跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/25 17:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂高森
研究生(外文):Kao-Sen Lu
論文名稱:結合衛星微波及紅外線資料估算即時定量降水
論文名稱(外文):Combining satellite microwave and infrared data to estimate the instantaneous quantitative precipitation
指導教授:陳萬金陳萬金引用關係汪建良汪建良引用關係
指導教授(外文):Wann-Jin ChenJian-Liang Wang
學位類別:碩士
校院名稱:國防大學理工學院
系所名稱:大氣科學碩士班
學門:自然科學學門
學類:大氣科學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:72
中文關鍵詞:TRMMTMIAQUAAMSR-E微波紅外線降雨率
外文關鍵詞:TRMMTMIAQUAAMSR-EMTSAT-1Rmicrowaveinfraredrain rate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
為減輕豪雨造成的災害,準確的定量降雨估算與後續之預報顯得相當重要。氣象衛星廣大的觀測範圍,可提供足夠的資料對降雨量進行深入研究與應用。台灣地區過去曾從事許多衛星資料反演降雨量的研究,但受限於衛星微波資料時間解析度不足,未具有即時性,以及紅外線資料所觀測之亮度溫度為雲頂特徵和降雨量較無直接關係,未具有足夠的準確性,因此限制了這些研究成果的用途。
本研究結合衛星微波穿透雲層直接觀測降雨及紅外線高觀測頻率的優點,將 TRMM 衛星之 TMI 微波資料及 AQUA 衛星之 AMSR-E 微波資料結合MTSAT-1R 衛星的紅外線資料,建立微波資料反演之降雨強度與紅外線觀測之亮度溫度值兩者的關係式。以每 30 分鐘一筆的紅外線亮度溫度觀測值,利用關係式估算即時降雨量。估算之降雨量,使用日本小島測站地面雨量觀測資料及TRMM 衛星之 PR 降雨雷達估算值,進行比較分析。
研究結果顯示,上述方法在定性上,可成功反演出強降水區域之螺旋雲雨帶、外圍之弱降水區域,及颱風眼之未降雨區域,但是普遍具有強降水區域低估,弱降水區域高估之現象。而在定量降水驗證分析上,與地面雨量觀測及 PR降雨雷達估算值之相關係數,最佳可達 0.79,但亦出現相關係數不到 0.1 的個案。這有可能是受到估算值時間內插、颱風降水特性、以及視場不均勻降水的影響。雖然,本研究所提供之方法,在定量降雨估算上,尚有待後續研究提昇其準確性,但已可提供約每 30 分鐘一筆降雨強度分布資料,達到即時估算降水之目的。
To reduce the damage and loss of lives and properties due to torrential rainfall, it is extremely important for governmental operation unit to provide accurate rainfall estimations for severe weather systems, especially Typhoon system. As the satellite observation system can provide a wide coverage of observation for severe systems, it is able to provide enough observations for rainfall study and application, especially in the open ocean areas. In previous studies on satellite rainfall retrieval, it is found that the microwave observation is quite limited in time, about one or two observations during a day for a single satellite, and that the satellite infrared data are not able to provide accurate rainfall estimation due to its poor information on the rain particles embedded in the severe weather systems.
This research is aimed to overcome disadvantages mentioned above to conceive an idea for combining the microwave and infrared data together for improving the accuracy of satellite rainfall and a real time satellite rainfall map. This purpose is fulfilled by collocating the same spatial and temporal TMI-derived rainfall rate or AMSR-E-derived rainfall rate and MTSAT-1R brightness temperature and establishing their relationship using probability matching method. The hourly real time MTSAT-1R rainfall map can be obtained immediately by the above relation. The satellite retrieval rainfall products are compared with other rainfall observation or product, including rain gauge and Precipitation Radar-derived rainfall map.
The results show that heavy rainfall areas within spiral rainbands, weak rainfall areas in the outer region, and rain-free eyes can be successfully retrieved qualitatively. However, rainfall is underestimated for heavy rainfall areas and overestimated for weak rainfall areas. In quantitative analyses, the best correlation coefficient between the retrieved rainfall and observations is about 0.79. For some cases, the lowest correlation coefficient is less than 0.1. This may be caused by time interpolation of rainfall estimation, characteristics of typhoon rainfall, and beam filling error. Although further studies are needed to improve the accuracy of rainfall estimation method developed in this study, timely rainfall estimation map can be provided about every 30 minutes.
目 錄
誌 謝 ii
摘 要 iii
ABSTRACT iv
目 錄 vi
表 目 錄 viii
圖 目 錄 ix
1. 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 研究目的 6
2. 資料蒐集 8
2.1 TRMM衛星的TMI資料 8
2.2 Aqua的 AMSR-E資料 9
2.3 TRMM衛星的VIRS資料 10
2.4 MTSAT-1R的紅外線資料 10
2.5 TRMM/PR降雨雷達資料 11
2.6 地面島嶼測站降雨資料 12
3. 基礎理論 17
3.1 降雨區域辨識法 17
3.1.1 TMI降雨區域辨識法 17
3.1.2 AMSR-E 降雨區域辨識法 18
3.2 降雨率演算法 19
3.2.1 TMI降雨率演算法 19
3.2.2 AMSR-E降雨率演算法 20
3.3 濾除卷雲的方法 20
3.4 去除視場不均勻(beam filling error) 21
3.5 Chris Kidd之累積直方圖匹配法 21
4. 研究方法與步驟 28
4.1 研究方法 28
4.1.1 CHM-1 28
4.1.2 CHM-2 29
4.2 進行步驟 31
4.2.1 CHM-1 31
4.2.2 CHM-2 32
5. 結果分析與討論 40
5.1 定性分析 40
5.2 定量分析 42
5.2.1 以PR降水雷達近地面降雨資料為真值 42
5.2.2 以日本南方島嶼測站累積降雨資料為真值 43
5.3 整體結果討論 43
6. 結論與展望 63
6.1 具體結果 63
6.2 未來展望 64
參考文獻 66
論文發表 71
自 傳 72
[1]曾忠一,大氣衛星遙測學,渤海堂文化事業公司,630頁,1988。
[2]Wilheit, T. T.,“Algorithm for the retrieval of rainfall from passive microwave measurements,”Remote Sens. Rev., Vol.11, pp.163-194,1994.
[3]Petty, G. W.,“The status of satellite-based rainfall estimation over land,”Remote Sens. Environ., Vol.51, pp.125-137,1995.
[4]Levizzani, V., Amorati, R., and Meneguzzo, F., : A review of Satellite-based rainfall estimation methods. European Commission Project MUSIC Report (EVK1-CT-2000-00058) , pp.66,2002.
[5]Kidd, C., Kniveton, D.R., Todd, M.C. and Bellerby, T.J.,“Satellite Rainfall Estimation Using a Combined Passive Microwave and Infrared Algorithm, ”Journal of Hydrometeorology, Vol.4, pp.1088-1104,2003.
[6]Barrett, E. C.,“The first WetNet precipitation intercomparison project (PIP-1):Interpretation of results,”Remote Sens. Rev., Vol.11, pp.303-373,1994.
[7]Smith, E. A., Lamm, J. E., Adler, R., Alishouse, J., Aonashi, K., Barrett, E., Bauer, P., Berg, W., Chang, A., Ferraro, R., Ferriday, J., Goodman, S., Grody, N., Kidd, C., Kniveton, D., Kummerow, C, Liu, G., Marzano, F., Mugnai, A., Olson, W., Petty, G., Shibata, A., Spencer, R., Wentz, F., Wilheit, T., and Zipser, E.,“Results of WetNet PIP-2 project,”J. Atmos. Sci., Vol.55, pp.1483-1536,1998.
[8]Adler, R. F., Kidd, C., Petty, G., Morissey, M., and Goodman, H. M.,“Intercomparison of global precipitation products:The third precipitation interconparison project (PIP-3) ,”Bull. Amer. Meteor. Soc., Vol.82, pp.1377-1396,2001.
[9]Goodberlet, M. A., Swift, C. T., and Wilkerson, J. C.,“Remote sensing of ocean surface winds with the SSM/I,”Journal of Geophysical Research, Vol. 94, No. C10, pp. 14547-14555,1989.
[10]Alishouse, J. C., Snyder, S. A., Vongsathorn, J., and Ferraro, R. R.,“Determination of oceanic total precipitable water from the SSM/I,”IEEE Trans. Geoscience and Remote Sensing, Vol. 28, No. 5, pp. 811-816,1990.
[11]Wentz, F .J.,“AMSR ocean algorithm,”EORC Bulletin/Technical report, U.S.A, pp. 8-28,2002.
[12]Kidd, C., Kniveton, D.R., Barrett, E.C.,“The advantages and disadvantages of statistically derived–empirically calibrated passive microwave algorithms for rainfall estimation,” Journal of the Atmospheric Sciences, Vol. 55, Issue 9, pp. 1576–1582,1998.
[13]Arkin, P. A., and Meisner, B.,“The relationship between large-scale convective rainfall and cold cloud over the Western Hemisphere during 1982 – 1984,” Mon. Wea Rev., Vol. 115, pp. 51-74, 1987.
[14]Ferraro, R. R., Weng, F., Grody,N. C., and Basist A.,“An eight-year (1987-1994) time series of rainfall, clouds, water vapor, snow cover, and sea ice derived from SSM/I measurements,”Bull. Amer. Meteor. Soc., Vol.77, pp.891-905,1996.
[15]Ferraro, R. R., and Marks, G. F.,“The development of SSM/I rain rate retrival algorithms using ground based radar measurements,” J. Atmos. Oceanic. Technol., Vol.12, pp.755-770, 1995.
[16]Todd, M. C., Kidd, C., Kniveton, D. R., and Bellerby, T. J., “A Combined Satellite Infrared and Passive Microwave Technique for Estimation of Small-Scale Rainfall,” J. Atmos. Oceanic Technol., Vol. 18, pp. 742-755, 2001.
[17]Adler, R. F., Negri, A. J., and Hakkarinen, I. M.,“Rain estimation from combining geosynchronous IR and low-orbit microwavedata,”Paleogeo. Paleoclim. Paleoeco. (Global Planet. Change Sec.), Vol.90, pp.87-92,1991.
[18]Joyce, R. J., Janowiak, J. E., Arkin, P. A., and Xie, P.,“CMORPH:a method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution,”J. Hydrom., Vol.5, pp.487-503,2004.
[19]胡仁基、陳萬金、汪建良、劉振榮,“結合TMI微波資料及MTSAT紅外線資料反演海上颱風降水”,大氣科學,第36期,第3號,第304-324頁,2008。
[20]Hollinger, J., Lo, R., Poe, G., Savage, R., and Pierce, J.,:Special Sensor Microwave/Imager User’s Guide. Naval Research Laboratory Washington, D.C., pp.120,1987.
[21]Chiu, L. S., North, G. R., Short, D. A., and McConnell, A.,“Rain estimation from satellites:effect of finite field of view,”J. Geophys. Res., Vol.95, pp.2177-2185,1990.
[22]Adler, R. F., Negri, A. J., Keehn, P. R., and Hakkarinen, I. M.,“Estimation of monthly rainfall over Japan and surrounding waters from a combination of low-orbit microwave and geosynchronous IR data,”J. Appl. Meteor., Vol.32, pp.335-356,1993.
[23]Ferraro, R. R.,“SSM/I derived global rainfall estimates for climatological applications,”J. Geophys. Res., Vol.102, pp.16715-16735,1997.
[24]Wilheit, T. T., Chang, A. T. C., and Chiu, L. S.,“Retrieval of monthly rainfall indices from microwave radiometric measurements using probability distribution functions,”J. Atmos. Oceanic. Technol., Vol.8, pp.118-136,1991.
[25]Janowiak, J. E.,“Tropical rainfall:a comparison of satellite-derived rainfall estimates with model precipitation forecasts, climatologies, and observations,” Mon. Wea. Rev., Vol.120, pp.448-462,1992.
[26]Grody, N. C.,“Classification of snow cover and precipitation using the Special Sensor Microwave Imager,”J. Geophys. Res., Vol.96, pp.7423-7435, 1991.
[27]Ferraro, R. R., Grody, N. C., and Marks, G. F.,“Effects of surface conditions on rain identification using the SSM/I,”Remote Sens. Rev., Vol.11, pp.195-209,1994.
[28]Kidder, S. Q. and Vonder Haar, T. H.,: Satellite Meteorology: An Introduction, Academic, San Diego, pp.331,1995.
[29]Wilheit, T., Kummerow, C., and Ferraro, R.,“Rainfall algorithms for AMSR-E,”IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, pp. 204-214,2003.
[30]蔡明達、陳萬金、汪建良,"利用降雨型態分類改進衛星陸上降雨估算的準確度",大氣科學,第36期,第1號,第1-19頁,2008。
[31]Chen, W. J., and Li, C. C., “Rain Retrievals Using Tropical Rainfall Measuring Mission and Geostationary Meteorological Satellite 5 Data Obtained during the SCSMEX,” Intl. J. Remote Sens., Vol. 23, pp. 2425-2448, 2002
[32]吳東洲,"利用AMSR-E衛星微波資料反演海上颱風定量降水之研究",碩士論文,國防大學中正理工學院應用物理研究所,第33-41頁,2008。
[33]陳萬金、胡仁基、劉振榮、張茂興,“利用TMI微波頻道反演海上颱風定量降水之研究”,大氣科學,第34期,第1號,第67-88頁,2006。
[34]Inoue, T.,“A Cloud Type Classification with NOAA-7 Split-window Measurements,”J.Geophys.Res.,Vol.92,pp.3991-4000,1987.
[35]Kurino, T.,“A Satllite Infrared Technique for Estimating“Deep/Shallow”Precipitation,”Adv. Space Res.,Vol.19 ,pp.511-514,1997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top