|
[1]J. C. Chiou, C. C. Su, H. C. Hong, K. H. Chen, and Y. Chiou, NSC-95-2221-E-009-344: The design and fabrication of an ultra low power micro-sensing module for wireless sensor networks. Supported by NSC, Taiwan, R.O.C., 2005. [2]David A. Johns, and Ken Martin, “Analog Integrated Circuit Design,” John Wiley & Sons, Inc., 1997 [3]A. S. Sedra and K. C. Smith, Microelectronic Circuits, 4th Ed., Oxford University Press, 1998. [4]H. C. Hong and G. M. Lee, “A 65fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC,” IEEE J. Solid-State Circuits, vol. 42, no. 10, October 2007. [5]N. Verma and A. P. Chandrakasan, “A 25µW 100 kS/s 12b ADC for wireless micro-sensor applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2006, pp. 822–831. [6]M. D. Scott, B. E. Boser, K. S. J. Pister, “An ultralow-energy ADC for smart dust,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1123-1129, July 2003. [7]Sauerbrey J., Schmitt-Landsiedel D. & Thewes R., “A 0.5-V 1-µW successive approximation ADC,” IEEE J. Solid-State Circuits 38(7), 1261- 1265, 2003. [8]S. Mortezapour and E. K. F. Lee, “A 1-V, 8-Bit Successive Approximation ADC in Standard CMOS Process,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 642-646, April 2000. [9]H. P. Le, J. Singh, L. Hiremath, V. Mallapur and A. Stojcevski, “Ultra-low-power variable-resolution successive approximation ADC for biomedical application,” Electronics Letters, vol. 41, no. 11, May 2005. [10]Hwang-Cherng Chow, Bo-Wei Chen, Hsiao-Chen Chen and Wu-Shiung Feng, “A 1.8V, 0.3mW, 10-Bit SA-ADC with new self-timed timing control for biomedical applications,” IEEE International Symposium on Circuits and Systems, vol. 1, pp. 736-739, May 2005. [11]J. Crols and M. Steyaert, “Switched-opamp: An approach to realize full CMOS switched-capacitor circuits at very low power supply voltages,” IEEE J. Solid-State Circuits, vol. 29, no. 8, pp. 936-942, August 1994. [12]T. Yoshida, M. Akagi, M. Sasaki, and A. Iwata, “A 1V supply successive approximation ADC with rail-to-rail input voltage range,” IEEE International Symposium on Circuits and Systems (ISCAS), Vol. 1, pp. 192-195, May 2005 [13]B. J. Blalock, P. E. Allen, and G. A. Rincon-Mora, “Designing 1-V op amps using standard digital CMOS technology,” IEEE Transactions on Circuits and Systems-Ⅱ, vol. 45, no. 7, July 1998. [14]L. H. de Carvalho Ferreira and T. C. Pimenta, “An ultra low-voltage CMOS OTA Miller with rail-to-rail operation,” in Proceedings of the 16th International Conference on Microelectronics, pp. 223-226, Dec. 2004. [15]Phillip E. Allen ,and Douglas R. Holberg, “CMOS Analog Circuit Design,”New York Oxford, Second Edition, 2002 [16]A. Rossi and G. Fucili, “Nonredundant successive approximation register for A/D converters,” Electronics letters, vol. 32, no. 12, June 1996. [17]E. Culurciello and A. Andreou, “An 8-bit, 1mW successive approximation ADC in SOI CMOS,” Proceedings of the 2003 IEEE International Symposium on Circuits and Systems, (ISCAS 2003), vol. 1, pp. 301-304, June 2003. [18]K. Hadidi, V. S. Tso, and G. C. Temes, “An 8-b 1.3-MHz successive approximation A/D converter,” IEEE J. Solid-State Circuits, vol. 25, no. 3, pp. 880-885, June 1990. [19]H. Neubauer, T. Desel, and H. Hauer, “A successive approximation A/D converter with 16 bit 200 kS/s in 0.6 _m CMOS using selfcalibration and low power techniques,” in Proc. 8th IEEE Int. Conf. Electronics, Circuits and Systems, Sep. 2001, pp. 859–862. [20]F. Kuttner, “A 1.2 V 10b 20 MSample/s non-binany successive approximation ADC in 0.13 µm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2002, pp. 136–137. [21]C.-S. Lin and B.-D. Liu, “A new successive approximation architecture for low-power low-cost CMOS A/D converter,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 54–62, Jan. 2003. [22]Behzad Razavi, “Design of Integrated Circuits for Optical Communications,” [23]L. H. de Carvalho Ferreira and T. C. Pimenta, “An ultra low-voltage CMOS OTA Miller with rail-to-rail operation,” in Proceedings of the 16th International Conference on Microelectronics, pp. 223-226, Dec. 2004. [24]B. J. Blalock, P. E. Allen, and G. A. Rincon-Mora, “Designing 1-V op amps using standard digital CMOS technology,” IEEE Transactions on Circuits and Systems-Ⅱ, vol. 45, no. 7, July 1998. [25]A. L. Coban and P. E. Allen, “A 1.75V rail-to-rail CMOS op amp,” IEEE Int. Symp. Circuits and Systems, pp. 497-500, 1994. [26]R. Hogervorst, R. J. Wiegerink, P. A.L de Jong, J. Fonderie, R. F. Wassenaar, and J. H. Huijsing, “CMOS low-voltage operational amplifiers with constant-gm rail-to-rail input stage,” IEEE International Symposium on Circuits and Systems, vol. 6, pp. 2876-2879, May 1992. [27]J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, “A 0.5-V 1-�巰 successive approximation ADC,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1261–1265, Jul. 2003. [28]S. Gambini and J. Rabaey, “Low-Power Successive Approximation Converter With 0.5 V Supply in 90nm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 11, November 2007. [29]X. Jiang, Z. Wang, and M. F. Chang, “A 2GS/s 6b ADC in 0.18µm CMOS,” IEEE International Solid-State Circuits Conference, pp. 322-323, Feb. 2003. [30]C. Sandner, M. Clara, A. Santner, T. Hartig, and F. Kuttner, “A 6bit, 1.2GSps Low-Power Flash-ADC in 0.13-µm Digital CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1499-1505, July 2005. [31]K.S Tan, S. Kiriaki, M.D. Wit, J.W. Fattaruso, C.Y. Tsay, W.E. Matthews, R.K. Hester, “Error Correction Techniques for High-Performance Differential A/D Converters,” IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. December 1990. [32]Y. Matsuya and J. Yamada, “1 V power supply, low-power consumption A/D conversion technique with swing-suppression noise shaping,” IEEE J. Solid-State Circuits, vol. 29, no. 12, December 1994. [33]D. Aksin, M. Al-Shyoukh, and F. Maloberti, “Switch bootstrapping for precise sampling beyond supply voltage,” IEEE J. Solid-State Circuits, vol 41, no. 8, Aug. 2006. [34]M. Waltari and K. A. I. Halonen, “1-V 9-Bit Pipelined Switched-Opamp ADC,” IEEE J. Solid-State Circuits, vol. 36, no. 1, January 2001. [35]蔡振宇, “Low Power Techniques for Digital IC Design,” CICeNEWS, vol 86, Dec. 15th, 2007. [36]http://members.tripod.com/~x_zhou/MSM2000/sld011.htm [37]S. Y. Chin and C. Y. Wu, “A CMOS ratio-independent and gain-insensitive algorithmic analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 31, no. 8, August 1996. [38]G. Promitzer, “12-bit Low-Power Fully Differential Switched Capacitor Noncalibrating Successive Approximation ADC with 1 MS/s,” IEEE J. Solid-State Circuits, vol 36, no. 7 , Jul. 1995. [39]J. A. M. Jarvinen, M. Saukoski and K. Halonen, “A 12-bit 32�巰 Ratio- Independent Algorithmic ADC,” Symposium on VLSI Circuits Digest, 2006. [40]鄭國順, 醫療儀器設計與應用上課投影片.
|