|
[1] J. Pearce, The Marcus Gunn Pupil, Journal of Neurology, Neurosurgery & Psychiatry, vol. 61, no. 5, p. 520, 1996. [2] C. David, How to test for a relative afferent pupillary defect (RAPD), Community Eye Health Journal, vol. 29, no. 96, pp. 68-69, 2016. [3] A. A. Siddiqui, J. C. Clarke and A. Grzybowski, William John Adie: the man behind the syndrome, Clinical & Experimental Ophthalmology, vol. 42, no. 8, pp. 778-784, 2014. [4] D. G. F. Harriman and H. Garland, The pathology of Adie's syndrome, Brain, vol. 91, no. 3, pp. 401-418, 1968. [5] Y. M. Alomari, S. Norul, H. S. Abdullah, R. Z. Azma and K. Omar, Automatic detection and quantification of WBCs and RBCs using iterative structured circle detection algorithm, 2014. [6] P. Ghosh, D. Bhattacharjee, M. Nasipuri and K. D. Basu, Automatic white blood cell measuring aid for medical diagnosis, in PACC, 2011. [7] Z. He, T. Tan and Z. Sun, Iris localization via pulling and pushing, in ICPR, 2006. [8] C. A. Bastos, R. Tsang and G. D. Calvalcanti, A combined pulling & pushing and active contour method for pupil segmentation, in ICASSP, 2010. [9] E. T. Mahnaz, C. Lucas, S. Sadri and E. Y. K. Ng, Analysis of breast thermography using fractal dimension to establish possible difference between malignant and benign patterns, Journal of Healthcare Engineering, vol. 1, no. 1, pp. 27-43, 2010. [10] F. Fahmi, H. Marquering, G. Streekstra, L. Beenen, N. Janssen, C. Majoie and E. vanBavel, Automatic Detection of CT Perfusion Datasets Unsuitable for Analysis due to Head Movement of Acute Ischemic Stroke Patients, Journal of Healthcare Engineering, vol. 5, no. 1, pp. 67-78, 2014. [11] M. A. Abdullah, S. S. Dlay and W. L. Woo, Fast and accurate pupil isolation based on morphology and active contour, in ICSIPA, 2014. [12] S. Chen and J. Epps, Efficient and robust pupil size and blink estimation from near-field video sequences for human–machine interaction, IEEE Trans. Cybernetics, vol. 44, no. 12, pp. 2356-2367, 2014. [13] J. K. S. de Souza, M. A. da Silva Pinto, P. G. Vie, J. Baron and C. J. Tierra-Criollo, An open-source, firewire camera-based, Labview-controlled image acquisition system for automated, dynamic pupillometry and blink detection, Computer Methods and Programs in Biomedicine, vol. 112, no. 3, pp. 607-623, 2013. [14] M. Rizon, Y. Haniza, S. Puteh, A. Yeon, M. Shakaff, S. Abdul Rahman and M. Karthigayan, Object detection using circular Hough transform, American Journal of Applied Sciences, vol. 2, no. 12, pp. 1606-1609, 2005. [15] W. Gander, G. H. Golub and R. Strebel, Least-squares fitting of circles and ellipses, BIT Numerical Mathematics, vol. 34, no. 4, pp. 558-578, 1994. [16] M. Kass, A. Witkin and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, vol. 1, no. 4, pp. 321-331, 1988. [17] T. F. Cootes, C. J. Taylor, D. H. Cooper and J. Graham, Active shape models - their training and application, Computer Vision and Image Understanding, vol. 61, no. 1, pp. 38-59, 1995. [18] S. A. Sahmoud and I. S. Abuhaiba, Efficient iris segmentation method in unconstrained environments, Pattern Recognition, vol. 46, no. 12, pp. 3174-3185, 2013. [19] T. L. Shen, B. I. Chuang, M. H. Shih and Y. N. Sun, Fast pupil assessment for sensory evaluation from infrared video, in CVGIP, Taiwan, 2015. [20] W. Fuhl, M. Tonsen, A. Bulling and E. Kasneci, Pupil detection for head-mounted eye tracking in the wild: an evaluation of the state of the art, Machine Vision and Applications, vol. 27, no. 8, pp. 1275-1288, 2016. [21] M. AbdulraheemFadhel , A. J. Humaidi and S. RazzaqOleiwi, Image processing-based diagnosis of sickle cell anemia in erythrocytes, in NTICT, 2017. [22] D. V. Hiren, An automated blood cell segmentation using fuzzy based system, in IEEE Transactions on Medical Imaging, 2017. [23] A. Bashir, Z. A. Mustafa, I. Abdelhameid and R. Ibrahem, Detection of malaria parasites using digital image processing, in ICCCCEE), 2017. [24] M. I. Razzak and S. Naz, Microscopic blood smear segmentation and classification using deep contour aware CNN and extreme machine learning, in CVPRW, 2017. [25] O. Ronneberger, P. Fischer and T. Brox, U-net: Convolutional networks for biomedical image segmentation, in MICCAI, 2015. [26] X. Li, H. Chen, X. Qi, Q. Dou, C. -W. Fu and P. -A. Heng, H-denseunet: Hybrid densely connected unet for liver and tumor segmentation from CT volumes, IEEE Trans. Medical Imaging, vol. 37, no. 12, pp. 2663-2674, 2018. [27] S. Ren, K. He, R. Girshick and J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks, in NIPS, 2015. [28] K. He, G. Gkioxari, P. Dollar and R. Girshick, Mask R-CNN, in CVPR, 2017. [29] R. Girshick, J. Donahue, T. Darrell and J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in CVPR, 2014. [30] R. Girshick, Fast R-CNN, in ICCV, 2015. [31] T. -Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan and S. Belongie, Feature pyramid networks for object detection, in CVPR, 2017. [32] D. Pavllo, D. Grangier and M. Auli, Quaternet: A quaternion-based recurrent model for human motion, in BMVC, 2018. [33] E. Pervin and J. Webb, Quaternions for computer vision and robotics, in CVPR, 1983. [34] Z. Mirikharaji and G. Hamarneh, Star shape prior in fully convolutional networks for skin lesion segmentation, in MICCAI, 2018. [35] M. M. Moreno, I. González-Díaz and F. D. de María, An elliptical shape-regularized convolutional neural network for skin lesion segmentation, in MICCAI, 2018. [36] Y. Li, Detecting Lesion Bounding Ellipses With Gaussian Proposal Networks, Baidu Research TR, 2019. [37] A. Krizhevsky, I. Sutskever and G. Hinton, Imagenet classification with deep convolutional neural networks, in NIPS, 2012. [38] K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, in ICLR, 2015. [39] K. He, X. Zhang, S. Ren and J. Sun, Deep residual learning for image recognition, in CVPR, 2016. [40] J. Long, E. Shelhamer and T. Darrell, Fully convolutional networks for semantic segmentation, in CVPR, 2015. [41] W. Liu, D. Anguelov, D. Erhan, C. Szegedy and S. E. Reed, SSD: single shot multibox detector, CoRR, 2015. [42] Mask R-CNN source code, [Online]. Available: https://github.com/matterport/Mask_RCNN. [43] Non-Maximum-Suppression, [Online]. Available: https://medium.com/@chih.sheng.huang821/%E6%A9%9F%E5%99%A8-%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-%E7%89%A9%E4%BB%B6%E5%81%B5%E6%B8%AC-non-maximum-suppression-nms-aa70c45adffa. [44] ROI-ALIGN, [Online]. Available: https://blog.csdn.net/xiamentingtao/article/details/78598511. [45] L. R. Dice, Measures of the amount of ecologic association between species, Ecology, vol. 26, no. 3, pp. 297-302, 1945. [46] T. L. Shen, B. I. Chuang, M. H. Shih and Y. N. Sun, Real-Time Pupil Segmentation and Assessment System Using Appearance-based Circle Matching in High Resolution Infrared Eye Image Sequences, Technical Report of NCKU, 2017.
|