|
REFERENCES [1]J.W. Weisel, H. Shuman, R.I. Litvinov, Protein-protein unbinding induced by force: single-molecule studies, Current Opinion in Structural Biology 13 (2003) 227-235. [2]D.R. Davies, E.A. Padlan, Antibody-antigen complexes, Annu. Rev. Biochem. 59 (1990) 439-473. [3]A. Skerra, Imitating the humoral immune response, Current Opinion in Chemical Biology 7 (2003) 683-693. [4]R.G. Hamiiton, Human IgG subclass measurement in the clinical laboratory, Clin. Chem. 33 (1987) 1707-1725. [5]A.W.P. Vermeer, W. Norde, The thermal stability of Immunoglobuli: unfolding and aggregation of a multi-domain protein, Biophy. J. 78 (2000) 394-404. [6]J. Buchner, M. Renner, H. Lilie, H.J. Hinz, R. Jaenicke, Alternatively folded states of an immunoglobulin, Biochemistry 30 (1991) 6922-6929. [7]S.P. Martsev, Z.I. Kravchuk, A.P. Vlasov, G.V. Lyakhnovich, Thermodynamic and functional characterization of a stable IgG conformer obtained by renaturation from a partially structured low pH-induced state, FEBS letters 361 (1995) 173-175. [8]P. Calmettes, L. Cser, É. Rajnavölogi, Temperature and pH dependence of immunoglobulin G conformation, Archives of Biochem. and Biophys. 291 (1991) 277-283. [9]V.M. Tischenko, V.P. Zavyalov, G.A. Medgyesi, A.A. Potekhin, P.L. Privalov, A thermodynamic study of cooperative structures in rabbit immunoglobulin G, Eur. J. Biochem. 126 (1982) 517-521. [10]C.M. Chung, J.D. Chiu, L.H. Connors, O. Gursky, A. Lim, A.B. Dykstra, J. Liepnieks, M.D. Benson, C.E. Costello, M. Skinner, M.T. Walsh, Thermodynamic stability of a ĸl immunoglobulin light chain: relevance to multiple myeloma, Biophys. J. 88 (2005) 4232-4242. [11]W.W. Bromer, L.G. Sinn, O.K. Behrens, The amino acid sequence of glucagon. V. location of amide groups, acid degradation studies and summary of sequential evidence, J. Am. Chem. Soc. 79 (1957) 2807-2810. [12]W.B. Gratzer, J.M. Creeth, G.H. Beaven, Presence of trimers in glucagons solution, Eur. J. Biochem. 31 (1972) 505-509. [13]W.B. Gratzer, G.H. Beaven, Relation between conformation and association state, J. Biol. Chem. 244 (1969) 6675-6679. [14]C. Boesch, A. Bundi, M. Oppliger, K. Wüthrich, 1H nuclear-magnetic resonance studies of the molecular conformation of monomeric glucagon in aqueous solution, Eur. J. Biochem. 91 (1978) 209-214. [15]B. Panijpan, W.B. Gratzer, Conformational nature of monomeric glucagon, Eur. J. Biochem. 45 (1974) 547-553. [16]S.V. Formisano, M.L. Johnson, H. Edelhoch, Thermodynamics of the self-association of glucagons, Proc. Natl. Acad. Sci. 74 (1977) 3340-3344. [17]G. Binnig, C.F. Quate, C. Gerber, Atomic force microscopy, Phys. Rev. Lett. 56 (1986) 930-933. [18]E.L. Florin, V.T. Moy, H.E. Gaub, Adhesion forces between indivual ligand-receptor pairs, Science 264 (1994) 415-417. [19]E. Evans, K. Ritchie, Dynamic strength of molecular adhesion bonds, Biophys. J. 72 (1997) 1541-1555. [20]E. Evans, Energy landscapes of biomolecular adhesion and receptor anchoring at interfaces explored with dynamic force spectroscopy, Faraday Discuss. 111(1998) 1-16. [21]E. Evans, Probing the relation between force lifetime and chemistry in single molecular bonds, Annu. Rev. Biomol, Struct. 30 (2001) 105-128. [22]V.T. Moy, E.L. Florin, H.E. Gaub, Intermolecular forces and energies between ligands and receptors, Science 264 (1994) 415-417. [23]G.U. Lee, D.A. Kidwell, R.J. Colton, Sensing discrete streptavidin-biotin interactions with atomic force microscopy, Langmuir 10 (1994) 354-357. [24]S. Allen, J. Davies, A.C. Dawkes, M.C. Davies, J.C. Edwards, M.C. Parker, C.J. Roberts, J. Softon, S.J.B. Tendler, P.M. Williams, In situ observation of streptavidin-biotin binding on an immunoassay well surface using an atomic force microscope, FEBS Lett. 390 (1996) 161-164. [25]S.S. Wong, E. Joselevich, A.T. Woolley, C.L. Cheung, C.M. Lieber, Covalently functionalized nanotubes as nanometresized probes in chemistry and biology, Nature 394 (1998) 52-55. [26]Y.S. Lo, N.D. Huefner, W.S. Chen, F. Stevens, J.M. Harris, T.P.B. Jr, specific interactions between biotin and avidin studied by atomic force microscopy using the poisson statistical analysis method, Langmuir 15 (1999) 1373-1382. [27]C. Yuan, A. Chen, P. Kolb, V.T. Moy, Energy landscape of streptavidin-biotin complexes measured by atomic force microscopy, Biochemistry 39 (2000) 10219-10223. [28]Y.S. Lo, Y.J. Zhu, T.P.B. Jr, loading-rate dependence of individual ligand-receptor bond-rupture forces studied by atomic force microscopy, Langmuir, 17 (2001) 3741-3748. [29]M.M. Stevens, S. Allen, M.C. Davies, C.J. Robert, E. Schacht, S.J.B. Tendler, S. VanSteenkiste, P.M. Williams, The development, characterization, and demonstration of a versatile immobilization strategy for biomolecular force measurement, Langmuir 18 (2002) 6659-6665. [30]J.K. stuart, V. Hlady, Effects of discrete protein surface interactions in scanning force microscopy adhesion force measurements, Langmuir 11 (1995) 1368-1374. [31]G. I. Bell, Models for the specific adhesion of cells to cells, Science 200 (1978) 618-627. [32]P. Hinterdorfer, W. Baumgartner, H.J. Gruber, K. Schilcher, H. Schindler, Detection and locaization of individual antibody-antigen recognition events by atomic force microscopy, Proc. Natl. Acad. Sci. 93 (1996) 3477-3481. [33]S. Allen, X. Chen, J. Davies, M.C. Davies, A.C. Dawkes, J.C. Edwards, C.J. Roberts, J. Sefton, S.J.B. Tendler, P.M. Williams, Detection of antibody-antigen binding events with the atomic force microscope, Biochemistry, 36 (1997) 7457-7463. [34]O.H. Willemsen, M.M. Snel, K.O. van der Werfs, B.G. de Grooth, J. Greve, P. Hinterdorfer, H.J. Gruber, H. Schindler, Y. Van Kooyk, C.G. Figdor, simultaneous height and adhesion imaging of antibody-antigen interactions by atomic force microscopy, Biophys. J. 75 (1998) 2220-2228. [35]G. Kada, G. Blayney, L.H. Jeyakumar, F. Kienberger, V.P. Pastushenko, S. Fleischer, H. Schindler, F.A. Lai, P. Hinterdorfer, Recognition force microscopy/spectroscopy of ion channels: applications to the skeletal Ca2+ release channel (RYR1), Ultramicroscopy 86 (2001) 129-137. [36]J. Kaur, K.V. Singh, A.H. Schmid, G.C. Varshney, C. Riener, M. Trieb, H.G. Knaus, H. Schindler, P. Hinterdorfer, Recognition force spectroscopy studies of the NTA-His6 bond. Single molecules, 1 (2000) 59-65. [37]F. Kienberger, G. Kada, H. Mueller, P. Hinterdorfer, single molecule studies of antibody-antigen interaction strength versus intra-molecular antigen stability, J. Mol. Biol. 347 (2005) 597-606. [38]S. Lin, Y.M. Wang, L.S. Huang, C.W. Lin, S.M. Hsu, C.K. Lee, Dynamic response of glucagon/anti-glucagon pairs to pulling velocity and pH studied by atomic force microscopy, Biosensor and Bioelectronics 2006 (In press.) [39]D.V. Vezenov, A. Noy, L.F. Rozsnyai, C.M. Lieber, Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy, J. Am. Chem. Soc. 119 (1997) 2006-2015. [40]A. Noy, S. Zepeda, C.A. Orme, Y. Yeh, J.J.D. Yoreo, Entropic barrier in nanoscale adhesion studied by variable temperature chemical force microscopy, JACS 125 (2003) 1356-1362. [41]S. Zepeda, Y. Yeh, A. Noy, Setermination of energy barriers for intermolecular interactions by variable temperature dynamic force spectroscopy, Langmuir 19 (2003) 1457-1461. [42]B. Wang, R.D. Oleschuk, J.H. Horton, Chemical force titrations of amine- and sulfonic acid-modified poly(dimethylsiloxane), Langmuir 21 (2005) 1290-1298. [43]U. Dammer, O. Popescu, P. Wagner, D. Anselmetti, H.J. Güntherodt, G.N. Misevic, Binding strength between cell sdhesion proteoglycans measured by atomic force microscopy, Science 267 (1995) 1173-1175. [44]H. Nakajima, Y. Kunioka, K. Nakano, K. Shimizu, scanning force microscopy of the interaction events between a single molecule of heavy meromyosin and actin, Biochem. Biophys. Research Communication 234 (1997) 178-182. [45]J. Fritz, A.G. Katopodis, F. Kolbinger, D. Anselmetti, Force-mediated kinetics of single P-selectin/ligand complexes observed by atomic force microscopy, Proc. Natl. Acad. Sci. 95 (1998) 12283-12288. [46]R. Ros, F. Schwesinger, D. Anselmetti, M. Kubon, R. Schäfer, A. Plückthun, L. Tiefenauer, Antigen binding forces of individually addressed single-chain Fv antibody molecules, Proc. National. Academy Science 95 (1998) 7402-7405. [47]A. Vickier, P. Gervasoni, F. Zaugg, U. Ziegler, P. Lindler, P. Groscurth, Atomic force microscopy detects changes in the interaction forces between GroEL abd substrate proteins, Biophys. J. 74 (1998) 3256-3263. [48]C.M. Yip, C.C. Yip, M.D. Ward, Direct force measurements of insulin monomer-monomer interactions, Biochemistry 37 (1998) 5439-5449. [49]H. Mueller, H.J. Butt, E. Bamberg, Force measurement on myelin basic protein adsorbed to mica and lipid bilayer surfaces done with the atomic force microscopy, Biophys. J. (1999) 1072-1079. [50]P.P. Lehenkari, M.A. Horton, Single integrin molecule adhesion forces in intact cells measured by atomic force microscopy, Biochem. Biophys. Res. 259 (1999) 645-650. [51]W. Baumgartner, P. Hinterdorfer, W. Ness, A. Raab, D. Vestweber, H. Schindler, D. Drenckhahn, Cadherin interaction probed by atomic force microscopy, Proc. Natl. Acad. Sci. 97 (2000) 4005-4010. [52]A. Chen, V.T. Moy, Cross-linking of cell surface receptors enhances cooperativity of molecular adhesion, Biophys. J. 78 (2000) 2814-2820. [53]W. Dettmann, M. Grandbois, S. André, M. Benoit, A.K. Wehle, H. Kaltner, H.J. Gabius, H.E. Gaub, Differences in zero-force and force kinetics of ligand dissociation from β-galactoside-specific proteins (plant and animal lectins, immunoglobulin G) monitored by plasmon resonance and dynamic single molecule force microscopy, Arch. Biochem. Biophys. 383 (2000) 157-170. [54]F. Kienberger, G. Kada, H.J. Gruber, V. Pastushenko, C. Riener, M. Trieb, H.G. Knaus, H. Schindler, P. Hinterdrofer, Recognition force spectroscopy studies of the NTA-His6 bond, Single Molecules 1 (2000) 59-65. [55]M. Berry, T.J. Mcmaster, A.P. Corfield, M.J. Miles, Exploring the molecular adhesion of ocular mucins, Biomarcomolecules 2 (2001) 498-503. [56]I. Lee, R.E. Marchant, Force measurement on the molecular interactions between ligand (RGD) and human platelet αIIbβ3 receptor system, Surface Science 491 (2001) 433-443. [57]P. Deseules, M. Grandbois, V.A. Bondarenko, A. Yamazaki, C. Salesse, Measurement of membrane binding between recoverin, a calcium-myristoyl switch protein, and lipid bilayers by AFM-based force spectroscopy, Biophys. J. 82 (2002) 3343-3350. [58]X. Zhang, E. Wojcikiewicz, V.T. Moy, Energy landscape of leukocyte function-associated antigen-1/intercellular adhesion molecule-1 interaction, Biophys. J. 83 (2002) 2270-2279. [59]X.E. Cai, J. Yang, The binding potential between the cholera toxin-B-oligomer and its receptor, Biochem. 42 (2003) 4028-4034. [60]B.T. Marshall, M. Long, J.W. Piper, T. Yago, R.P. Mcever, C. Zhu, Direct observation of catch bonds involving cell-adhesion molecules, Nature 423 (2003) 190-193. [61]T. Osada, A. Itoh, A. Ikai, Mapping of the receptor-associated protein (RAP) binding proteins on living fibroblast cells using an atomic force microscope, Ultramicroscopy 97 (2003) 353-357. [62]O. Popescu, I. Checiu, P. Ghergel, Z. Simon, G. N. Misevic, Quantitative and qualitative approach of glycan-glycan interactions in marine sponges, Biochim. 85 (2003) 181-188. [63]M. Sletmoen, G. Skjak-Bræk, B.T. Stokke, Single-molecular pair unbinding studies of mannutonan C-5 epimerase AlgE4 and its polymer substrate, Biomarcomolecules 5 (2004) 1288-1295. [64]E. Kokkoli, S.E. Ochsenhirt, M. Tirrell, Collective and single-molecule interactions of α5β1 integrins, Langmuir 20 (2004) 2397-2404. [65]C. McAllister, M.A. Karymov, Y. Kawano, A.Y. Lushnikov, A. Mikheikin, V.N. Uversky, Y.L. Lyubchenko, Protein interactions and misfolding analyzed by AFM force spectroscopy, J. Mol. Biol. 354 (2005) 1028-1042. [66]A. Berquand, N. Xia, D.G. Castner, B.H. Clare, N.L. Abbott, V. Dupres, Y. Adriaensen, Y.F. Dufrêne, Antigen binding forces of single antilysozyme Fv fragments explored by atomic force microscopy, Langmuir, 21 (2005) 5517-5523. [67]www.nanosensors.com. [68]V.J. Morris, A.R. Kirby, A.P. Gunning, Atomic force microscopy for biologists, 1999. [69]B. Bhushan, Handbook of micro/nano tribology, 1995. [70]J.P. Cleveland, S. Manne, D. Boceh, P.K. Hansma, A non-destructive method for determining the spring constant of the cantilevers for scanning force microscopy, Rev. Sci. Instrum. 64 (1993) 403-405. [71]P.Y. Chou, G.D. Fasman, The conformation of glucagons: predictions and consequences, Biochemistry 14 (1975) 2536-2541. [72]S. Allen, J. Davies, M.C. Davies, A.C. Dawkes, C.J. Robert, The situ observation of streptavidin-biotin binding on an immunoassay well surface using an atomic force microscopy, Biochem. J. 341 (1996) 173-178. [73]S. Izrailev, S. Stepaniants, M. Balsera, Y. Oono, K. Schulten, Molecular dynamics study of unbinding of the avidin-biotin complex, Biophys. J. 72 (1997) 1568-1581. [74]M. Daune, Molecular Biophysics, 1999. [75]Y. E. Ryabov, A. Puzenko, Y. Feldman, Nonmonotonic relaxation kinetics of confined system, Phys. Rev.(B) 69 (2004) 0142041-10420410. [76]J.Y. Wong, T.L. Kuhl, J.N. Israelachvili, N. Mullah, S. Zalipsky, Direct measurement of a tethered ligand-receptor interaction potential, Science, 275 (1997) 820-822. [77]F. Kilár, P. Závodszky, Non-covalent interactions between Fab and Fc regions in immunoglobulin G molecules, Eur. J. Biochem. 162 (1987) 57-61. [78]B. Heymann, H. Grubmüller, AN02/DNP-hapten unbinding forces studied by molecular dynamics atomic force microscopy simulations, Chemical Physics Letters 303 (1999) 1-9. [79]T. Strunz, K. Oroszlan, I. Schumakovitch, H. J. Güntherodt, M. Hegner, Model energy landscapes and the force-induced dissociation of ligand-receptor bonds, Biophys. J. 79 (2000) 1206-1212. [80]G. D’Anna, P. Mayor, A. Barrat, V. Loreto, F. Nori, Observing brownian motion in vibration-fluidized granular matter, Letters to Nature 424 (2003) 909-912. [81]N.F.A. van der Vegt, D. Trzesniak, B. Kasumaj, A.F. van Gunsteren, Energy-entropy compensation in the transfer of nonpolar solutions from water to cosolvent/water mixtures, Chem. Phys. Chem. 5 (2004) 144-147. [82]A. Ahluwalia, D.D. Rossi, A. Schirone, Antigen recognition properties of antibody monolayers, Thin Solid Firm 210 (1992) 726-729.
|