|
[1] Tong, S., Zhu, X., Li, Y., Shi, M., Zhang, J., Bourgeois, M., …Donis, R. O. (2013). New World Bats Harbor Diverse Influenza A Viruses. PLOS Pathogens, 9(10), e1003657. https://doi.org/10.1371/journal.ppat.1003657 [2] Tong, S., Zhu, X., Li, Y., Shi, M., Zhang, J., Bourgeois, M., …Donis, R. O. (2013). New World Bats Harbor Diverse Influenza A Viruses. PLOS Pathogens, 9(10), e1003657. https://doi.org/10.1371/journal.ppat.1003657 [3] Lamb, R. A., & Takeda, M. (2001). Death by influenza virus protein. Nature Medicine, 7(12), 1286-1288. https://doi.org10.1038/nm1201-1286 [4] Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., …Yewdell, J. W. (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine, 7, 1306. http://dx.doi.org/10.1038/nm1201-1306 [5] Yamayoshi, S., Watanabe, M., Goto, H., & Kawaoka, Y. (2015). Identification of a Novel Viral Protein Expressed from the PB2 Segment of Influenza A Virus. Journal of Virology, 90(1), 444-456. https://doi.org10.1128/jvi.02175-15 [6] Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., …Yewdell, J. W. (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine, 7, 1306. http://dx.doi.org/10.1038/nm1201-1306 [7] Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., …Yewdell, J. W. (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine, 7, 1306. http://dx.doi.org/10.1038/nm1201-1306 [8] Selman, M., Dankar, S. K., Forbes, N. E., Jia, J., & Brown, E. G. (2012). Adaptive mutation in influenza A virus non-structural gene is linked to host switching and induces a novel protein by alternative splicing. Emerging Microbes & Infections, 1(11). https://doi.org10.1038/emi.2012.38 [9] Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M., & Kawaoka, Y. (1992). Evolution and ecology of influenza A viruses. Microbiological Reviews, 56(1), 152–179.
[10] Horimoto, T., & Kawaoka, Y. (2005). Influenza: Lessons from past pandemics, warnings from current incidents. Nature Reviews Microbiology, 3(8), 591-600. https://doi.org10.1038/nrmicro1208 [11] Wagner, R., Matrosovich, M., & Klenk, H. (2002). Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Reviews in Medical Virology, 12(3), 159-166. https://doi.org10.1002/rmv.352 [12] Cros, J. F., & Palese, P. (2003). Trafficking of viral genomic RNA into and out of the nucleus: Influenza, Thogoto and Borna disease viruses. Virus Research, 95(1-2), 3-12. https://doi.org10.1016/s0168-1702(03)00159-x [13] Tang, Y., Venkataraman, P., Knopman, J., Lamb, R. A., & Pinto, L. H. (n.d.). The M2 Proteins of Influenza A and B Viruses are Single-Pass Proton Channels. Protein Reviews Viral Membrane Proteins: Structure, Function, and Drug Design, 101-111. https://doi.org10.1007/0-387-28146-0_8 [14] Kochs, G., Garcia-Sastre, A., & Martinez-Sobrido, L. (2007). Multiple Anti-Interferon Actions of the Influenza A Virus NS1 Protein. Journal of Virology, 81(13), 7011-7021. https://doi.org10.1128/jvi.02581-06 [15] Jia, D., Rahbar, R., Chan, R. W. Y., Lee, S. M. Y., Chan, M. C. W., Wang, B. X., … Fish, E. N. (2010). Influenza Virus Non-Structural Protein 1 (NS1) Disrupts Interferon Signaling. PLoS ONE, 5(11), e13927. https://doi.org:10.1371/journal.pone.0013927 [16] Oneill, R. E. (1998). The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. The EMBO Journal, 17(1), 288-296. https://doi.org10.1093/emboj/17.1.288 [17] Das, K., Aramini, J. M., Ma, L., Krug, R. M., & Arnold, E. (2010). Structures of influenza A proteins and insights into antiviral drug targets. Nature Structural & Molecular Biology, 17(5), 530-538. https://doi.org10.1038/nsmb.1779 [18] Schnell, J. R., & Chou, J. J. (2008). Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 451(7178), 591-595. https://doi.org10.1038/nature06531 [19] Krug, R. M. (1981). Priming of Influenza Viral RNA Transcription by Capped Heterologous RNAs. Current Topics in Microbiology and Immunology Initiation Signals in Viral Gene Expression, 125-149. https://doi.org10.1007/978-3-642-68123-3_6 [20] Plotch, S. J., Bouloy, M., Ulmanen, I., &Krug, R. M. (1981). A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell, 23(3), 847–858. https://doi.org/10.1016/0092-8674(81)90449-9 [21] Guilligay, D., Tarendeau, F., Resa-Infante, P., Coloma, R., Crepin, T., Sehr, P., …Cusack, S. (2008). The structural basis for cap binding by influenza virus polymerase subunit PB2. Nature Structural &Amp; Molecular Biology, 15, 500. http://dx.doi.org/10.1038/nsmb.1421 [22] Dias, A., Bouvier, D., Crépin, T., McCarthy, A. A., Hart, D. J., Baudin, F., …Ruigrok, R. W. H. (2009). The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature, 458, 914. Retrieved from http://dx.doi.org/10.1038/nature07745 [23] Martín-Benito, J., &Ortín, J. (2013). Chapter Four - Influenza Virus Transcription and Replication. In K.Maramorosch &F. A. B. T.-A. in V. R.Murphy (Eds.) (Vol. 87, pp. 113–137). https://doi.org/https://doi.org/10.1016/B978-0-12-407698-3.00004-1 [24] Reich, S., Guilligay, D., Pflug, A., Malet, H., Berger, I., Crépin, T., …Cusack, S. (2014). Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature, 516, 361. http://dx.doi.org/10.1038/nature14009 [25] Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., …Yewdell, J. W. (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine, 7, 1306. Retrieved from http://dx.doi.org/10.1038/nm1201-1306 [26] Portela, A., &Digard, P. (2002). The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. Journal of General Virology, 83(4), 723–734. https://doi.org/10.1099/0022-1317-83-4-723 [27] Resa-Infante, P., Jorba, N., Coloma, R., & Ortín, J. (2011). The influenza RNA synthesis machine: Advances in its structure and function. RNA Biology, 8(2), 207–215. http://doi.org/10.4161/rna.8.2.14513 [28] Neumann, G., Noda, T., & Kawaoka, Y. (2009). Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 459(7249), 931-939. https://doi.org10.1038/nature08157 [29] Bouvier, N. M., & Palese, P. (2008). THE BIOLOGY OF INFLUENZA VIRUSES. Vaccine, 26(Suppl 4), D49–D53. [30] Schnell, J. R., & Chou, J. J. (2008). Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 451(7178), 591-595. https://doi.org10.1038/nature06531 [31] Okada, A., Miura, T., & Takeuchi, H. (2001). Protonation of Histidine and Histidine−Tryptophan Interaction in the Activation of the M2 Ion Channel from Influenza A Virus†. Biochemistry, 40(20), 6053-6060. https://doi.org10.1021/bi0028441 [32] Wang, C., Lamb, R., & Pinto, L. (1995). Activation of the M2 ion channel of influenza virus: A role for the transmembrane domain histidine residue. Biophysical Journal, 69(4), 1363-1371. https://doi.org10.1016/s0006-3495(95)80003-2 [33] Tang, Y., Zaitseva, F., Lamb, R. A., & Pinto, L. H. (2002). The Gate of the Influenza Virus M2Proton Channel Is Formed by a Single Tryptophan Residue. Journal of Biological Chemistry, 277(42), 39880-39886. https://doi.org10.1074/jbc.m206582200 [34] Davies, W. L., Grunert, R. R., Haff, R. F., Mcgahen, J. W., Neumayer, E. M., Paulshock, M., . . . Hoffmann, C. E. (1964). Antiviral Activity of 1-Adamantanamine (Amantadine). Science, 144(3620), 862-863. https://doi.org10.1126/science.144.3620.862 [35] Clercq, E. D. (2006). Antiviral agents active against influenza A viruses. Nature Reviews Drug Discovery, 5(12), 1015-1025. https://doi.org10.1038/nrd2175 [36] Deyde, V., Xu, X., Bright, R., Shaw, M., Smith, C., Zhang, Y., . . . Klimov, A. (2007). Surveillance of Resistance to Adamantanes among Influenza A(H3N2) and A(H1N1) Viruses Isolated Worldwide. The Journal of Infectious Diseases, 196(2), 249-257. https://doi.org10.1086/518936 [37] Pielak, R. M., Schnell, J. R., & Chou, J. J. (2009). Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proceedings of the National Academy of Sciences, 106(18), 7379-7384. https://doi.org10.1073/pnas.0902548106 [38] Hayden, F. G. (2001). Perspectives on antiviral use during pandemic influenza. Philosophical Transactions of the Royal Society of London. Series B, 356(1416), 1877–1884. /https://doi.org/10.1098/rstb.2001.1007 [39] Kim, C. U., Lew, W., Williams, M. A., Liu, H., Zhang, L., Swaminathan, S., . . . Stevens, R. C. (1997). Influenza Neuraminidase Inhibitors Possessing a Novel Hydrophobic Interaction in the Enzyme Active Site: Design, Synthesis, and Structural Analysis of Carbocyclic Sialic Acid Analogues with Potent Anti-Influenza Activity. Journal of the American Chemical Society, 119(4), 681-690. https://doi.org10.1021/ja963036t [40] Moscona, A. (2005). Neuraminidase Inhibitors for Influenza. New England Journal of Medicine, 353(13), 1363–1373. https://doi.org/10.1056/NEJMra050740 [41] Bantia, S., Arnold, C. S., Parker, C. D., Upshaw, R., &Chand, P. (2006). Anti-influenza virus activity of peramivir in mice with single intramuscular injection. Antiviral Research, 69(1), 39–45. https://doi.org/10.1016/J.ANTIVIRAL.2005.10.002 [42] Mckimm-Breschkin, J. L. (2012). Influenza neuraminidase inhibitors: Antiviral action and mechanisms of resistance. Influenza and Other Respiratory Viruses, 7, 25-36. https://doi.org10.1111/irv.12047 [43] Memoli, M. J., hrabal, R. J., Hassantoufighi, A., Eichelberger, M. C., &Taubenberger, J. K. (2010). Rapid Selection of Oseltamivirand Peramivir-Resistant Pandemic H1N1 Virus during Therapy in 2 Immunocompromised Hosts. Clinical Infectious Diseases, 50(9), 1252–1255. http://dx.doi.org/10.1086/651605Samson [44] Samson, M., Pizzorno, A., Abed, Y., &Boivin, G. (2013). Influenza virus resistance to neuraminidase inhibitors. Antiviral Research, 98(2), 174–185. https://doi.org/10.1016/J.ANTIVIRAL.2013.03.014 [45] Le, Q. M., Kiso, M., Someya, K., Sakai, Y. T., Nguyen, T. H., Nguyen, K. H. L., …Kawaoka, Y. (2005). Isolation of drug-resistant H5N1 virus. Nature, 437(7062), 1108–1108. https://doi.org/10.1038/4371108a [46] Furuta, Y., Gowen, B. B., Takahashi, K., Shiraki, K., Smee, D. F., &Barnard, D. L. (2013). Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Research, 100(2), 446–454. https://doi.org/10.1016/J.ANTIVIRAL.2013.09.015 [47] Oestereich, L., Lüdtke, A., Wurr, S., Rieger, T., Muñoz-Fontela, C., &Günther, S. (2014). Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Research, 105, 17–21. https://doi.org/10.1016/J.ANTIVIRAL.2014.02.014 [48] Amorim, M. J., Kao, R. Y., &Digard, P. (2013). Nucleozin targets cytoplasmic trafficking of viral ribonucleoprotein-Rab11 complexes in influenza A virus infection. Journal of Virology, 87(8), 4694–4703. https://doi.org/10.1128/JVI.03123-12 [49] Watanabe, K., Ishikawa, T., Otaki, H., Mizuta, S., Hamada, T., Nakagaki, T., …Nishida, N. (2017). Structure-based drug discovery for combating influenza virus by targeting the PA–PB1 interaction. Scientific Reports, 7(1), 9500. https://doi.org/10.1038/s41598-017-10021-w [50] Kadam, R. U., &Wilson, I. A. (2017). Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proceedings of the National Academy of Sciences, 114(2), 206 LP-214. Retrieved from http://www.pnas.org/content/114/2/206.abstract [51] Heo, Y.-A. (2018). Baloxavir: First Global Approval. Drugs, 78(6), 693–697. https://doi.org/10.1007/s40265-018-0899-1 [52] Neumann, G., &Hobom, G. (1995). Mutational analysis of influenza virus promoter elements in vivo. Journal of General Virology, 76(7), 1709–1717. https://doi.org/10.1099/0022-1317-76-7-1709 [53] Marsh, G. A., Rabadán, R., Levine, A. J., &Palese, P. (2008). Highly conserved regions of influenza a virus polymerase gene segments are critical for efficient viral RNA packaging. Journal of Virology, 82(5), 2295–2304. https://doi.org/10.1128/JVI.02267-07 [54] Park, Y. W., &Katze, M. G. (1995). Translational control by influenza virus. Identification of cis-acting sequences and trans-acting factors which may regulate selective viral mRNA translation. The Journal of Biological Chemistry, 270(47), 28433–28439. https://doi.org/10.1074/JBC.270.47.28433 [55] ZHENG, H., PALESE, P., &GARCÍA-SASTRE, A. (1996). Nonconserved Nucleotides at the 3’ and 5’ Ends of an Influenza A Virus RNA Play an Important Role in Viral RNA Replication. Virology, 217(1), 242-251. https://doi.org/10.1006/VIRO.1996.0111 [56] Ma, J., Liu, K., Xue, C., Zhou, J., Xu, S., Ren, Y., …Cao, Y. (2013). Impact of the segment-specific region of the 3’-untranslated region of the influenza A virus PB1 segment on protein expression. Virus Genes, 47(3), 429–438. https://doi.org/10.1007/s11262-013-0969-0 [57] Lutz, A., Dyall, J., Olivo, P. D., &Pekosz, A. (2005). Virus-inducible reporter genes as a tool for detecting and quantifying influenza A virus replication. Journal of Virological Methods, 126(1), 13–20. https://doi.org/https://doi.org/10.1016/j.jviromet.2005.01.016 [58] Jo-Yu Hung. Screening for anti-influenza virus compounds.2015 Master's Thesis of Institute of Microbiology and Immunology. National Yang Ming University p52 [59] Chirullo, B., Sgarbanti, R., Limongi, D., Shytaj, I. L., Alvarez, D., Das, B., …Palamara, A. T. (2013). A candidate anti-HIV reservoir compound, auranofin, exerts a selective ‘anti-memory’ effect by exploiting the baseline oxidative status of lymphocytes. Cell Death &Amp; Disease, 4, e944. Retrieved from http://dx.doi.org/10.1038/cddis.2013.473 [60] Shytaj, I. L., Chirullo, B., Wagner, W., Ferrari, M. G., Sgarbanti, R., Corte, A.Della, …Savarino, A. (2013). Investigational treatment suspension and enhanced cell-mediated immunity at rebound followed by drug-free remission of simian AIDS. Retrovirology, 10(1), 71. https://doi.org/10.1186/1742-4690-10-71 [61] Hoffmann, H.-H., Palese, P., &Shaw, M. L. (2008). Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C activity. Antiviral Research, 80(2), 124–134. https://doi.org/https://doi.org/10.1016/j.antiviral.2008.05.008 [62] Karlas, A., Berre, S., Couderc, T., Varjak, M., Braun, P., Meyer, M., …Lecuit, M. (2016). A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs. Nature Communications, 7, 11320. Retrieved from http://dx.doi.org/10.1038/ncomms11320 [63] Funke, C., Farr, M., Werner, B., Dittmann, S., Uberla, K., Piper, C., …Horstkotte, D. (2010). Antiviral effect of Bosentan and Valsartan during coxsackievirus B3 infection of human endothelial cells. Journal of General Virology, 91(8), 1959–1970. https://doi.org/10.1099/vir.0.020065-0 [64] Kim, Y., Kim, H., Bae, S., Choi, J., Lim, S. Y., Lee, N., … Lee, W. J. (2013). Vitamin C Is an Essential Factor on the Anti-viral Immune Responses through the Production of Interferon-α/β at the Initial Stage of Influenza A Virus (H3N2) Infection. Immune Network, 13(2), 70–74. http://doi.org/10.4110/in.2013.13.2.70 [65] Li, W., Maeda, N., &Beck, M. A. (2006). Vitamin C Deficiency Increases the Lung Pathology of Influenza Virus–Infected Gulo−/− Mice. The Journal of Nutrition, 136(10), 2611–2616. http://dx.doi.org/10.1093/jn/136.10.2611 [66] Chou, T.-C. (1976). Derivation and properties of Michaelis-Menten type and Hill type equations for reference ligands. Journal of Theoretical Biology, 59(2), 253–276. https://doi.org/https://doi.org/10.1016/0022-5193(76)90169-7 [67] Chou, T.-C., &Talalay, P. (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation, 22, 27–55. https://doi.org/10.1016/0065-2571(84)90007-4 [68] Chou, T.-C., Motzer, R. J., Tong, Y., &Bosl, G. J. (1994). Computerized Quantitation of Synergism and Antagonism of Taxol, Topotecan, and Cisplatin Against Human Teratocarcinoma Cell Growth: a Rational Approach to Clinical Protocol Design. JNCI: Journal of the National Cancer Institute, 86(20), 1517–1524. Retrieved from http://dx.doi.org/10.1093/jnci/86.20.1517 [69] Liu, P.-Y., Jiang, N., Zhang, J., Wei, X., Lin, H.-H., &Yu, X.-Q. (2006). The Oxidative Damage of Plasmid DNA by Ascorbic Acid Derivativesin vitro: The First Research on the Relationship between the Structure of Ascorbic Acid and the Oxidative Damage of Plasmid DNA. Chemistry & Biodiversity, 3(9), 958–966. https://doi.org/10.1002/cbdv.200690104 [70] Kim, M. S., Yoo, B. C., Yang, W. S., Han, S. Y., Jeong, D., Song, J. M., …Cho, J. Y. (2018). Src is the primary target of aripiprazole, an atypical antipsychotic drug, in its anti-tumor action. Oncotarget, 9(5), 5979–5992. https://doi.org/10.18632/oncotarget.23192 [71] König, R., Stertz, S., Zhou, Y., Inoue, A., Hoffmann, H.-H., Bhattacharyya, S., …Chanda, S. K. (2009). Human host factors required for influenza virus replication. Nature, 463, 813. Retrieved from http://dx.doi.org/10.1038/nature08699 [72] Karlas, A., Machuy, N., Shin, Y., Pleissner, K.-P., Artarini, A., Heuer, D., …Meyer, T. F. (2010). Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature, 463, 818. Retrieved from http://dx.doi.org/10.1038/nature08760 [73] Ma, C., Polishchuk, A. L., Ohigashi, Y., Stouffer, A. L., Schön, A., Magavern, E., …Pinto, L. H. (2009). Identification of the functional core of the influenza A virus A/M2 proton-selective ion channel. Proceedings of the National Academy of Sciences, 106(30), 12283 LP-12288. Retrieved from http://www.pnas.org/content/106/30/12283 [74] Fujioka, Y., Nishide, S., Ose, T., Suzuki, T., Kato, I., Fukuhara, H., …Ohba, Y. (2018). A Sialylated Voltage-Dependent Ca2+ Channel Binds Hemagglutinin and Mediates Influenza A Virus Entry into Mammalian Cells. Cell Host & Microbe. https://doi.org/https://doi.org/10.1016/j.chom.2018.04.015 [75] Nimmerjahn, F., Dudziak, D., Dirmeier, U., Hobom, G., Riedel, A., Schlee, M., …Mautner, J. (2004). Active NF- B signalling is a prerequisite for influenza virus infection. Journal of General Virology, 85(8), 2347–2356. https://doi.org/10.1099/vir.0.79958-0 [76] Ludwig, S., &Planz, O. (2008). Influenza viruses and the NF-κB signaling pathway – towards a novel concept of antiviral therapy. Biological Chemistry, 389(10), 1307–1312. https://doi.org/10.1515/BC.2008.148 [77] Kumar, N., Xin, Z., Liang, Y., Ly, H., &Liang, Y. (2008). NF-κB Signaling Differentially Regulates Influenza Virus RNA Synthesis. Journal of Virology , 82(20), 9880–9889. https://doi.org/10.1128/JVI.00909-08
|