3.3.2 與接收機相較之誤差分析 ............................. 39
第四章 GLONASS定位原理與方法 ............................. 43
4.1 定位基本原理 ....................................... 43
4.2 單機定位與偽距觀測量 ................................. 44
4.3 電離層延遲誤差 ...................................... 50
4.3.1 訊號傳遞之特性與概念 ............................... 50
4.3.2 電離層模型修正法 ................................... 53
4.3.3 雙頻觀測量修正法 ................................... 56
4.4 高度限制條件式 ...................................... 57
第五章 實驗結果與分析 .................................... 63
5.1 實驗設備簡介 ........................................ 63
5.2 實驗方法介紹 ........................................ 63
5.3 單機靜態定位實驗結果 ................................. 66
第六章 結論與未來展望 .................................... 87
6.1 結論 .............................................. 87
6.2 未來展望 ........................................... 87
參考文獻 ............................................... 89

[1] Information-Analytical Centre: http://www.glonass-center.ru/en/index.php
[2] Global satellite Navigation System GLONASS – Interface Control Document, 5.1th ed. Russian Institute of Space Devise Engineering, Russia, Moscow, 2008.
[3] Joint Stock Company “Russian Space Systems”: http://www.spacecorp.ru/en/
[4] 蔡宜學,GPS/GLONASS 整合式之導航系統,碩士論文,國立臺灣大學電機
工程研究所,中華民國89 年6 月
[5] P. Misra and P. Enge, GLOBAL POSITIONING SYSTEM: Signals, Measurements, and Performance, 2nd ed. Ganga-Jamuna Press, 2001.
[6] 黃子銘,GPS 衛星軌道預測方法之研究,碩士論文,國立臺灣大學應用力學研
究所,中華民國100 年7 月
[7] T. Soler and L. D. Hothem, “Coordinate Systems Used in Geodesy: Basic Definitions and Concepts,” Journal of Surveying Engineering, 114(2):84–97, 1988.
[8] V. V. Mitrikas, S. G. Revnivykh, and E. V. Bykhanov, “WGS84/PZ-90 Transformation Parameters Determination Based on Laser and Ephemeris Long-Term GLONASS Orbital Data Processing,” In Proceedings of ION Satellite Division GPS-98 International Technical Meeting, pages 1625–1635, Nashville,
Tennessee,1998.
[9] U. Rosbach, “Positioning and Navigation Using the Russian Satellite System GLONASS,” Geodesy and Geoinformation Course, University of Munich, Germany, 2000.
[10] W. Heiskanen and H. Moritz, Physical Geodesy. W H Freeman, San Francisco, 1967.
[11] R. L. Burden and J. D. Faires, Numerical Analysis, 8th ed. Thomson Brooks /Cole Publishing Co., 2005.
[12] International GNSS Service: http://igscb.jpl.nasa.gov/
[13] OEM6TM Family Firmware Reference Manual, Rev 3, NovAtel Inc., Jul. 2012.
[14] ICD-GPS, GPS Interface Control Document (ICD-GPS-200), ARINC Research Corporation, 1991.
[15] T. H. Chang, L. S. Wang and F. R. Chang, “A Solution to the Ill-conditioned GPS Positioning Problem in Urban Environment,” IEEE Transactions on Intelligent Transportation Systems. Vol. 10, No. 1, pp. 135-145, Mar. 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top