跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.169) 您好!臺灣時間:2025/10/30 00:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭榮洲
研究生(外文):Rong-Jhou Guo
論文名稱:十二位元超低耗能連續近似式類比數位轉換器之設計
論文名稱(外文):Design of a 12-bit, Ultra-low Power Successive Approximation Analog-to-Digital Converter
指導教授:洪浩喬
指導教授(外文):Hao-Chiao Hong
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電機與控制工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:99
中文關鍵詞:超低耗能連續近似式類比數位轉換器軌對軌放大器
外文關鍵詞:Ultra-low powerSuccessive approximation analog-to-digital converterRail-to-rail amplifier
相關次數:
  • 被引用被引用:1
  • 點閱點閱:566
  • 評分評分:
  • 下載下載:96
  • 收藏至我的研究室書目清單書目收藏:1
本論文提出利用0.18μm CMOS製程實現一12位元超低耗能連續近似式類比數位轉換器,此類比數位轉換器使用具備消除過偏移量功能的前置放大器來降低比較器的偏移量,並且使用capacitor splitting DAC來減少DAC的誤差量及功率消耗。為了得到更好訊號雜訊比值,我們使用一個具有軌對軌(Rail-to-rail)輸入範圍的放大器來作為前置放大器的第一級,使類比數位轉換器可以接受軌對軌的輸入訊號。為了讓前置放大器在低電壓下亦能正常工作,我們並聯主動式正電阻和主動式負電阻來作為其負載,使其在0.5V之下仍可正常工作。量測結果顯示,當使用供應電壓為0.55伏特且輸出頻率為1KS/s時,此連續近似式類比數位轉換器可提供軌對軌的輸入範圍,以及50.73dB的訊號對雜訊諧波比(SNDR),且此類比數位轉換器之功率消耗只有35nW,而其有效解析度頻寬可以到達奈奎斯(Nyquist)頻寬(500Hz),此時相對應之能源FOM (Figure of merit)可達124fJ/conversion-step,與已知文獻中功耗最低之類比數位轉換器相較,此類比數位轉換器消耗功率僅為其24分之一,為目前已知消耗功率最低的類比數位轉換器。
This paper presents a 12-bit, ultra low power successive approximation analog-to-digital converter in TSMC 0.18μm 1P6M CMOS process. The analog-to-digital converter uses the offset-free pre-amplifiers to alleviate the impacts of the comparator’s offset. The bridging capacitive DAC is adopted to reduce the nonlinearity and to save the power of the DAC. The pre-amplifiers with a rail-to-rail input range are used to make the input range of the ADC also rail-to-rail. We used a diode-connected transistor in parallel with a negative resistor as the loads of the pre-amplifers in order to enable them operating at a supply voltage as low as 0.5V. Measurement results show that at an output rate of 1KS/s and a supply voltage 0.55V, the SA ADC provides a rail-to-rail input range and achieves a signal-to-noise-distortion ratio (SNDR) of 50.7dB and an effective resolution bandwidth (ERBW) up to the Nyquist bandwidth (500Hz). Its power consumption is as low as 35 nW, corresponding to an energy figure of merit (FOM) as good as 124fJ/conversion-step. The power of the proposed ADC is 24 times better than the lowest record of the state-of-the-art works as far as we know.
中文摘要 I
英文摘要 II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 1
1.3 論文章節組織及研究方法 4
第二章 ADC介紹 5
2.1 Sigma-delta類比數位轉換器 5
2.2 積分式類比數位轉換器(Integrating ADC) 6
2.3 連續漸近式類比數位轉換器(SA ADC) 8
2.4 循環式類比數位轉換器(Cyclic ADC) 9
2.5 類比數位轉換器之選擇 10
第三章 十二位元超低功率連續漸近式類比數位轉換器設計 12
3.1 提出之SA ADC 13
3.1.1 取樣保持電路(Sample and hold, S/H) 15
3.1.2 數位類比轉換器(DAC) 22
3.1.3 比較器(Comparator) 29
3.1.3.1 前置放大器 (Pre-amplifier) 31
3.1.3.2 比較器 (Comparator)[4] 37
3.1.4 連續近似暫存器(SAR) 37
3.2 ADC佈局圖 39
第四章 模擬與驗證 41
4.1 供應電壓為1V之模擬結果 41
4.1.1 動態參數 41
4.1.2 功率消耗(Power dissipation) 43
4.2 供應電壓為0.9V之模擬結果 45
4.2.1 動態參數 45
4.2.2 功率消耗(Power dissipation) 47
4.3 供應電壓為0.55V之模擬結果 49
4.4 供應電壓為0.5V之模擬結果 52
4.5 ADC模擬結果與比較 53
第五章 量測結果 56
5.1 量測環境設定 56
5.2 供應電壓為0.55V之量測結果 57
5.2.1 動態參數 57
5.2.2 靜態參數 61
5.2.3 功率消耗 62
5.3 供應電壓為0.5V之量測結果 63
5.3.1 動態參數 63
5.3.2 靜態參數 65
5.4 供應電壓為0.9V之量測結果 66
5.4.1 時脈頻率490KHz 66
5.4.1.1 動態參數 66
5.4.1.2 靜態參數 70
5.4.2 時脈頻率210KHz 71
5.4.2.1 動態參數 71
5.4.2.2 靜態參數 75
5.4.3 功率消耗 76
5.5 供應電壓為1V之量測結果 78
5.5.1 動態參數 78
5.5.2 靜態參數 80
5.5.3 功率消耗 82
5.6 效能分析 82
5.7 量測結果與比較 84
第六章 結論與未來展望 87
附錄 A 88
附錄 B 95
參考文獻 97
[1]J. C. Chiou, C. C. Su, H. C. Hong, K. H. Chen, and Y. Chiou, NSC-95-2221-E-009-344: The design and fabrication of an ultra low power micro-sensing module for wireless sensor networks. Supported by NSC, Taiwan, R.O.C., 2005.
[2]David A. Johns, and Ken Martin, “Analog Integrated Circuit Design,” John Wiley & Sons, Inc., 1997
[3]A. S. Sedra and K. C. Smith, Microelectronic Circuits, 4th Ed., Oxford University Press, 1998.
[4]H. C. Hong and G. M. Lee, “A 65fJ/Conversion-Step 0.9-V 200-kS/s Rail-to-Rail 8-bit Successive Approximation ADC,” IEEE J. Solid-State Circuits, vol. 42, no. 10, October 2007.
[5]N. Verma and A. P. Chandrakasan, “A 25µW 100 kS/s 12b ADC for wireless micro-sensor applications,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2006, pp. 822–831.
[6]M. D. Scott, B. E. Boser, K. S. J. Pister, “An ultralow-energy ADC for smart dust,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1123-1129, July 2003.
[7]Sauerbrey J., Schmitt-Landsiedel D. & Thewes R., “A 0.5-V 1-µW successive approximation ADC,” IEEE J. Solid-State Circuits 38(7), 1261- 1265, 2003.
[8]S. Mortezapour and E. K. F. Lee, “A 1-V, 8-Bit Successive Approximation ADC in Standard CMOS Process,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 642-646, April 2000.
[9]H. P. Le, J. Singh, L. Hiremath, V. Mallapur and A. Stojcevski, “Ultra-low-power variable-resolution successive approximation ADC for biomedical application,” Electronics Letters, vol. 41, no. 11, May 2005.
[10]Hwang-Cherng Chow, Bo-Wei Chen, Hsiao-Chen Chen and Wu-Shiung Feng, “A 1.8V, 0.3mW, 10-Bit SA-ADC with new self-timed timing control for biomedical applications,” IEEE International Symposium on Circuits and Systems, vol. 1, pp. 736-739, May 2005.
[11]J. Crols and M. Steyaert, “Switched-opamp: An approach to realize full CMOS switched-capacitor circuits at very low power supply voltages,” IEEE J. Solid-State Circuits, vol. 29, no. 8, pp. 936-942, August 1994.
[12]T. Yoshida, M. Akagi, M. Sasaki, and A. Iwata, “A 1V supply successive approximation ADC with rail-to-rail input voltage range,” IEEE International Symposium on Circuits and Systems (ISCAS), Vol. 1, pp. 192-195, May 2005
[13]B. J. Blalock, P. E. Allen, and G. A. Rincon-Mora, “Designing 1-V op amps using standard digital CMOS technology,” IEEE Transactions on Circuits and Systems-Ⅱ, vol. 45, no. 7, July 1998.
[14]L. H. de Carvalho Ferreira and T. C. Pimenta, “An ultra low-voltage CMOS OTA Miller with rail-to-rail operation,” in Proceedings of the 16th International Conference on Microelectronics, pp. 223-226, Dec. 2004.
[15]Phillip E. Allen ,and Douglas R. Holberg, “CMOS Analog Circuit Design,”New York Oxford, Second Edition, 2002
[16]A. Rossi and G. Fucili, “Nonredundant successive approximation register for A/D converters,” Electronics letters, vol. 32, no. 12, June 1996.
[17]E. Culurciello and A. Andreou, “An 8-bit, 1mW successive approximation ADC in SOI CMOS,” Proceedings of the 2003 IEEE International Symposium on Circuits and Systems, (ISCAS 2003), vol. 1, pp. 301-304, June 2003.
[18]K. Hadidi, V. S. Tso, and G. C. Temes, “An 8-b 1.3-MHz successive approximation A/D converter,” IEEE J. Solid-State Circuits, vol. 25, no. 3, pp. 880-885, June 1990.
[19]H. Neubauer, T. Desel, and H. Hauer, “A successive approximation A/D converter with 16 bit 200 kS/s in 0.6 _m CMOS using selfcalibration and low power techniques,” in Proc. 8th IEEE Int. Conf. Electronics, Circuits and Systems, Sep. 2001, pp. 859–862.
[20]F. Kuttner, “A 1.2 V 10b 20 MSample/s non-binany successive approximation ADC in 0.13 µm CMOS,” in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2002, pp. 136–137.
[21]C.-S. Lin and B.-D. Liu, “A new successive approximation architecture for low-power low-cost CMOS A/D converter,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 54–62, Jan. 2003.
[22]Behzad Razavi, “Design of Integrated Circuits for Optical Communications,”
[23]L. H. de Carvalho Ferreira and T. C. Pimenta, “An ultra low-voltage CMOS OTA Miller with rail-to-rail operation,” in Proceedings of the 16th International Conference on Microelectronics, pp. 223-226, Dec. 2004.
[24]B. J. Blalock, P. E. Allen, and G. A. Rincon-Mora, “Designing 1-V op amps using standard digital CMOS technology,” IEEE Transactions on Circuits and Systems-Ⅱ, vol. 45, no. 7, July 1998.
[25]A. L. Coban and P. E. Allen, “A 1.75V rail-to-rail CMOS op amp,” IEEE Int. Symp. Circuits and Systems, pp. 497-500, 1994.
[26]R. Hogervorst, R. J. Wiegerink, P. A.L de Jong, J. Fonderie, R. F. Wassenaar, and J. H. Huijsing, “CMOS low-voltage operational amplifiers with constant-gm rail-to-rail input stage,” IEEE International Symposium on Circuits and Systems, vol. 6, pp. 2876-2879, May 1992.
[27]J. Sauerbrey, D. Schmitt-Landsiedel, and R. Thewes, “A 0.5-V 1-�巰 successive approximation ADC,” IEEE J. Solid-State Circuits, vol. 38, no. 7, pp. 1261–1265, Jul. 2003.
[28]S. Gambini and J. Rabaey, “Low-Power Successive Approximation Converter With 0.5 V Supply in 90nm CMOS,” IEEE J. Solid-State Circuits, vol. 42, no. 11, November 2007.
[29]X. Jiang, Z. Wang, and M. F. Chang, “A 2GS/s 6b ADC in 0.18µm CMOS,” IEEE International Solid-State Circuits Conference, pp. 322-323, Feb. 2003.
[30]C. Sandner, M. Clara, A. Santner, T. Hartig, and F. Kuttner, “A 6bit, 1.2GSps Low-Power Flash-ADC in 0.13-µm Digital CMOS,” IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1499-1505, July 2005.
[31]K.S Tan, S. Kiriaki, M.D. Wit, J.W. Fattaruso, C.Y. Tsay, W.E. Matthews, R.K. Hester, “Error Correction Techniques for High-Performance Differential A/D Converters,” IEEE J. Solid-State Circuits, vol. 25, no. 6, pp. December 1990.
[32]Y. Matsuya and J. Yamada, “1 V power supply, low-power consumption A/D conversion technique with swing-suppression noise shaping,” IEEE J. Solid-State Circuits, vol. 29, no. 12, December 1994.
[33]D. Aksin, M. Al-Shyoukh, and F. Maloberti, “Switch bootstrapping for precise sampling beyond supply voltage,” IEEE J. Solid-State Circuits, vol 41, no. 8, Aug. 2006.
[34]M. Waltari and K. A. I. Halonen, “1-V 9-Bit Pipelined Switched-Opamp ADC,” IEEE J. Solid-State Circuits, vol. 36, no. 1, January 2001.
[35]蔡振宇, “Low Power Techniques for Digital IC Design,” CICeNEWS, vol 86, Dec. 15th, 2007.
[36]http://members.tripod.com/~x_zhou/MSM2000/sld011.htm
[37]S. Y. Chin and C. Y. Wu, “A CMOS ratio-independent and gain-insensitive algorithmic analog-to-digital converter,” IEEE J. Solid-State Circuits, vol. 31, no. 8, August 1996.
[38]G. Promitzer, “12-bit Low-Power Fully Differential Switched Capacitor Noncalibrating Successive Approximation ADC with 1 MS/s,” IEEE J. Solid-State Circuits, vol 36, no. 7 , Jul. 1995.
[39]J. A. M. Jarvinen, M. Saukoski and K. Halonen, “A 12-bit 32�巰 Ratio- Independent Algorithmic ADC,” Symposium on VLSI Circuits Digest, 2006.
[40]鄭國順, 醫療儀器設計與應用上課投影片.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 37.鄭幼民,海峽兩岸毒品犯罪現況分析。展望與探索月刊(法務部調查局)第2卷第6期,2004年6月。
2. 36.蔡秋如,從「全球化」思維探討有利兩岸發展的新認知。展望與探索月刊(法務部調查局)第3卷第3期,2005年3月。
3. 26.黃秋龍,非傳統安全的理論與實踐。展望與探索月刊(法務部調查局)第2卷第4期,2004年4月。
4. 19.郭崇武,中共公安部組織與職掌概述。展望與探索(法務部調查局)第1卷第6期,2003年6月,頁88-93。
5. 15.姚高橋、楊鈞池,兩岸三通對治安的衝擊與影響。國家政策論壇第1卷9期,2001年11月。
6. 11.岳瑞麒,兩岸安全法制化與信心建立措施之初探。展望與探索(法務部調查局)第2卷第12期,2003年12月。
7. 32.森下忠,最近國際刑事司法共助各種問題。吳景芳譯 台北:刑事法雜誌第29卷第1期。
8. 12.洪漢周,新興詐欺犯罪趨勢與對策研究。中央警察大學警學叢刊第34卷第1期,2003年7月。
9. 4.任海傳,從共同打擊犯罪探討兩岸和平架構之建立。展望與探索月刊 (法務部調查局)第2卷第7期,2004年7月。
10. 3.任海傳,從兩岸共同打擊毒品犯罪、檢視信心建立措施的可行性。展望與探索(法務部調查局)第1卷第12期,2003年12月。
11. 38.慶啟人,推動兩岸刑事司法互助之可行性。展望與探索月刊,第4卷第10期,2006年10月。
12. 41.蘇俊雄,國內地區間刑法適用之問題-分裂國家之刑法適用理論。台北:刑事法雜誌,第39卷第5期,1995年10月。
 
1. 一種應用於連續近似式類比數位轉換器之數位校正方法
2. 應用於無線感測網路之超低耗能連續近似式類比數位轉換器之設計
3. 一種應用於全差動連續近似式類比數位轉換器之混合訊號式校正方法
4. 十二位元每秒兩千五百萬次取樣非同步連續近似類比數位轉換器及其全數位校正機制
5. 一個應用於32~96KHzSPDIF/AES訊號之時脈回復器電路的設計
6. 適用於三角積分式類比數位轉換器之全整合型內建自我測試電路設計
7. 一個十二位元每秒兩千五百萬次取樣具非同步時脈產生器與全數位校正機制之連續近似類比至數位轉換器之實現
8. 一個具備數位背景校正技術使用開迴路式殘值放大器之導管式類比數位轉換器
9. 一個每秒一百億次取樣之六位元高速資料轉換器對
10. 實現一個基於多關聯性的背景式數位校正之 十三位元每秒一億次取樣管線式類比數位轉換器
11. 一個使用前景式校正14位元每秒1億次取樣之電流導向式數位類比轉換器
12. 一個具備數位背景式校正機制之十三位元每秒一億次取樣0.18-um CMOS導管式類比數位轉換器的設計
13. 一個快速鎖定460.1MHz至6.177GHz之全數位式鎖相迴路的設計
14. 一個具成本效益以最小弦波誤差為基礎應用於三角積分類比數位轉換器之內建自我測試設計
15. 以90奈米CMOS製程設計一應用於前瞻串列式連結收發機之超高速資料轉換器對