跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/08 09:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭冠良
研究生(外文):Kwan-Liang Kuo
論文名稱:以密閉式藻類毒性試驗方法評估一級炔丙基醇類之毒性
論文名稱(外文):The Study of Toxicity Assessment of Primary Propargylic Alcohols Using a Closed-System Algal Test and the Quantitative Structure-Activity Relationships
指導教授:陳重元
指導教授(外文):Chung-Yuan Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:123
中文關鍵詞:月芽藻QSAR一級炔丙基醇半致死濃度(EC50)
外文關鍵詞:Pesudokirchneriella subcapitataPrimary propargylic alcoholsQSARMedian effective concentration (EC50)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:301
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本篇研究係以月芽藻 (Pseudokirchneriella subcapitata)針對16種一級炔丙基醇類(包含Primary propargylic alcohols and Primary homopropargylic alcohols)進行48小時密閉式藻類毒性試驗。將實驗結果,利用△DO、Final yield及Growth rate做為反應後之觀測終點,採用Probit模式算出半致死濃度 (50% Effect concentration,EC50),由實驗結果結果顯示,炔基接於2的位置毒性較炔基接在3的位置高,再將求得毒性試驗以log(1/EC50)與logKOW進行回歸分析,扣除掉機制較為特殊的2-propyn-1-ol後得到以Final yield為反應終點之最佳回歸方程式(R2= 0.9)。針對低影響濃度進行敏感性之比較,(△DO、Final yield及Growth rate),為 NOEC 較 EC10能提供對水體生物更嚴謹的保護標準。而在本研究之三個反應終點當中對於一級炔丙基醇類類之敏感性最高者為細胞密度變化量,其次為溶氧產生量,而敏感性最差之反應終點為生長率。與其他水體物種進行敏感度比較可以發現以魚類敏感性最高、其次為月芽藻,敏感性最差者為纖毛蟲。
The objective of this study is to study the toxic effect of primary propargylic alcohols on Pseudokirchneriella subcapitata using a closed system test. The effects of primary propargylic acids were evaluated by three kinds of response endpoints, i.e., dissolved oxygen production, cell density and algal growth rate. Median effective concentratons (EC50s) were estimated using the Probit model with a test duration of 48hr. Primary propargylic alcohols with alkene on the second position exhibit higher toxicity than alkene on the third position. The quantitative structure-activity relationships (QSARs) were established based on the 1-octanol/water partition coefficient (logKow) and using log(1/EC50) , 2-propyn-1-ol was not included , revealed a good regression relationship (R2=0.9, based on final yield).
The results also reveal that the value of the lower effect concentration of the primary propargylic alcohols (cell density, algal growth rate, and the dissolved oxygen production). This demonstrates that the NOEC value can offer a better standard for protecting our aquatic environment than the EC10 value . Hence, comparing with other aquatic organismsthe acute toxicity data , The order of the relative sensitivity is then obtained as follows : Fathead minnows> P. subcapitata > Tetrahymena pyriformis.
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 5
1.3 研究方法與架構 6
第二章 文獻回顧 8
2.1 毒性物質-炔丙基醇類 8
2.1.1 炔丙基醇之物理特性 9
2.1.2 炔丙基醇類之應用 13
2.1.3 炔丙基醇之毒理特性 13
2.1.4 炔丙基醇類在環境中的分布及使用情況 17
2.1 藻類毒性試驗 19
2.2.1 試驗物種簡介 19
2.2.2 藻類計數方法 20
2.2.3 連續性藻類培養方式(Continuous culture technique) 22
2.2.4 藻類毒性試驗方式 23
2.2.5 試驗中的重要參數 26
2.2.6 密閉式試驗方法 30
2.2.7 密閉式BOD瓶藻類毒性試驗 32
2. 3 SOLVENT CONTROL 33
2. 4 QSAR的討論 36
2.4.1 QSAR介紹 36
2.4.2 QSAR在環境毒物學上的應用及分類 42
2.4.3 QSAR之分類 45
2.4.4 炔丙基醇類之QSAR 49
2.5 ACUTE AND CHRONIC RATIO ( ACR ) 51
第三章 基本理論 53
3.1 基本生長動力學 53
3.2 毒性試驗終點種類 55
3.3 毒性物質劑量反應模式 56
3.4 NOEC與CUT-OFF VALUE 59
3.4.1 判定NOEC和LOEC 59
3.4.2 平均中斷值(Cut-Off value) 60
第四章 實驗設備與方法 61
4.1 實驗設備及材料 61
4.2 實驗前準備 65
4.2.1 培養基質的配製 65
4.2.2 玻璃器皿清洗與滅菌 67
4.2.3 盤面光度之調整 67
4.2.4 藻類之培養步驟及裝置 68
4.2.5 ISOTON II之配製 70
4.2.6 電子顆粒計數器操作方式與原理 70
4.3 儀器操作原理、步驟與設定條件 72
4.3.1 TOC (總有機碳分析法) 72
4.3.2 COD-比色法 77
4.4 密閉式藻類毒性試驗方法及步驟 79
4.4.1 實驗方法 79
4.4.2 實驗步驟 79
4.5 實驗之品保及品管(QA/QC) 85
第五章 實驗結果與討論 87
5.1藻類毒性試驗數據 87
5.2物種比較表 91
5.3炔丙基醇類與基線毒性之比較 97
5.4 NOEC、EC10之比較 100
5.5 急慢毒性比(ACUTE-CHRONIC TOXICITY RATIO ; ACR) 105
5.6 QSAR分析 108
第六章 結論與建議 113
6.1 結論 113
6.2 建議 115
第七章、參考文獻 116
附錄一:原始數據 1
附錄二:劑量反應曲線圖 17
American Society for Testing and Materials(ASTM), 1994. Standard Guide for Conducting Static 96h Toxicity Tests with Microalgae. Annual Book of ASTM Standards. ASTM E1218-90. Philadelphia, PA.
American Public Health Association (APHA), American Water Works Association and Water Pollution Control Federation, 1995. Toxicity testing with phytoplankton, in Standard Methods for Examination of Water and Wastewater, 19th edn, APHA, Washington, DC.
Archer, T.E. (1985): J. Environ. Sci. Health B 20, 593 – 59
Atkins, P.W., 1994. Physical chemistry. Oxiford University Press. 497.
BASFAG, Abteilung Toxikologie; unveroeffentlichte Untersuchung(79/408), 06.03.80
BASFAG, Abteilung Toxikologie unveroeffentlichte Untersuchung (87/755), 25.05.1998
BASF AG,Labor Oekologie; unveroeffentlichte Mitteilung vom 30.11.87
BASF AG,Labor Oekologie; unveroeffentlichte Untersuchung , (1129/87)
Bergers, P. J.M., Degroot, A.C., 1994. The analysis of EDTA in water by HPLC. Water Research.:28 639-642
Brack, W., Rottlern, H., 1994. Toxicity testing of highly volatile chemicals with green algae. ESPR. 4, 223-228.
Bradbury SP, Christensen GM. 1991. Inhibition of alcohol dehydrogenase
activity by acetylenic and allylic alcohols: Concordance with in vivo electrophilic reactivity in fish. Environ Toxicol Chem 10:1155–1160.
Calamari, D., Galassi, S., Setti, F.,Vighi, M., 1983. Toxicity of selected chlorobenzenes to aquatic organisms. Chemosphere. 12, 253-262.
Chen, C.Y., 1994. Theoretical evaluation of the inhibitory effects of mercury on algal growth at various orthophosphate levels. Water Research. 28, 931-937
Chen, C.Y., Chao, M.R., 2000. No-observed-effect concentrations in batch and continuous algal toxicity tests. Environ. Toxicol. Chem. 19, 1589-1596.
Chen, C.Y., Lin, J. H., 2006 Toxicity of chlorophenols to Pseudokirchneriella subcapitata under air-tight test environment. Chemosphere. 62, 503-509.
Chen, C.Y., Lin, K.C., 1997. Optimization and performance evaluation of the continuous algal toxicity test. Environ. Toxicol. Chem. 16, 1337-1344.
Chen, C.Y.,Yan Y.K., Yang, C.F., 2006. Toxicity assessment of polycyclic aromatic hydrocarbons using an air-tight algal toxicity test. Water Science and Technology. 54,309-315.
DeMaster, EG. Dahlseid, T. Redfern, B. Comparative Oxidation of 2-Propyn-1-ol with Other Low Molecular Weight Unsaturated and Saturated Primary Alcohols by Bovine Liver Catalase in Vitro. Chem. Res. Toxicol. 7:414-419 (1994)
Dearden, J.C., Cronin, M.T.D., Zhao, Y.H., 2000. QSAR studies of Compounds Acting by Polar and Nonpolar Narcosis: an Examination of the role of Polarisability and H ydrogen Bon Marizo ng. Quant Struct-Act Rel. 19, 3-9.
DiMarizo, W., and Saenz, M.E., 2004. Quantitative structure-activity relationship for aromatic hydrocarbons on freshwater fish. Ecotox Environ Safe. 59, 256-262.
Environmental Protection Administration, R.O.C. (Taiwan) http://www.epa.gov.tw/mobile/PDA/statistics05.htm
Environmental Protection Administration, R.O.C. (Taiwan) http://w3.epa.gov.tw/epalaw/docfile/084010a.doc
Escher, B.I., Schwarzenbach, R.P., 2002. Mechanistic studies on baseline toxicity and uncoupling of organic compounds as a basis for modeling effective membrane concentration in aquatic organisms. Aquatic Science. 64, 20-35.
Feng, L., Han, S., Zhao, Y., Wang, L., Chen, J., 1996. Toxicity of organic chemicals to fathead minnow: a united quantitative structure-activity relationship model and its application. Chem. Res. Toxicol. 9, 610-613.
Galassi, S., Vighi, M., 1981. Testing toxicity of volatile substances with algae. Chemosphere. 10, 1123-1126.
GDCh-Advisory Committee on Existing Chemicals (BUA) Propargyl Alcohol BUA Report 213(July 1998)
Gunatilleka, A.D., Poole, C.F., 1999. Models for estimating the non-specific aquatic toxicity of organic compounds. Anyl. Commun. 36, 235-242
Hansch, C., Muir, R., Fujita, T., Peyton, P., Maloney, P., Geiger, F., Streich, M., 1963. The correlation of biological activity of plant growth regulators and chloromycetin derivates with Hammett constants and partition coefficients. Journal of American Chemistry Society. 85, 2817-2824.
Heath, A.G., 1995. Water pollution and fish physiology. Lewis Publish Boca Raton. 359.
Herman, D.C., Inniss, W.E., Mayfield, C.I., 1990. Impact of volatile aromatic hydrocarbons, alone ane in combination, on growth of the freshwater alga Selenastrum Capricornutum. Aquatic. Toxicology. 18, 87-100.
Hostetter, H.P., 1976. A rapid bioassay for algal nutrients and toxins. J. Phycol. 12, 10.
Hsu, C.H., 2002. Toxicity assessment of non-polar narcotic chemicals using a close-system algal test. A Thesis of Institute of Environmental Engineering of National Chiai Tung University.
Huang, C.P., Wang, Y.J., Chen, C.Y., 2007. Toxicity and quantitative structure–activity relationships of nitriles based on Pseudokirchneriella subcapitata. Ecotox Environ Safe. 67,439-446.
Huang, H.J., 2000. Experimental design of the algal toxicity test based on photosynthesic response. A Thesis of Institute of Environmental Engineering of National Chiao Tung University.
Hsieh, S.H., Hsu, C.H., Tsai, D.Y., Chen, C.Y., 2006. Quantitative structure–activity relationships for toxicity of non-polar narcotic chemicals to Pseudokirchneriella subcapitata. Environ. Toxicol. Chem. 25, 2920-2926.
Hsieh, S.H., Tsai, K.P., Chen, C.Y., 2006 The combined toxic effects of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata. Water Res. 40, 1957-1964.
International Organization for Standardization (ISO), 1987. Water quality- Algal growth inhibition test. Draft International Standard ISO/DIS 8692. Geneva, Switzerland.
Kamlet, M.J., Doherty, R.M., Taft, R.W., Abraham, M.H., Veith, G.D., Abraham, D.J.. 1987. Solubility properties in polymers and biological media. 8. an analysis of the factors that influence toxicities of organic nonelectrolytes to the golden orfe fish (Leucidiscus idus melanotus). Environ. Sci. Technol. 21:149–155.
Kao, W.C., 2001. A comparison of the results of several freshwater aquatic toxicity testing on synthetic and real wastewaters. A Thesis of Institute of Environmental Engineering of National Chiao Tung University.
Kenaga, E.E., 1982. Predictability of chronic toxicity from acute toxicity of chemicals in fish and aquatic invertebrates. Environ. Toxicol. Chem. 1, 347-358.
Kuhn, R., Pattard, M., Pernak, K., Winter, A., 1989. Results of the Harmful Effects of Selected Water Pollutants(Anilines, Phenols, Aliphatic Compounds) to Daphnia magna. Water. Res. 23, 495-499.
Lin, J.H.. 2001. Experimental design of the algal toxicity test based on BOD bottle. A Thesis of Institute of Environmental Engineering of National Chiao Tung University.
Lin, J.H., Kao, W.C., Tsai, K.P., Chen, C.Y., 2005. Anovel algal toxicity testing technique for assessing the toxicity of both metallic and organic toxicants. Water Res. 39, 1869-1877.
Lipnick R.L., 1991.Outliers:their origin and use in the classification of molecular mechanisms of toxicity. The Science of the Total Enviroment 109:131-153
Lipnick, R.L., Watson, K.R., Strausz, K.A., 1987. A QSAR study of the acute toxicity of some industrial organic chemicals to goldfish, Narcosis, electrophile and proelectrophilie mechanisms. Xenobiotica. 17, 1011-1025.
Mazidji, C. N., Koopman, B., Bitton, G. and Neita, D. 1992. Distinction between heavy metal and organic toxicity using EDTA chelation and microbial assays. Environmental Toxicology and Water Quality. 7:339-353
Mayer, F.L., Krause, G.F., Buckler, D.R., Ellersieck, M.R., 1994. Predicting chronic lethality of chemicals to fishes from acute toxicity test data : concepts and linear regression analysis. Environ. Toxicol. Chem. 13,671-678.
Mayer, P., Nyholm, N., Verbruggen, E.M.J., Hermens, J.L.M., Tolls, J., 2000. Algal growth inhibition test in filled, closed bottles for volatile and sorptive materials. Environ. Toxicol. Chem. 19, 2551–2556.
McFarland, J.W., 1970. On the parabolic relationship between drug potency and hydrophobicity. J. Med. Chem. 13, 1092-1196.
Mekenyan, O.G., Veith, G.D., 1994. The electronic factor in QSAR: MO-parameters, competing interactions, reactivity, and toxicity. SAR QSAR Environ. Res. 2, 129-143.
Mekenyan OG, Veith GD, Bradbury SP, Russom CL. 1993. Structure–toxicity relationships for alpha,beta-unsaturated alcohols in fish. Quant Struct-Act Rel .12:132–136.
Millington, L.A., Goulding, K.H., Adams, N., 1988. The influence of growth medium composition on the toxicity of chemicals to algae. Water Research. 22, 1593-1597
Mingazzini, M., Saenz, M.E., Albergoni, F.G., Marre, M.T., 1997. Algal photosynthesis measurements in toxicity testing. Fresenius Envir Bull. 6, 308-313.
Moridani MY, Khan S, Chan T, Teng S, Beard K, O'Brien PJ. Cytochrome P450 2E1 metabolically activates propargyl alcohol: propiolaldehyde-induced hepatocyte cytotoxicity. Chem Biol Interact. 30:130-132 (2001)
Nirmalakhandan, N., Egemen, E., Trevizo, C., Xu, S., 1998. Structure-and property-activity relationship models for prediction of microbal toxicity of organic chemicals to activated sludge.Ecotox. Environ. Safe. 39, 112-119.
Nyholm, N., Damgaard, B.M., 1990. A comparison of the algal growth inhibiton toxicity test method with the short term 14C-assimilation test. Chemosphere. 21, 671-679.
Nyholm, N., Källqvist, T., 1989. Methods for growth inhibition toxicity tests with freshwater algae. Environ. Toxicol. Chem. 8:689-703.
Organization for Economic Cooperation and Development (OECD), 1984. Guideline for testing chemicals. No. 201. Alga growth inhibition test. Paris, France.
Organization for Economic Cooperation and Development (OECD), 2006. Guideline for testing chemicals. No. 201. Alga growth inhibition test. Paris, France
Parr, R. G.; Szentpaly, L. V.; Liu, S. J. Am. Chem. Soc. 1999, 121, 1922.
Persoone, G., Janssen, C.R., 1994. Field validation of predictions based on laboratory toxicity tests. In Hill IR, Heimbach F, Leeuwangh P, Matthiessen P, eds, Freshwater Field Tests for Hazard Assessment of Chemicals. Lewis, Boca Raton, FL, USA, pp 379–397.
Randic, M., 1975. On the characterization of molecular branching. J. Am. Chem. Soc. 97, 6609-6615.
Ren, S., 2002. Predicting three narcosis mechanisms of aquatic toxicity. Toxicol. Lett. 133, 127-139.
Roy DR, Parthasarathi R, Maiti B, Subramanian V, Chattaraj PK. Electrophilicity as a possible descriptor for toxicity prediction. Bioorg Med Chem 2005;13(10):3405-12.
Russom, C.L., Bradbury, S.P., Broderius, S.J., Hammermeister, D.E.,
Drummond, R A., 1997. Predicting modes of toxic action from chemical structure : acute toxicity in the fathead minnow (Pimephales promelas).Environ. Toxicol. Chem. 16, 5, 948-967.
Schultz, T.W., 1987. The use of ionization constant(pKa) in selecting models
of toxicity in phenols. Ecotox. Environ. Safe. 14, 178-183
Schultz, T.W., Bryant, S.E., Kissel, T.S., 1996. Toxicological assessment in Tetrahymena of intermediates in aerobic microbial transformation of toluene and p-xylene. B. Environ. Contam. Tox. 56, 129–134.
Schultz, T.W., Sinks, G.D., Bearden, A.P., 1998. QSAR in aquatic toxicology:A mechanism of action approach comparing toxic potency to Pimephales promelas, Tetrahymena pyriformis, and Vibrio fischeri. In:Devillers J, editor. Comparative QSAR. New York:Taylor & Francis. 51-109.
Schultz TW, Kissel TS, Tichy M. 1994. Structure–toxicity relationships for unsaturated alcohols to Tetrahymena pyriformis: 3-alkyn-1-ol and 2-alken-1-ols. B. Environ. Contam. Tox. 53:179 –185.
Schultz TW, Tichy M. 1993. Structure–toxicity relationships for unsaturated alcohols to Tetrahymena pyriformis: C5 and C6 analogs and primary propargylic alcohols. B. Environ. Contam. Tox.51:681– 688.
Seward, J.R., Hamblen, E.L., Schultz, T.W., 2002. Regression comparisons of Tetrahymena pyriformis and Poecilia reticulata toxicity. Chemosphere. 47, 93-101.
T. Wayne Schultz, Julie Seward-Nagel,Karen A. Foster, Vera A. Tucker 2004. Population Growth Impairment of Aliphatic Alcohols to Tetrahymena. Environ Toxicol 19: 1–10.
Tsai, K.P., Chen, C.Y., 2007. An algal toxicity database of organic toxicants derived by a closed-system technique. Environ. Toxicol. Chem. (In press).
Vassur, P. and P. Pandard. 1988. Influence of some experimental factors on metal toxicity to Selenastrum capricornutum. Toxicity Assessment 3:331-343.
Veith, G.D., Broderius, S.J., 1990. Rules for distinguishing toxicants that cause typeI and type II narcosis syndrome. Environ. Health Persp. 87, 207-211.
Veith GD, Lipnick RL, Russom CL. 1989. The toxicity of acetylenic alcohols to the fathead minnow, Pimephales promelas—narcosis and proelectrophile activation. Xenobiotica 19:555–565.
Veith, G.D., D.J. Call and L.T. Brooke. 1983 Strucstudy,toxicity relationships for the fathead minnow, Prmephalesp romelas:Narcotic Industrial chemicals.Can.J.Fish.Aquat.Sci. 40:743-748
Verhaar, H.J.M., Solb, J., Speksnijder, J., van Leeuwen, C. J., Hermens, J.L.M., 2000.Classifying environmental pollutants: Part 3. External validation of the classification system. Chemosphere 40,875〜883.
Verhaar, H.J.M., Van Leeuwen, C.J., Hermens, J.L.M., 1992. Classifying environmental pollutants. 1: Structure-activity relationships for prediction of aquatic toxicity. Chemosphere 25, 471-491.

Willford, W.A., 1968. Toxicity of dimethyl sulfoxide (DMSO) to fish. Bur Sport Fish Wildl Invest Fish Control. 20, 3-8.
Yeh, H.J., Chen, C.Y., 2006 Toxicity assessment of pesticides to Pseudokirchneriella subcapitata under air-tight test environment. J. Hazard Mater, 131, pp. 6-12.
Zhao, Y.T., Cronin, M.T., Dearden, J.C., 1998. Quantitative structure- activity relationships of chemicals acting by non-polar narcosis-theoretical considerations. Quant Struct-Act Rel. 17, 131-138.
蔡定裕,2006,以密閉式藻類毒性試驗方法評估芳香醛(苯甲醛)之毒性
與結構-活性關係之研究,國立交通大學環境工程研究所,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top