跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 21:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王裕銘
研究生(外文):Yu-Ming Wang
論文名稱:利用原子力顯微術偵測單一生物分子間專一性之鍵結強度、解離及其熱力學之研究
論文名稱(外文):Specific Recognition Force, Dissociation and Thermodynamics of Single-pair Antibody-Antigen Interaction Using Atomic Force Microscopy
指導教授:黃榮山林世明林世明引用關係
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:應用力學研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:95
語文別:英文
論文頁數:186
中文關鍵詞:原子力顯微鏡單一生物分子間交互作用力自由能解離熵解離焓
外文關鍵詞:atomic force microscopydissociation rateenthalpyentropy
相關次數:
  • 被引用被引用:2
  • 點閱點閱:400
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
生物分子藉由彼此間的辨識及鍵結過程在生命體中進行訊息傳遞、酵素催化及免疫保護等生化反應過程。為探討生物分子間的交互作用,本論文利用原子力顯微術進行免疫球蛋白及其抗體與升糖素及其抗體在不同酸鹼值、環境溫度及解離速度等條件下量測其解離力、分子間解離動力常數及熱力學參數。此結果可提供直接的證據去解釋分子間在更接近事實且不同環境下的行為。
本研究將免疫球蛋白及其抗體分別共價鍵結於原子力顯微鏡之探針與玻片並利用力曲線進行解離力在不同酸鹼值溶液下檢測,其結果顯示解離力在中性溶液擁有最佳鍵結強度。隨著增加或降低溶液之pH值皆會使生物分子間交互作用力下降。該結果可歸因於生物分子之構形在不同酸鹼值溶液下會產生不同形變,而造成分子間不完全的接合。此外,生物分子之官能基與生物功能皆會隨著溶液酸鹼值改變而改變,進而影響其抗體之辨識。而在分析的解離速率與自由能也證實了生物分子在中性溶液具有低解離速率及高能障等特點,使生物分子間能穩定的鍵結相較於在酸性或鹼性溶液下。在環境溫度變化對免疫球蛋白間鍵結的實驗結果中顯示分子間之交互作用力會隨著度增加而降低,此可歸因於溫度變化會引起分子構形改變造成生物分子間無法緊密皆合及溫度所造成的布朗運動碰撞分子間的鍵結,使鍵結強度降低。藉由改變環境溫度可檢測生物分子之解離熵及解離焓,其結果顯示解離熵及解離焓均會隨著溫度上升而增加,此說明了溫度會造成分子結構鬆散進而影響分子間的交互作用。
在升糖素及其抗體的研究中也顯示了生物分子間鍵結強度會隨著環境酸鹼值的增加或降低而下降,此結果說明了分子結構會受溶液中之離子影響進而使分子間交互作用力下降。此結果也可從所估算之自由能強度及解離速率得到印證。在溫度變化之實驗中發現分子間鍵結力會隨著溫度上升而線性下降。此可歸因於升糖素為構形簡單之胺基酸長鏈所組成,因此與溫度會產生強烈之關聯性。此外,在熱動力參數發現升糖素及其抗體在35 0C會急劇上升,此說明了分子構形及鍵結性質均在35 0C產生變化。
本論文已成功地利用原子力顯微術進行生物分子間鍵結強度、解離速率、活化能、解離熵及解離焓之量測。其結果可被應用在生物檢測晶片之生物分子解離環境及探討生命科學之依據。
Molecular recognition and intermolecular binding are essential for implementing many biochemical and biological processes in living organisms. To further understand the molecular binding mechanisms, this study used atomic force microscopy as a force-based senor for investigation of the force strength between antibody and antigen complex in a single pair level with varied physiological (pH and temperature) and physical (loading rate) conditions. The results provided direct evidence of unbinding force, dissociation rate and thermodynamic parameters that explained intermolecular behavior of human IgG1/anti-human IgG1 complex and glucagon/anti-glucagon IgG complexes, respectively.
Mean measured forces of human IgG1 and its specific antibody system with pH-varied liquid environments showed a sharp decrease with a decrease of pH value (acidic environment), and a gradual decrease with an increase of pH value (alkaline environment) from a reference level at neutrality. This could have corresponded to the pH-induced change in conformational change and outer functional groups of amino acids which are protonated. As a result of change in pH environment of human IgG1/anti-human IgG1 complex, surface protonated properties and conformation weakened intermolecular force. Molecular dynamic behavior and free energy change were also contributed to a high probability of bonds breaking and a low magnitude of energy barrier when molecules were immersed in acidic or alkaline solution. Temperature-dependent unbinding force experiments were also carried out. The results showed that the unbinding forces decreased with an increase of environmental temperatures. This could be largely due to temperature-induced conformational change in volume expansion and strong Brownian motion. As a result, interaction forces decreased. Estimated dynamic behavior and thermodynamic parameters also showed weak interactions under high temperatures. This could have corresponded to looser molecular structure and weaker intermolecular interaction in high temperature, thereby increasing entropy and enthalpy.
The interaction between glucagon and anti-glucagon IgG with pH- varied liquid environment exhibited weak interaction force, low energy barriers and high dissociation rates under acidic and alkaline solutions. This indicated that molecular interactions turned out weak forces when pH values increased or decreased away from neutrality. Force measurement as a function of temperature exhibited a nearly linear decrease of force strength with an increase of temperature. This could have been attributed to molecular charge-free conformational changes, resulting in incomplete binding. The thermodynamic enthalpy and entropy for interaction showed an increase with increasing temperature.
Specific interactions of human IgG1/anti-human IgG1 pairs and glucagon/anti-glucagon IgG pairs have been successfully investigated by the atomic force microscope. With the use of an extended Bell and Evans model, the molecular dynamic behavior, free energy change and thermodynamic parameters can be obtained by varying physiological (pH and temperature) and physical (loading rate) conditions. The results provided directly evidence to explain the biological interactions.
CONTENTS
ABSTRACT ............................................................................................I
摘 要 …………………………………………………………..III
謝 誌 ……………………………………………………………V
CONTENTS ………………………………………………………….VII
LIST OF TABLE X
LIST OF FIGURE XI
NOMENCLATURES XXII
CHAPTER 1 INTRODUCTION 1
1-1 Background 1
1-2 Literature survey for the molecules 5
1-2-1 Immunoglobulin molecule 6
1-2-2 Glucagon molecule 8
1-3 Literature survey for AFM in Biologists 9
1-3-1 Avidin-biotin interaction 9
1-3-2 Antibody-antigen interaction 11
1-3-3 Chemicals interaction 16
1-3-4 Other interaction 21
1-4 Motivation 31
CHAPTER 2 MATERIAL AND METHODS 34
2-1 Introduction of atomic force microscopy 34
2-1-1 AFM probe for sensing tip-sample interactions 36
2-1-2 Piezoelectric scanner for moving samples 39
2-1-3 Laser and photodiode for detecting cantilever deflection 41
2-2 AFM tip holder for liquid measurement 45
2-3 A novel temperature-controlled liquid cell system 46
2-4 In-situ temperature-detected biochip 48
2-5 Functional operations of AFM 52
2-5-1 Contact mode 52
2-5-2 Non-contact mode 55
2-5-3 Tapping mode 56
2-6 Calibration of cantilever sensitivity 59
2-7 Calibration of cantilever spring constant 60
2-8 Bio-molecule sample 63
2-8-1 Human IgG1 antigen and its anti-IgG1 antibody 63
2-8-2 Glucagon antigen and its anti-glucagon antibody 67
2-9 AFM tip functionalized with bio-samples 69
2-10 Force-distance curve 72
CHAPTER 3 ANALYSIS OF INTERMOLECULAR PARAMETERS 75
3-1 Discrimination of specific and nonspecific force curve 75
3-2 Dynamic model of intermolecular dissociation 81
3-3 Standard free energy for intermolecular dissociation 85
3-4 Enthalpy and entropy for Intermolecular dissociation 90
CHAPTER 4 HUMAN IgG1 — ANTI- HUMAN IgG1 INTERACTIONS 96
4-1 Dynamic response of IgG1/anti-IgG1 pairs to pH 96
4-1-1 pH-induced changes in the intermolecular forces 96
4-1-2 pH-induced changes in the dissociation rate and free energy 111
4-2 Temperature-induced changes of intermolecular behavior 116
4-2-1 Temperature-induced changes in the intermolecular forces 116
4-2-2 Temperature-induced changes in the dissociation rate and free energy 125
4-2-3 Temperature-induced changes in the thermodynamic parameters 128
CHAPTER 5 GLUCAGON — ANTI-GLUCAGON INTERACTIONS 135
5-1 Dynamic response of glucagon/anti-glucagon pairs to pH 135
5-1-1 pH-induced changes in the intermolecular forces 135
5-1-2 pH-induced changes in the dissociation rate and free energy 145
5-2 Temperature-induced changes of intermolecular behaviors 151
5-2-1 Temperature-induced changes in the intermolecular forces 151
5-2-2 Temperature-induced changes in the dissociation rate and free energy 160
5-2-3 Temperature-induced changes in the thermodynamic parameters 164
CHAPTER 6 CONCLUSION 172
6-1 Conclusion 172
6-2 Recommendation 172
REFERENCES 176
REFERENCES
[1]J.W. Weisel, H. Shuman, R.I. Litvinov, Protein-protein unbinding induced by force: single-molecule studies, Current Opinion in Structural Biology 13 (2003) 227-235.
[2]D.R. Davies, E.A. Padlan, Antibody-antigen complexes, Annu. Rev. Biochem. 59 (1990) 439-473.
[3]A. Skerra, Imitating the humoral immune response, Current Opinion in Chemical Biology 7 (2003) 683-693.
[4]R.G. Hamiiton, Human IgG subclass measurement in the clinical laboratory, Clin. Chem. 33 (1987) 1707-1725.
[5]A.W.P. Vermeer, W. Norde, The thermal stability of Immunoglobuli: unfolding and aggregation of a multi-domain protein, Biophy. J. 78 (2000) 394-404.
[6]J. Buchner, M. Renner, H. Lilie, H.J. Hinz, R. Jaenicke, Alternatively folded states of an immunoglobulin, Biochemistry 30 (1991) 6922-6929.
[7]S.P. Martsev, Z.I. Kravchuk, A.P. Vlasov, G.V. Lyakhnovich, Thermodynamic and functional characterization of a stable IgG conformer obtained by renaturation from a partially structured low pH-induced state, FEBS letters 361 (1995) 173-175.
[8]P. Calmettes, L. Cser, É. Rajnavölogi, Temperature and pH dependence of immunoglobulin G conformation, Archives of Biochem. and Biophys. 291 (1991) 277-283.
[9]V.M. Tischenko, V.P. Zavyalov, G.A. Medgyesi, A.A. Potekhin, P.L. Privalov, A thermodynamic study of cooperative structures in rabbit immunoglobulin G, Eur. J. Biochem. 126 (1982) 517-521.
[10]C.M. Chung, J.D. Chiu, L.H. Connors, O. Gursky, A. Lim, A.B. Dykstra, J. Liepnieks, M.D. Benson, C.E. Costello, M. Skinner, M.T. Walsh, Thermodynamic stability of a ĸl immunoglobulin light chain: relevance to multiple myeloma, Biophys. J. 88 (2005) 4232-4242.
[11]W.W. Bromer, L.G. Sinn, O.K. Behrens, The amino acid sequence of glucagon. V. location of amide groups, acid degradation studies and summary of sequential evidence, J. Am. Chem. Soc. 79 (1957) 2807-2810.
[12]W.B. Gratzer, J.M. Creeth, G.H. Beaven, Presence of trimers in glucagons solution, Eur. J. Biochem. 31 (1972) 505-509.
[13]W.B. Gratzer, G.H. Beaven, Relation between conformation and association state, J. Biol. Chem. 244 (1969) 6675-6679.
[14]C. Boesch, A. Bundi, M. Oppliger, K. Wüthrich, 1H nuclear-magnetic resonance studies of the molecular conformation of monomeric glucagon in aqueous solution, Eur. J. Biochem. 91 (1978) 209-214.
[15]B. Panijpan, W.B. Gratzer, Conformational nature of monomeric glucagon, Eur. J. Biochem. 45 (1974) 547-553.
[16]S.V. Formisano, M.L. Johnson, H. Edelhoch, Thermodynamics of the self-association of glucagons, Proc. Natl. Acad. Sci. 74 (1977) 3340-3344.
[17]G. Binnig, C.F. Quate, C. Gerber, Atomic force microscopy, Phys. Rev. Lett. 56 (1986) 930-933.
[18]E.L. Florin, V.T. Moy, H.E. Gaub, Adhesion forces between indivual ligand-receptor pairs, Science 264 (1994) 415-417.
[19]E. Evans, K. Ritchie, Dynamic strength of molecular adhesion bonds, Biophys. J. 72 (1997) 1541-1555.
[20]E. Evans, Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy, Faraday Discuss. 111(1998) 1-16.
[21]E. Evans, Probing the relation between force lifetime and chemistry in single molecular bonds, Annu. Rev. Biomol, Struct. 30 (2001) 105-128.
[22]V.T. Moy, E.L. Florin, H.E. Gaub, Intermolecular forces and energies between ligands and receptors, Science 264 (1994) 415-417.
[23]G.U. Lee, D.A. Kidwell, R.J. Colton, Sensing discrete streptavidin-biotin interactions with atomic force microscopy, Langmuir 10 (1994) 354-357.
[24]S. Allen, J. Davies, A.C. Dawkes, M.C. Davies, J.C. Edwards, M.C. Parker, C.J. Roberts, J. Softon, S.J.B. Tendler, P.M. Williams, In situ observation of streptavidin-biotin binding on an immunoassay well surface using an atomic force microscope, FEBS Lett. 390 (1996) 161-164.
[25]S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung, C.M. Lieber, Covalently functionalized nanotubes as nanometresized probes in chemistry and biology, Nature 394 (1998) 52-55.
[26]Y.S. Lo, N.D. Huefner, W.S. Chen, F. Stevens, J.M. Harris, T.P.B. Jr, specific interactions between biotin and avidin studied by atomic force microscopy using the poisson statistical analysis method, Langmuir 15 (1999) 1373-1382.
[27]C. Yuan, A. Chen, P. Kolb, V.T. Moy, Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy, Biochemistry 39 (2000) 10219-10223.
[28]Y.S. Lo, Y.J. Zhu, T.P.B. Jr, loading-rate dependence of individual ligand-receptor bond-rupture forces studied by atomic force microscopy, Langmuir, 17 (2001) 3741-3748.
[29]M.M. Stevens, S. Allen, M.C. Davies, C.J. Robert, E. Schacht, S.J.B. Tendler, S. VanSteenkiste, P.M. Williams, The development, characterization, and demonstration of a versatile immobilization strategy for biomolecular force measurement, Langmuir 18 (2002) 6659-6665.
[30]J.K. stuart, V. Hlady, Effects of discrete protein surface interactions in scanning force microscopy adhesion force measurements, Langmuir 11 (1995) 1368-1374.
[31]G. I. Bell, Models for the specific adhesion of cells to cells, Science 200 (1978) 618-627.
[32]P. Hinterdorfer, W. Baumgartner, H.J. Gruber, K. Schilcher, H. Schindler, Detection and locaization of individual antibody-antigen recognition events by atomic force microscopy, Proc. Natl. Acad. Sci. 93 (1996) 3477-3481.
[33]S. Allen, X. Chen, J. Davies, M.C. Davies, A.C. Dawkes, J.C. Edwards, C.J. Roberts, J. Sefton, S.J.B. Tendler, P.M. Williams, Detection of antibody-antigen binding events with the atomic force microscope, Biochemistry, 36 (1997) 7457-7463.
[34]O.H. Willemsen, M.M. Snel, K.O. van der Werfs, B.G. de Grooth, J. Greve, P. Hinterdorfer, H.J. Gruber, H. Schindler, Y. Van Kooyk, C.G. Figdor, simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy, Biophys. J. 75 (1998) 2220-2228.
[35]G. Kada, G. Blayney, L.H. Jeyakumar, F. Kienberger, V.P. Pastushenko, S. Fleischer, H. Schindler, F.A. Lai, P. Hinterdorfer, Recognition force microscopy/spectroscopy of ion channels: applications to the skeletal Ca2+ release channel (RYR1), Ultramicroscopy 86 (2001) 129-137.
[36]J. Kaur, K.V. Singh, A.H. Schmid, G.C. Varshney, C. Riener, M. Trieb, H.G. Knaus, H. Schindler, P. Hinterdorfer, Recognition force spectroscopy studies of the NTA-His6 bond. Single molecules, 1 (2000) 59-65.
[37]F. Kienberger, G. Kada, H. Mueller, P. Hinterdorfer, single molecule studies of antibody-antigen interaction strength versus intra-molecular antigen stability, J. Mol. Biol. 347 (2005) 597-606.
[38]S. Lin, Y.M. Wang, L.S. Huang, C.W. Lin, S.M. Hsu, C.K. Lee, Dynamic response of glucagon/anti-glucagon pairs to pulling velocity and pH studied by atomic force microscopy, Biosensor and Bioelectronics 2006 (In press.)
[39]D.V. Vezenov, A. Noy, L.F. Rozsnyai, C.M. Lieber, Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy, J. Am. Chem. Soc. 119 (1997) 2006-2015.
[40]A. Noy, S. Zepeda, C.A. Orme, Y. Yeh, J.J.D. Yoreo, Entropic barrier in nanoscale adhesion studied by variable temperature chemical force microscopy, JACS 125 (2003) 1356-1362.
[41]S. Zepeda, Y. Yeh, A. Noy, Setermination of energy barriers for intermolecular interactions by variable temperature dynamic force spectroscopy, Langmuir 19 (2003) 1457-1461.
[42]B. Wang, R.D. Oleschuk, J.H. Horton, Chemical force titrations of amine- and sulfonic acid-modified poly(dimethylsiloxane), Langmuir 21 (2005) 1290-1298.
[43]U. Dammer, O. Popescu, P. Wagner, D. Anselmetti, H.J. Güntherodt, G.N. Misevic, Binding strength between cell sdhesion proteoglycans measured by atomic force microscopy, Science 267 (1995) 1173-1175.
[44]H. Nakajima, Y. Kunioka, K. Nakano, K. Shimizu, scanning force microscopy of the interaction events between a single molecule of heavy meromyosin and actin, Biochem. Biophys. Research Communication 234 (1997) 178-182.
[45]J. Fritz, A.G. Katopodis, F. Kolbinger, D. Anselmetti, Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy, Proc. Natl. Acad. Sci. 95 (1998) 12283-12288.
[46]R. Ros, F. Schwesinger, D. Anselmetti, M. Kubon, R. Schäfer, A. Plückthun, L. Tiefenauer, Antigen binding forces of individually addressed single-chain Fv antibody molecules, Proc. National. Academy Science 95 (1998) 7402-7405.
[47]A. Vickier, P. Gervasoni, F. Zaugg, U. Ziegler, P. Lindler, P. Groscurth, Atomic force microscopy detects changes in the interaction forces between GroEL abd substrate proteins, Biophys. J. 74 (1998) 3256-3263.
[48]C.M. Yip, C.C. Yip, M.D. Ward, Direct force measurements of insulin monomer-monomer interactions, Biochemistry 37 (1998) 5439-5449.
[49]H. Mueller, H.J. Butt, E. Bamberg, Force measurement on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscopy, Biophys. J. (1999) 1072-1079.
[50]P.P. Lehenkari, M.A. Horton, Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy, Biochem. Biophys. Res. 259 (1999) 645-650.
[51]W. Baumgartner, P. Hinterdorfer, W. Ness, A. Raab, D. Vestweber, H. Schindler, D. Drenckhahn, Cadherin interaction probed by atomic force microscopy, Proc. Natl. Acad. Sci. 97 (2000) 4005-4010.
[52]A. Chen, V.T. Moy, Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion, Biophys. J. 78 (2000) 2814-2820.
[53]W. Dettmann, M. Grandbois, S. André, M. Benoit, A.K. Wehle, H. Kaltner, H.J. Gabius, H.E. Gaub, Differences in zero-force and force kinetics of ligand dissociation from β-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy, Arch. Biochem. Biophys. 383 (2000) 157-170.
[54]F. Kienberger, G. Kada, H.J. Gruber, V. Pastushenko, C. Riener, M. Trieb, H.G. Knaus, H. Schindler, P. Hinterdrofer, Recognition force spectroscopy studies of the NTA-His6 bond, Single Molecules 1 (2000) 59-65.
[55]M. Berry, T.J. Mcmaster, A.P. Corfield, M.J. Miles, Exploring the molecular adhesion of ocular mucins, Biomarcomolecules 2 (2001) 498-503.
[56]I. Lee, R.E. Marchant, Force measurement on the molecular interactions between ligand (RGD) and human platelet αIIbβ3 receptor system, Surface Science 491 (2001) 433-443.
[57]P. Deseules, M. Grandbois, V.A. Bondarenko, A. Yamazaki, C. Salesse, Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy, Biophys. J. 82 (2002) 3343-3350.
[58]X. Zhang, E. Wojcikiewicz, V.T. Moy, Energy landscape of leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction, Biophys. J. 83 (2002) 2270-2279.
[59]X.E. Cai, J. Yang, The binding potential between the cholera toxin-B-oligomer and its receptor, Biochem. 42 (2003) 4028-4034.
[60]B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. Mcever, C. Zhu, Direct observation of catch bonds involving cell-adhesion molecules, Nature 423 (2003) 190-193.
[61]T. Osada, A. Itoh, A. Ikai, Mapping of the receptor-associated protein (RAP) binding proteins on living fibroblast cells using an atomic force microscope, Ultramicroscopy 97 (2003) 353-357.
[62]O. Popescu, I. Checiu, P. Ghergel, Z. Simon, G. N. Misevic, Quantitative and qualitative approach of glycan-glycan interactions in marine sponges, Biochim. 85 (2003) 181-188.
[63]M. Sletmoen, G. Skjak-Bræk, B.T. Stokke, Single-molecular pair unbinding studies of mannutonan C-5 epimerase AlgE4 and its polymer substrate, Biomarcomolecules 5 (2004) 1288-1295.
[64]E. Kokkoli, S.E. Ochsenhirt, M. Tirrell, Collective and single-molecule interactions of α5β1 integrins, Langmuir 20 (2004) 2397-2404.
[65]C. McAllister, M.A. Karymov, Y. Kawano, A.Y. Lushnikov, A. Mikheikin, V.N. Uversky, Y.L. Lyubchenko, Protein interactions and misfolding analyzed by AFM force spectroscopy, J. Mol. Biol. 354 (2005) 1028-1042.
[66]A. Berquand, N. Xia, D.G. Castner, B.H. Clare, N.L. Abbott, V. Dupres, Y. Adriaensen, Y.F. Dufrêne, Antigen binding forces of single antilysozyme Fv fragments explored by atomic force microscopy, Langmuir, 21 (2005) 5517-5523.
[67]www.nanosensors.com.
[68]V.J. Morris, A.R. Kirby, A.P. Gunning, Atomic force microscopy for biologists, 1999.
[69]B. Bhushan, Handbook of micro/nano tribology, 1995.
[70]J.P. Cleveland, S. Manne, D. Boceh, P.K. Hansma, A non-destructive method for determining the spring constant of the cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64 (1993) 403-405.
[71]P.Y. Chou, G.D. Fasman, The conformation of glucagons: predictions and consequences, Biochemistry 14 (1975) 2536-2541.
[72]S. Allen, J. Davies, M.C. Davies, A.C. Dawkes, C.J. Robert, The situ observation of streptavidin-biotin binding on an immunoassay well surface using an atomic force microscopy, Biochem. J. 341 (1996) 173-178.
[73]S. Izrailev, S. Stepaniants, M. Balsera, Y. Oono, K. Schulten, Molecular dynamics study of unbinding of the avidin-biotin complex, Biophys. J. 72 (1997) 1568-1581.
[74]M. Daune, Molecular Biophysics, 1999.
[75]Y. E. Ryabov, A. Puzenko, Y. Feldman, Nonmonotonic relaxation kinetics of confined system, Phys. Rev.(B) 69 (2004) 0142041-10420410.
[76]J.Y. Wong, T.L. Kuhl, J.N. Israelachvili, N. Mullah, S. Zalipsky, Direct measurement of a tethered ligand-receptor interaction potential, Science, 275 (1997) 820-822.
[77]F. Kilár, P. Závodszky, Non-covalent interactions between Fab and Fc regions in immunoglobulin G molecules, Eur. J. Biochem. 162 (1987) 57-61.
[78]B. Heymann, H. Grubmüller, AN02/DNP-hapten unbinding forces studied by molecular dynamics atomic force microscopy simulations, Chemical Physics Letters 303 (1999) 1-9.
[79]T. Strunz, K. Oroszlan, I. Schumakovitch, H. J. Güntherodt, M. Hegner, Model energy landscapes and the force-induced dissociation of ligand-receptor bonds, Biophys. J. 79 (2000) 1206-1212.
[80]G. D’Anna, P. Mayor, A. Barrat, V. Loreto, F. Nori, Observing brownian motion in vibration-fluidized granular matter, Letters to Nature 424 (2003) 909-912.
[81]N.F.A. van der Vegt, D. Trzesniak, B. Kasumaj, A.F. van Gunsteren, Energy-entropy compensation in the transfer of nonpolar solutions from water to cosolvent/water mixtures, Chem. Phys. Chem. 5 (2004) 144-147.
[82]A. Ahluwalia, D.D. Rossi, A. Schirone, Antigen recognition properties of antibody monolayers, Thin Solid Firm 210 (1992) 726-729.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top