跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.59) 您好!臺灣時間:2025/10/13 19:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:龔立仁
研究生(外文):Li-Jen Kung
論文名稱:銅苯二甲藍修飾源/汲電極之高效率有機薄膜電晶體
論文名稱(外文):High-performance organic thin-film transistors with copper phthalocyanine-modified source/drain contacts
指導教授:陳方中陳方中引用關係
指導教授(外文):Fang-Chung Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2006
畢業學年度:94
語文別:英文
論文頁數:48
中文關鍵詞:有機薄膜電晶體銅苯二甲藍接面電阻
外文關鍵詞:organic thin-film transistorscopper phthalocyaninecontact resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
二氧化矽介電層,經由自組裝單層表面處理後,從原來的親水性,轉換成適合有機材料成長的疏水性。而經由PαMS表面處理後,得到最高0.5 cm2/Vs 的載子遷移率,以及大於106的整流比。
銅苯二甲藍已經被使用於接面緩衝層以增進高有機薄膜電晶體的元件效能。當置入10奈米的銅苯二甲藍於金屬/有機半導體接面,從線性回歸法可得知接面電阻降低了70%。元件遷移率也增加了80%。從較高的電洞二極體之電流也可印證置入銅苯二甲藍可改善電洞的注入,我們推測此接面的改善是由於金與銅苯二甲藍能帶間隙中的狀態所致。
The insulator surface treatment transforms the hydrophilic SiO2 surface to hydrophobic one that is more suitable for organic materials deposition. Organic thin-film transistors (OTFTs) modified by poly(��-methylstyrene) (P�埒S) exhibit a high mobility (0.5 cm2/Vs ) with a high on/off ratio ( > 106 ).
Copper phthalocyanine (CuPC) has been used as the contact buffer layer to improve the device performance of organic thin-film transistors (OTFTs). By incorporating with 10 nm CuPC, the contact resistance was decreased to 70%, deduced from line-transfer method. The mobility was also improved by 86%. The higher hole current observed in the hole-only diode incorporating with CuPC further confirm the improvement of hole-injection efficiency. Finally, it is inferred that the lower injection barrier is resulted from the induced gap states at the Au/CuPC interfaces.
CONTENTS
ABSTRACT ……………………………………………………..iii
中文摘要…………………………………………………………...iv
ACKNOWLEDGEMENTS (誌謝)………………………………………v
FIGURES CAPTIONS………………………………………….……….vi
LIST OF FIGURES……………………………………………………...ix


Chapter 1 Introduction……………………………………………….1
1.1 Overview…………………………………………………1
1.2 The Basic Device Structure………………………3
1.2.1 Pentacene…..………………………………………..3
1.2.2 Inverted-Coplanar and Inverted-Staggered Organic TFT......................................5
1.3 Contact Resistance ………………….……..9
1.3.1 Introduction ……………………………………...9
1.3.2 The Extraction of Contact Resistance………….9
1.4 Motivation………………...…………………………..12
1.5 Organization of this Thesis…………………..12

Chapter 2 The Transfer Mechanism and Characteristics of Organic Thin Film Transistors..............................13
2.1 Introduction……………………………………..…13
2.1.1 Interfaces in Organic Electronics…………..13
2.1.2The Carrier Transportation in Organic Semiconductors…….................................14
2.2The Basic Operation Mode of Organic Thin Film Transistors........................................17
2.3 The Critical Issue at Real OTFT Device…………..…………………………..20
2.3.1 Introduction……\……………………20
2.3.2 The Energy Diagram of Metal/CuPC…………………………………….21
2.3.3 Discussion……\……\………………….23

Chapter 3 Experiments and Analysis…………………\…….……...25
3.1 Introduction………\…………………………..….25
3.2 Fabrication and Electrical Analysis of Organic TFT Device…\.…….25
3.2.1 Standard device structure………………………………………..……….25
3.2.2 The surface treatment of insulator………………………………...………29
3.3 The Composite Electrode Organic TFT………\…..33
3.3.1 The comparison between composite electrode and standard device…..…34
3.4 Hole-only pentacene Diode………………\………..39
3.4.1 Introduction…………\……………………..…..39
3.4.2 Experiment ……………………………\.39
3.4.3 Result and Discussion …………………………\\41
3.5 Discussion………………\…………\..43

Chapter 4 Conclusion…………………………...…\…….45

Reference……………………………\……..46
Reference

[1] M. Pope, C. E. Swenberg, Electronic Process in Organic Crystals and polymers, 2nd ed., Oxford University Press, Oxford 1999.
[2] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger. Synthesis of electrically conducting polymers: halogen derivatives of polyacetylene. J Chem Soc Chem Commun. 578 (1997).
[3] F. Ebisawa, T. Kurosawa, S. Nara, J. Appl. Phys. 54, 3255 (1983).
[4] A. Tsumura, K. Koezuka, T. Ando, Appl. Phys. Lett. 49, 1210 (1956)
[5] G. Horowitz, X. Z. Peng, D. Fichou, F. Garnier, J. Mol. Electron. 7, 85 (1991).
[6] C. D. Dimitrakopoulos, A. R. Brown, A. Pomp. J Appl. Phys. 80, 2501 (1996).
[7] J. G. Laquindanum, H. E. Kat, A. J. Lovinger, A. Dodabalapur, Chem. Mater. 8, 2542 (1996).
[8] D. J. Gundlach,Y. Y. Lin, T. N. Nackson, S. F. Nelson, D. G. Scholm. IEEE Electron Dev. Lett. 18, 87 (1997).
[9] S. F. Nelson, Y. Y. Lin, D. J. Gundlach, T. N. Nackson. Appl. Phys. Lett. 72,1854 (1998).
[10] M.P. Hong, B. S. Kim, Y. U. Lee, K. K. Song, J. H. Oh, J. H. Kim, S. Y.Lee, B. W. Koo, J. H. Shin, E. J. Jeong, and L. S. Pu, SID 2005, 23.
[11] S. F. Nelson et al., Appl. Phys. Lett. 72, 1854 (1998).
[12] H. Klauk, et al., Solid State Technol. 43, 63 (2000).
[13] C. D. Dimitrakopoulos, Science 283, 822 (1999).
[14] C. D. Dimitrakopoulos, D. J. Mascaro, IBM, 45, 11 (2001).
[15] R. B. Campbell, J. monteath Robertson, J. Trotter, Acta. Cryst. 14, 705 (1961).
[16] J. Zaumseil, K. W. Baldwin, and J. A. Rogers, J. Appl. Phys. 93 , 6117 (2003)
[17] C. D. Dimitrakopoulos, J. Kymissis, S. Purushothaman, in Proceedings of The Int. Conf. on Digital Printing Technologies, NIP16, Society of Imaging Science and Technology, Vancouver 2000, 493.
[18] C. D. Dimitrakopoulos, P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
[19] G. Horowitz, P. Lang, M. Mottaghi, H. Aubin, Adv. Funct. Mater. 14, 1070 (2004)
[20] P. V. Necliudov, M. S. Shur, D. J. Gundlach, Thomas N. Jackson, Solid-State Electron. 47, 259 (2003).
[21] C. W. Tang, S. A. VanSlyke, App. Phys. Lett. 51, 913 (1987).
[22] T. Tani, Photographic Sensitivity, Oxford University Press, Oxford (1995).
[23] N. C. Greenham, R. H. Friend, Semiconductor Device Physics of Conjugated Polymers, Academic, New York 1995.
[24] C. W. Tang, Appl Phys. Lett. 48, 183 (1986).\
[25] H. Ishii, K. Sugiyama, E. Ito, K Seki, Adv. Mater. 11, 605 (1999).

[26] M. Pope, C. E. Swenberg, “Electronic processes in organic crystal and polymers,’ 2nd ed, New York: Oxford University Press 1999.
[27] S. F. Nelson, Y. Y. Lin, D. J. Gundlach, T. N. Jackson, App. Phys. Lett. 72, 1854 (1998).
[28] W. Warta, R. Stehle, N. Karl, Appl. Phys. A, 36, 170 (1985).
[29] N. Karl, J. Marktanner, R. Stehle, W. Warta, Synthetic Metals, 41, 2473 (1991).
[30] N. Karl, “Charge-carrier mobility in organic crystal,” In:R. Farchioni, G. Grosso, eds. Organic Electronic Materials, Springer Series in Materials Science, 41, 283 (2001).
[31] E. A. Hilinsh, V. Capek, Organic Molecular Crystals: Interaction Localization and Transport Phenomena, Chapter 7. New York: American Institute of Physics Press (1994).
[32] N. Karl, Organic Semiconductors, In: O. Madelung, ed. Landolt-Bornstein, Group III, Semicondcutors. 17, 106 (1985).
[33] S. M. Sze, Physics of Semiconductor Devices, Wiley, New York (1981).
[34] G. Horowitz, F. Dellofre, F Garnier, R. Hajlaoui, M Hmyene, and A. Yassar, Synth, Met. 54, 435 (1993).
[35] C. P. Jarrett, R. Friend, A. R. Brown, D. M. de Leeuw, J. Appl. Phys. 77, 6289 (1995).
[36] N. Koch, A. Kahn, J. Ghijsen, J.–J. Pireaux, j. Schwartz, R. L. Johnson, A. Elschner, Appl. Phys. Lett. 82, 70 (2003).
[37] N. J. Watkins, L Yan, S. Zorba, Y Gao, Proc. of SPIE, 4800, 248 (2003).
[38] J. Park, M. Cho, H. B. Park, T. J. Park, S. W. Lee, S. H. Hong, D. S. Jeong, C. LeeC. S. Hwang, Appl. Phys. Lett. 13, 5965 (2004)
[39] K. Noch, A. Elschner, J. Schwartz, A. Kahn, Appl. Phys. Lett. 82, 2281 (2003).
[40] L. Lozzi, S. Santucci, S. L. Rosa, J. Vac. Sci. Technol. 22, 1477 (2004).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top