跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 21:48
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖怡甄
研究生(外文):Yi Chen Liao
論文名稱:探討CeA-PAG止痛神經迴路在發炎性慢性疼痛中所扮演的角色
論文名稱(外文):Investigating the role of CeA-PAG descending antinociceptive circuitry in inflammatory chronic pain
指導教授:王鴻利
指導教授(外文):H. L. Wang
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
論文頁數:90
中文關鍵詞:發炎性慢性疼痛杏仁體中核中腦導水管周圍灰質下傳止痛神經迴路機械性痛覺異常星形膠細胞
外文關鍵詞:inflammatory chronic painCentral amygdala nucleusPeriaqueductal graydescending antinociceptive circuitrymechanical allodyniaastrocyte
相關次數:
  • 被引用被引用:0
  • 點閱點閱:521
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
杏仁體中核(central amygdala nucleus, CeA)的電性或化學性刺激會抑制脊髓的痛覺傳遞,進而產生止痛作用。當CeA投射興奮性訊息至同側的中腦導水管周圍灰質(periaqueductal gray, PAG)時,可以活化PAG到頭腹中側延腦(rostral ventromedial medulla, RVM)的下傳止痛神經迴路(descending antinociceptive neuronal circuitry)。近年來,許多證據指出發炎性慢性疼痛(chronic inflammatory pain)是由於大腦神經可塑性改變而成,進而影響下傳調節途徑去控制脊髓背角(spinal dorsal horn)的痛覺傳遞。此外,許多研究也顯示當組織發炎或周圍神經產生病變,神經膠細胞(glial cells)會活化,而其後釋放的膠細胞傳導物質(gliotransmitters)或發炎細胞素(proinflammatory cytokines)則會藉由調節神經活性及突觸強度進一步促成痛覺過敏(hyperalgesia)。根據這些研究結果可以推測發炎性慢性疼痛引起的痛覺過敏可能是因為活化CeA區域神經膠細胞造成CeA-PAG投射神經元的突觸可塑性產生改變,進一步削弱了CeA-PAG-RVM下傳止痛神經迴路的活性。為了證明這個假設,將發炎物質Complete Freund's adjuvant(CFA)皮下注射到三到四週大的大鼠後腳掌,引發其腳掌發紅水腫。在24小時後,與皮下注射Saline的控制組相比,發現CFA會造成大鼠腳掌產生機械性痛覺異常(mechanical allodynia),且此症狀持續至少7天。其後,將黃綠螢光微粒(yellow-green fluorescent microspheres)微管注射到大鼠PAG腹側位置,四天後便可以在牠們的CeA中間區域(CeAM)發現CeA-PAG投射神經元具有螢光標示。接著,利用腦切片進行全細胞膜電位箝制記錄,此實驗顯示在注射CFA的老鼠其CeA-PAG投射神經元的自發性微興奮性突觸後電流(spontaneous miniature EPSCs, mEPSCs)之頻率有降低的現象,但並不影響mEPSCs的振幅大小。而注射CFA亦可增加自發性微抑制性突觸後電流(spontaneous miniature IPSCs, mIPSC)的頻率,且也不改變mIPSCs的振幅平均值。除此之外,注射CFA會增加CeAM腦區的星形膠細胞(astrocytes),並使其產生肥大(hypertrophy)的現象。然而,在大鼠CeAM腦區微管注射星形膠細胞抑制劑fluorocitrate,則可以明顯降低星形膠細胞的活化及減緩CFA引發的機械性痛覺異常。Fluorocitrate亦可以削弱CFA所降低的興奮性麩氨酸突觸傳遞,以及減弱CFA所促進的抑制性γ-氨基丁酸(GABA)突觸傳遞。總結,我們的研究強烈顯示星形膠細胞的活化參與了周邊發炎誘發的CeAM-PAG投射神經元突觸可塑性,進而削弱CeAM-PAG下傳止痛神經迴路,並造成機械性痛覺異常。
Electrical or chemical stimulation of central amygdala nucleus (CeA) inhibits spinal pain transmission and produces an analgesic effect. CeA sends a dense ipsilateral excitatory projection to midbrain periaqueductal gray (PAG) and activates PAG-rostral ventromedial medulla (RVM) descending anti-nociceptive neuronal circuitry. Recently, several lines of evidence suggest that chronic inflammatory pain is due to long-term neuroplastic changes in brain regions, which control pain transmission in the spinal dorsal horn through descending modulatory pathways. Recent studies also suggest that activation of glial cells and a subsequent release of gliotransmitters or proinflammatory cytokines, which modulate neuronal activity and synaptic strength, contribute to the development of pain hypersensitivity after nerve injury or peripheral inflammation. Thus, it is very likely that during chronic inflammatory pain, activation of glial cells in CeA could induce hyperalgesia by causing synaptic plasticity of CeA-PAG projection neurons and attenuate the activity of CeA-PAG-RVM descending antinociceptive circuitry. Intraplantar injection of Complete Freund's adjuvant (CFA) resulted in erythema and edema at the site of injection. Mechanical allodynia was observed in CFA-injected rats within 24 hours after CFA injection and lasted about 7 days. Four days after microinjecting yellow-green fluorescent microspheres into the lateral and ventrolateral PAG of 3 to 4 weeks-old saline or CFA-injected rats, fluorescently labeled CeA-PAG projection neurons were mainly found in the medial division of central amygdala nucleus (CeAM). CFA administration decreased the frequency of spontaneous miniature EPSCs (mEPSCs) in CeAM-PAG projection neuron from CFA-treated rats in the absence of change in the mean amplitude of mEPSCs. CFA injection also increased the frequency of spontaneous IPSCs in CeAM-PAG projection neurons without significantly affecting the mean amplitude of mIPSCs. CFA injection induced the hypertropy and an increase in the number of GFAP-positive astrocytes in the CeAM region. Furthermore, microinjection of fluorocitrate, a metabolic inhibitor of astrocytes, into CeAM area significantly attenuated astrocyte activation and CFA-induced mechanical allodynia. Fluorocitrate also attenuated CFA-induced impairment of excitatory glutamatergic transmission and CFA-induced enhancement of inhibitory GABAergic transmission in CeAM-PAG projection neurons. Our results strongly suggest that astroglial activation is involved in peripheral inflammation-induced synaptic plasticity of CeAM-PAG projection neurons, which impairs the activity of CeAM-PAG descending antinociceptive pathway and causes resulting mechanical allodynia.
指導教授推薦書
口試委員會審定書
授權書 iii
致謝 iv
Abstract (Chinese) vi
Abstract (English) viii
Abbreviations x
Contents xii
Figure contents xv
I. Introduction 01
1.1 Chronic pain 01
1.2 Peripheral nerve injury or inflammation-induced change in descending pain modulation pathways 03
1.3 CeA-PAG-RVM descending antinociceptive circuitry 04
1.4 Peripheral inflammation and CeA-PAG pain modulatory pathway 06
1.5 Glia-neuron interaction in CeA during peripheral inflammation-induced chronic pain 07
II. Specific Aim and Significance 12
III. Experimental Procedures 14
3.1 Retrograde labeling of rat CeA-PAG projection neurons 14
3.2 Induction of chronic inflammation 14
3.3 Behavioral tests for mechanical allodynia 15
3.4 Brain slice preparation 15
3.5 Whole-cell patch-clamp recordings 16
3.6 Microinjection of fluorocitrate 17
3.7 Immunohistochemistry 17
3.8 Statistics 18
IV. Results 19
4.1 Intraplantar administration of CFA induces mechanical allodynia 19
4.2 Retrograde labeling of CeAM-PAG projection neurons 19
4.3 Intraplantar injection of CFA attenuates excitatory glutamatergic transmission in CeAM-PAG projection neurons 21
4.4 Intraplantar injection of CFA strengthens inhibitory GABAergic transmission in CeAM-PAG projection neurons 22
4.5 Intraplantar administration of CFA induces astroglial activation in the CeAM 23
4.6 Astroglial activation inhibitor fluorocitrate inhibits CFA-induced mechanical allodynia 24
4.7 Fluorocitrate attenuates CFA-induced impairment of excitatory glutamatergic transmission and CFA-induced enhancement of inhibitory GABAergic transmission in CeAM-PAG projection neurons 24
V. Discussion 26
VI. References 32
VII. Figures 48
VIII. Table 72

FIGURE CONTENTS
Figure 1. Endogenous CeA-PAG-RVM descending antinociceptive circuitry that modulates pain transmission in the spinal dorsal horn 48
Figure 2. Intraplantar administration of CFA induces mechanical allodynia by von Frey filaments. 50
Figure 3. Retrograde labeling of CeAM-PAG projection neurons 52
Figure 4. Whole-cell patch-clamp recordings of visualized CeAM-PAG projection neurons in brain slices 54
Figure 5. Intraplantar injection of CFA inhibits spontaneous excitatory glutamatergic transmission in CeAM-PAG projection neurons 56
Figure 6. CFA inhibits glutamatergic transmission in CeAM-PAG projection neurons through a presynaptic mechanism 58
Figure 7. Intraplantar injection of CFA strengthens spontaneous inhibitory GABAergic transmission in CeAM-PAG projection neurons 60
Figure 8. CFA augments spontaneous GABAergic transmission in CeAM-PAG projection neurons via a presynaptic mechanism 62
Figure 9. Intraplantar injection of CFA induces astroglial activation in the CeAM 64
Figure 10. Microinjection of fluorocitrate, a metabolic inhibitor of astrocytes, into the CeAM significantly attenuates CFA-induced hyperalgesia 66
Figure 11. Fluorocitrate blocks CFA-induced attenuation of spontaneous glutamatergic transmission in CeAM-PAG projection neurons 68
Figure 12. Fluorocitrate attenuates CFA-induced enhancement of spontaneous GABAergic transmission in CeAM-PAG projection neurons 70
Allen A.L., Cortright D.N. and Mccarson K.E. (2003) Formalin- or adjuvant-induced peripheral inflammation increases neurokinin-1 receptor gene expression in the mouse. Brain Res., 961, 147-152.
Allen G.V., Saper C.B., Hurley K.M., Cechetto D.F. (1991) Organization of visceral and limbic connections in the insular cortex of the rat. J. Comp. Neurol., 311, 1-16.
Andersson, M., Blomstrand, F. & Hanse, E. (2007) Astrocytes play a critical role in transient heterosynaptic depression in the rat hippocampal CA1 region. J. Physiol. 585, 843-852.
Araque A, Parpura V, Sanzgiri R.P. and Haydon P.G. (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci., 22, 208-215.
Araque A., Sanzgiri R. P., Parpura V. and Haydon P.G. (1998) Calcium elevation in astrocytes causes an NMDA receptor-dependent increase in the frequency of miniature synaptic currents in cultured hippocampal neurons. J. Neurosci., 18, 6822-6829.
Baldelli P., Novara M., Carabelli V., Hernandez-Guijo M. and Carbone E. (2002) BDNF up-regulates evoked GABAergic transmission in developing hippocampus by potentiating presynaptic N- and P/Q-type Ca2+ channel signaling. Eur. J. Neurosci., 16, 2297-2310.
Bandler R. and Shipley M.T. (1994) Columnar organization in the midbrain periaqueductal gray: modules for emotional expression? Trends Neurosci., 17, 379-388.
Beattie E.C., Stellwagen D., Morishita W., Bresnahan J.C., Ha B.K., Von Zastrow M., Beattie M.S. and Malenka R.C. (2002) Control of synaptic strength by glial TNF alpha. Science, 295, 2282-2285.
Becerra L.R., Breiter H.C., Stojanovic M., Fishman S., Edwards A., Comite A.R., Gonzalez R.G. and Borsook D. (1999) Human brain activation under controlled thermal stimulation and habituation to noxious heat: an fMRI study. Magn. Reson. Med., 41, 1044-1057.
Bee L.A. and Dickenson A.H. (2008) Descending facilitation from the brainstem determines behavioral and neuronal hypersensitivity following nerve injury and efficacy of pregabalin. Pain, 140, 209-223.
Bellinger F. P., Madamba S. and Siggins G.R. (1993) Interleukin 1 beta inhibits synaptic strength and long-term potentiation in the rat CA1 hippocampus. Brain Res., 628, 227-234.
Bingel U, Quante M, Knab R, Bromm B, Weiller C, Büchel C. (2002) Subcortical structures involved in pain processing: evidence from single-trial fMRI. Pain, 99, 313-321.
Bornhövd K., Quante M., Glauche V., Bromm B., Weiller C. and Büchel C. (2002) Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain , 125, 1326-1336.
Bowser D.N. and Khakh B.S. (2004) ATP excites interneurons and astrocytes to increase synaptic inhibition in neuronal networks. J. Neurosci., 24, 8606-8620.
Cahill C.M., Morinville A., Hoffert C., O’Donnell D. and Beaudet A. (2003) Up-regulation and trafficking of delta opioid receptor in a model of chronic inflammation: implications for pain control. Pain; 101, 199-208.
Chen Y.L., Li A.H., Yeh T.H., Chou A.H. and Wang H.L. (2009) Nocistatin and nociceptin exert opposite effects on the excitability of central amygdala nucleus-periaqueductal gray projection neurons. Mol Cell Neurosci., 40, 76-88.
Chen Y.L., Li A.H., Yeh T.H., Chou A.H., Weng Y.S. and Wang H.L. (2010) Nocistatin excites rostral agranular insular cortex-periaqueductal gray projection neurons by enhancing transient receptor potential cation conductance via Gαq/11-PLC-protein kinase C pathway. Neuroscience, 168, 226-239.
Coull J.A., Beggs S., Boudreau D., Boivin D., Tsuda M. and Inoue K. (2005) BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature, 438, 1017-1021.
Danziger N.,Weil-Fugazza J., Le Bars D. and Bouhassira D. (2001) Stage-dependent changes in the modulation of spinal nociceptive neuronal activity during the course of inflammation. Eur. J. Neurosci., 13, 230-240.
DeLeo J.A., Colburn R.W., Nichols M. and Malhotra A. (1996) Interleukin-6-mediated hyperalgesia/allodynia and increased spinal IL-6 expression in a rat mononeuropathy model. J. Interferon Cytokine Res., 16, 695-700.
Dubner R. and Ruda M.A. (1992) Activity dependent neuronal plasticity following tissue injury and inflammation. Trends Neurosci., 15, 96-102.
Fields H.L. (2000) Pain modulation: expectation, opioid analgesia and virtual pain. Prog. Brain Res., 122, 245-253.
Fields H.L., Heinricher M.M. and Mason P. (1991) Neurotransmitters in nociceptive modulatory circuits. Annu. Rev. Neurosci., 14, 219-245.
Finnegan T.F., Chen S.R. and Pan H.L. (2005) Effect of the μ opioid on excitatory and inhibitory synaptic inputs to periaqueductal gray-projecting neurons in the amygdala. J. Pharmacol. Exep. Thera.,312, 441-448.
Frerking M. (2004) When astrocytes signal, kainate receptors respond. Proc. Natl. Acad. Sci. USA., 101, 2649-2650.
Fruhstorfer H., Gross W. and Selbmann O. (2001) von Frey hairs: new materials for a new design. Eur J Pain., 5, 341-342.
Gao X., Kim H.K., Chung J.M. and Chung, K. (2005) Enhancement of NMDA receptor phosphorylation of the spinal dorsal horn and nucleus gracilis neurons in neuropathic rats. Pain, 116, 62-72.
Gao Y.J. and Ji R.R. (2010) Chemokines, neuronal–glial interactions, and central processing of neuropathic pain. Pharmacol. Therapeut., 126, 56-68.
Gauriau C. and Bernard J.F. (2002) Pain pathways and parabrachial circuits in the rat. Exp. Physiol., 87, 251-258.
Gilbert A.K. and Franklin K.B. (2001) GABAergic modulation of descending inhibitory systems from the rostral ventromedial medulla (RVM). Dose-response analysis of nociception and neurological deficits. Pain, 90, 25-36.
Guan Y., Guo W., Robbins M.T., Dubner R. and Ren K. (2004) Changes in AMPA receptor phosphorylation in the rostral ventromedial medulla after inflammatory hyperalgesia in rats. Neurosci Lett., 366, 201-205.
Guan Y., Guo W., Zou S-P., Dubner R. and Ren K. (2003) Inflammation-induced upregulation of AMPA receptor subunit expression in brain stem pain modulatory circuitry. Pain; 104, 401-413.
Guan Y., Terayama R., Dubner R. and Ren K. (2002) Plasticity in excitatory amino acid receptor-mediated descending pain modulation after inflammation. J. Pharmacol. Exp. Ther., 300, 513-520.
Guo W., Wang H., Watanabe M., Shimizu K., Zou S., LaGraize S.C., Wei F., Dubner R. and Ren K. (2007) Glial–cytokine–neuronal interactions underlying the mechanisms of persistent pain. J. Neurosci., 27, 6006-6018.
Hamilton N.B. and Attwell D. (2010) Do astrocytes really exocytose neurotransmitters? Neuroscience, 11, 227-238.
Herrero J.F. and Cervero F. (1996) Supraspinal influences on the facilitation of rat nociceptive reflexes induced by carrageenan monoarthritis. Neurosci. Lett., 209, 21-24.
Hu J., Wang Z., Guo Y.Y., Zhang X.N., Xu Z.H., Liu S.B., Guo H.J., Yang Q., Zhang F.X., Sun X.L. and Zhao M.G. (2009) A role of periaqueductal grey NR2B-containing NMDA receptor in mediating persistent inflammatory pain. Molecular Pain, 5, 71-81.
Hurley R.W. and Hammond D.L. (2000) The analgesic effects of supraspinal μ and δ opioid receptor agonists are potentiated during persistent inflammation. J. Neurosci., 20, 1249-1259.
Hurley R.W. and Hammond D.L. (2001) Contribution of endogenous enkephalins to the enhanced analgesic effects of supraspinal μ opioid receptor agonists after inflammatory injury. J. Neurosci.; 21, 2536-2545.
Ji R.R., Kawasaki Y., Zhuang Z.Y., Wen Y.R. and Decosterd I. (2006) Possible role of spinal astrocytes in maintaining chronic pain sensitization: review of current evidence with focus on bFGF/JNK pathway. Neuron Glia Biol., 2, 259-269.
Ji R.R., Kohno T., Moore K.A. and Woolf C.J. (2003) Central sensitization and LTP: do pain and memory share similar mechanisms? Trends in Neurosci., 26, 696-705.
Juliano F., Maria M.C., Joao B.P., Ronaldo C.A., Michael B. and Joao B.C. (2001) Evidence for the participation of kinins in Freund’s adjuvant-induced inflammatory and nociceptive responses in kinin B1 and B2 receptor knockout mice. Neuropharmacology, 41, 1006-1012.
Julius D. and Basbaum A.I. (2001) Molecular mechanisms of nociception. Nature, 413, 203-210.
Kang J., Jiang L., Goldman S. A. and Nedergaard M. (1998) Astrocyte-mediated potentiation of inhibitory synaptic transmission. Nat. Neurosci., 1, 683-692.
Kawasaki Y., Zhang L., Cheng J. K. and Ji R. R. (2008) Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J. Neurosci., 28, 5189-5194.
Ko S. and Zhuo M. (2004) Central plasticity and persistent pain. Drug Discovery Today: disease Models, 1, 100-106.
Lee H.L., Lee K.M., Son S.J., Hwang S.H. and Cho H.J. (2004) Temporal expression of cytokines and their receptors mRNAs in a neuropathic pain model. NeuroReport, 15, 2807-2811.
Li A.H., Hwang H.M., Tan P.P., Wu T., Wang H.L. (2001b) Neurotensin excitation of periaqueductal gray neurons projecting to the rostral ventromedial medulla: ionic and molecular mechanisms. J. Neurophysiol., 85, 1479-1488.
MacArthur L., Ren K., Pfaffenroth E., Franklin E. and Ruda M.A. (1999) Descending modulation of opioid-containing nociceptive neurons in rats with peripheral inflammation and hyperalgesia. Neuroscience, 88, 499-506.
Manning B.H. (1998) A lateral deficit in morphine antinociception after unilateral inactivation of the central amygdala. J. Neurosci., 18, 9453-9470.
Manning B.H. and Mayer D.J. (1995a) The central nucleus of the amygdala contributes to the production of morphine antinociception in the formalin test. Pain, 63, 141-152.
Manning B.H. and Mayer D.J. (1995b) The central nucleus of the amygdala contributes to the production of morphine antinociception in the rat tail-flick test. J. Neurosci., 15, 8199-8213.
Manning B.H., Martin W.J. and Meng I.D. (2003) The rodent amygdala contributes to the production of cannabinoid-induced antinociception. J. Neurosci., 120, 1157-1170.
Marchand F., Perretti M. and McMahon S.B. (2005) Role of the immune system in chronic pain. Nature Rev. Neurosic., 6, 521-532.
McMahon S.B. and Malcangio M. (2009) Current challenges in glia-pain biology. Neuron, 64, 46-54.
McMahon S.B., Cafferty W.B.J. and Marchand F. (2005) Immune and glial cell factors as pain mediators and modulators. Exp. Neurology, 192, 444-462.
Miki K., Zhou Q.Q., Guo W., Guan Y., Terayama R., Dubner R. and Ren K. (2002) Changes in gene expression and neuronal phenotype in brain stem pain modulatory circuitry after inflammation. J. Neurophysiol., 87, 750-760.
Millan M. J. (2002) Descending control of pain. Prog. Neurobiol., 66, 355-474.
Milligan E.D. and Watkins L.R. (2009) Pathological and protective roles of glia in chronic pain. Nat Rev Neurosci., 10, 23-36.
Milligan E.D., Sloane E.M. and Watkins L.R. (2008) Glia in pathological pain: a role for fractalkine. J Neuroimmunol., 198, 113-120.
Murphy P.G., Borthwick L.S., Johnson R.S., Kuchel G. and Richardson P.M. (1999) Nature of retrograde signal from injured nerves that induce interleukin-6 mRNA in neurons. J. Neurosic., 19, 3791-3800.
Neugebauer V., Li W., Bird G.C. and Han J.S. (2004) The amygdala and persistent pain. Neuroscientist; 10, 221-234.
Obrietan K., Gao X-B. and Van den Pol A.N. (2001) Excitatory actions of GABA increase BDNF expression via a MAPK-CREB-dependent mechanism: a positive feedback circuit in developing neurons. J. Neurophysiol., 88, 1005-1015.
Oka T., Aou S. and Hori T. (1993) Intracerebroventricular injection of interleukin-1 beta induces hyperalgesia in rats. Brain Res., 624, 61-68.
Oliveira M.A. and Prado W.A. (2001) Role of PAG in the antinociception evoked from the medial or central amygdala in rats. Brain Res. Bulletin, 54, 55-63.
Ortiz J.P., Heinricher M.M. and Selden N.R. (2007) Noradrenergic agonist administration into the central nucleus of the amygdala increases the tail-flick latency in lightly anesthetized rats. Neuroscience, 148, 737-743.
Osborne B.P., Vaughan C.W., Wilson H.I., Christie M.J. (1996) Opioid inhibition of rat periaqueductal gray neurons with identified projections to rostral ventromedial medulla in vivo. J. Physiol., 490, 383-389.
Palizvan M.R., Sohya K., Kohara K., Maruyama A., Yasuda H., Kimura F. and Tsumoto T. (2004) Brain-derived neurotrophic factor increases inhibitory synapses, revealed in solitary neurons cultured from rat visual cortex. Neuroscience, 126, 955-966.
Pascual, O. et al. (2005) Astrocytic purinergic signaling coordinates synaptic networks. Science 310, 113-116.
Pertovaara A. (2000) Plasticity in descending pain modulatory systems. Prog. Brain Res., 129, 231-242.
Phelps E.A. and LeDoux J.E. (2005) Contributions of the amygdala to emotion processing: from animal models to human behavior. Neuron, 48, 175-187.
Porreca F., Ossipov M.H. and Gebhart G.F. (2002) Chronic pain and medullary descending facilitation. Trends in Neurosci., 25, 320-325.
Raghavendra V., Tanga F.Y. and DeLeo J.A. (2003) Anti-hyperalgesic and morphine-sparing actions of propentofylline following peripheral nerve injury in rats: mechanistic implications of spinal glia and proinflammatory cytokines. Pain, 104, 655-664.
Raghavendra V., Tanga F.Y. and DeLeo J.A. (2004) Complete Freunds adjuvant induced peripheral inflammation evokes glial activation and proinflammatory cytokine expression in the CNS. Eur. J. Neurosci., 20, 467-473.
Rainville P. (2002) Brain mechanisms of pain affect and pain modulation. Current Opinion in Neurobiology, 12, 195-204.
Ray J.P., Price J.L. (1992) The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography. J. Comp. Neurol., 323, 167-197.
Reeve A.J., Patel S., Fox A., Walker K. and Urban L. (2000) Intrathecally administered endotoxin or cytokines produce allodynia, hyperalgesia and changes in spinal cord neuronal responses to nociceptive stimuli in the rat. Eur. J. Pain, 4, 247-257.
Ren K. and Dubner R. (1996) Enhanced descending modulation of nociception in rats with persistent hindpaw inflammation. J. Neurophysiol., 76, 3025-3037.
Rhudy J.L. and Meagher M.W. (2001) The role of emotion in pain modulation. Curr. Opin. Psychiatry, 14, 241-245.
Rizvi T.A., Ennis M., Behbehani M.M. and Shipley M.T. (1991) Connections between the central nucleus of the amygdala and the midbrain periaqueductal gray: topography and reciprocity. J. Com. Neurol., 303, 121-131
Roberts J., Ossipov M.H., and Porreca F. (2009) Glial activation in the rostroventromedial medulla promotes descending facilitation to mediate inflammatory hypersensitivity. European J. of Neurosci., 30, 229-241.
Romero-Sandoval E.A., Horvath R.J. and DeLeo J.A. (2008) Neuroimmune interactions and pain: focus on glial-modulating targets. Curr Opin Investig Drugs, 9, 726-734.
Sah P., Faber E.S.L., De Armentia M.L. and Power J. (2003) The amygdaloid complex: anatomy and physiology. Physiol. Rev., 83, 803-834.
Schepers R.J., Mahoney J.L. and Shippenberg T.S. (2008) Inflammation-induced changes in rostral ventromedial medulla mu and kappa opioid receptor mediated antinociception. Pain, 136, 320-330.
Schiess M.C., Callahan P.M., Zheng H. (1999) Characterization of the electrophysiological and morphological properties of rat central amygdala neurons in vitro. J. Neurosci. Res., 58, 663-673.
Schneider F., Habel U., Holthusen H., Kessler C., Posse S., Müller-Gärtner H.W. and Arndt J.O. (2001) Subjective ratings of pain correlate with subcortical-limbic blood flow: an fMRI study. Neuropsychobiology, 43, 175-85.
Scholz J. and Woolf C.J. (2007) The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci., 10, 1361-1368.
Serrano, A., Haddjeri, N., Lacaille, J.-C. & Robitaille, R. (2006) GABAergic network activation of glial cells underlies hippocampal heterosynaptic depression. J. Neurosci., 26, 5370-5382.
Sommer C. and Kress M. (2004) Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci. Lett., 361, 184-187.
Sommer C., Lindenlaub T., Teuteberg P., Schäfers M., Hartung T. and Toyka K.V. (2001) Anti-TNF-neutralizing antibodies reduce pain-related behavior in two different mouse models of painful mononeuropathy. Brain Res., 913, 86-89.
Sommer C., Petrausch S., Lindenlaub T. and Toyka K.V. (1999) Neutralizing antibodies to interleukin 1-receptor reduce pain associated behavior in mice with experimental neuropathy. Neurosic. Lett., 270, 25-28.
Sommer C., Schmidt C. and George A. (1998) Hyperalgesia in experimental neuropathy is dependent on the TNF receptor 1. Exp. Neurol., 151, 138-142.
Srinivasan D., Yen J.H., Joseph D.J. and Friedman W. (2004) Cell type-specific interleukin-1β signaling in the CNS. J. Neurosci., 24, 6482-6488.
Stellwagen D., Beattie E.C., Seo J.Y. and Malenka R.C. (2005) Differential regulation Of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-alpha, J. Neurosci., 25, 3219-3228.
Swanson L.W., Petrovich G.D. (1998) What is the amygdala. Trends Neurosci., 21, 323-331.
Tabarean I. V., Korn H. and Bartfai T. (2006) Interleukin-1beta induces hyperpolarization and modulates synaptic inhibition in preoptic and anterior hypothalamic neurons. Neuroscience, 141, 1685-1695.
Tadano T., Namioka M., Nakagawasai O., Tan-No K., Matsushima K., Endo Y. and Kisara K. (1999) Induction of nociceptive responses by intrathecal injection of interleukin-1 in mice. Life Sci., 65, 255-261.
Tanga F.Y., Raghavendra V. and DeLeo J.A. (2004) Quantitative real-time RT-PCR assessment of spinal microglial and astrocytic activation markers in a rat model of neuropathic pain. Neurochem. Int., 45, 397-407.
Terayama R., Dubner R. and Ren K. (2002) The roles of NMDA receptor activation and nucleus reticularis gigantocellularis in the time-dependent changes in descending inhibition after inflammation. Pain; 97, 171-181.
Trang T., Beggs S.,Wan X. and Salter M.W. (2009) 2X4-receptor-mediated synthesis and release of brain-derived neurotrophic factor in microglia is dependent on calcium and p38-mitogen- activated protein kinase activation. J. Neurosci., 29, 3518-3528.
Urban M.O. and Gebhart G.F: (1999) Supraspinal contributions to hyperalgesia. Proc. Natl. Acad. Sci. USA., 96, 7687-7692.
Vanegas H. and Schaible H.G: (2004) Descending control of persistent pain: inhibitory or facilitatory? Brain Res. Rev., 46, 295-309.
Wang S., Cheng Q., Malik S. and Yang J. (2000) Interleukin-1beta inhibits gamma- aminobutyric acid type A (GABA(A)) receptor current in cultured hippocampal neurons. J. Pharmacol. Exp. Ther., 292, 497-504.
Wei F., Guo W., Zou S., Ren K. and Dubner R. (2008) Suprspinal glial–neuronal interactions contribute to descending pain facilitation. J. Neurosci., 28, 10482-10495.
Wieseler-Frank J., Maier S.F. and Watkins L.R. (2005) Immune-to-brain communication dynamically modulates pain: Physiological and pathological consequences. Brain Behavior, and Immunity, 19, 104-111.
Woolf C.J. and Mannion R.J. (1999). Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet, 353, 1959-1964.
Woolf C.J. and Salter M.W. (2000) Neuronal Plasticity: Increasing the Gain in Pain. Science, 288, 1765-1768.
Xie Y.F., Huo F.Q. and Tang J.S. (2009) Cerebral cortex modulation of pain. Acta. Pharmacol Sin., 30, 31-41.
Xu X., Hao J.X., Andell-Jonsson S., Bartfai T. and Wiesenfeld-Halin Z. (1997) Nociceptive response in interleukin-6-deficient mice to peripheral inflammation and peripheral nerve section. Cytokine, 9, 1028-1033.
Yamada M.K., Nakanishi K., Ohba S., Nakamura T., Ikegaya Y., Nishiyama N. and Matsuki N. (2002) Brain-derived neurotrophic factor promotes the maturation of GABAergic mechanisms in cultured hippocampal neurons. J. Neurosci., 22, 7580-7585.
Yang S, Liu Z. W., Wen L., Qiao H. F., Zhou W. X. and Zhang Y.X. (2005) Interleukin-1beta enhances NMDAreceptor-mediated current but inhibits excitatory synaptic transmission. Brain Res., 1034, 172-179.
Yeh T.H. and Wang H.L. (2005) Global ischemia downregulates the function of metabotropic glutamate receptor subtype 5 in hippocampal CA1 pyramidal neurons. Mol. Cell. Neurosci., 29, 484-492.
Yeh T.H., Hwang H.M., Chen J.J., Wu T., Li A. and Wang H.L. (2005) Glutamate transporter function of rat hippocampal astrocytes is impaired following the global ischemia. Neurobiol. Disease, 18, 476-483.
Zeise M. L., Espinoza J., Morales P. and Nalli A. (1997) Interleukin-1 beta does not increase synaptic inhibition in hippocampal CA3 pyramidal and dentate gyrus granule cells of the rat in vitro. Brain Res., 768, 341-344.
Zhang L. and Hammond D.L. (2009) Substance P Enhances Excitatory Synaptic Transmission on Spinally Projecting Neurons in the Rostral Ventromedial Medulla After Inflammatory Injury J Neurophysiol., 102, 1139-1151.
Zhang R.X., Li A., Liu B., Wang L., Ren K., Zhang H., Berman B.M. and Lao L. ( 2008) IL-1ra alleviates inflammatory hyperalgesia through preventing phosphorylation of NMDA receptor NR-1 subunit in rats. Pain, 135, 232-239.
Zhuo M. (2007) Neuronal mechanism for neuropathic pain. Mol Pain, 3, 14.
Zhuo M. (2008) Cortical excitation and chronic pain. Trends in Neurosci., 31, 199-207.
Zimmermann M. (2001) Pathobiology of neuropathic pain. Eur. J. Pharmacol., 429, 23-37.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top