跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/10 06:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張恩愷
研究生(外文):En-Kai Chang
論文名稱:六種FDA核准上市藥物對流感病毒的組合效果
論文名稱(外文):Combinatorial effects of six FDA approved drugs on influenza virus
指導教授:陳紀如
指導教授(外文):Chi-Ju Chen
學位類別:碩士
校院名稱:國立陽明大學
系所名稱:微生物及免疫學研究所
學門:生命科學學門
學類:微生物學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:98
中文關鍵詞:流感病毒藥物效果報導系統細胞存活病毒量血球凝集流感病毒核蛋白位置
外文關鍵詞:Influenza virusDrug effectReporter systemCell survivalViral titerHA assayInfluenza virus NP location
相關次數:
  • 被引用被引用:0
  • 點閱點閱:307
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
流行性感冒病毒屬於正黏液病毒科(Orthomyxoviridae),每年在流感季都造成約300萬至500萬件重病案例,其中有約25萬至50萬名患者死亡。現今能實際用以治療流感病毒感染的藥物僅有NA神經氨酸酶的特異性抑制劑包括oseltamivir ( 克流感, Tamiflu ) , zanamivir及peramivir以及RdRp抑制劑favipiravir ( Avigan )。但流感病毒RdRp無校正功能,病毒在複製時易產生突變導致流感病毒易產生抗藥性,且造成疫苗保護效果有限,所以我們希望以老藥新用的方式,找出新的抑制流感病毒的藥物。此外,如同其他病毒,流感病毒必須仰賴宿主細胞的細胞因子 ( cell factor ) 完成病毒生活史,若篩選出來的藥物作用於細胞因子,則較能降低流感病毒突變所產生的抗藥性。
  本實驗室之前利用RdRp報導系統已篩選出的六種可能抑制流感病毒的藥物,此六種藥物皆為上市的藥物,在安全上有一定的保障,我們試圖將這六種可能抑制流感病毒的藥物進行組合,期能產生協合作用 ( synergistic effect ),在低的使用劑量,亦能有效抑制病毒生長,如此也能降低病毒產生抗藥性的機率。
  首先測試這六種藥物抑制流感病毒感染的能力。我們先是定義出六種藥物的CC50和IC50,發現其中有四種藥物能夠抑制流感病毒感染。緊接著將這六種藥進行二個藥物組合及三個藥物組合發現特定二配方組合為最佳藥物組合,有明顯的協同作用,能大幅抑制流感病毒感染。利用不同的加藥時間點,我們初步證明此二組合作用在病毒感染早期;利用血球凝集試驗,我們排除藥物作用於HA蛋白與受體結合。目前的實驗結果支持此藥物組合作用於RNP進入細胞核前的感染步驟。未來可利用動物模式進一步測試其抗病毒的效力。
英文摘要
Influenza virus belongs to Orthomyxoviridae. Influenza spreads around the world yearly, resulting in about three to five million cases of severe illness and about 250,000 to 500,000 deaths. The only drugs currently available to treat influenza are neuraminidase ( NA ) inhibitors,including oseltamivir ( Tamiflu ), zanamivir and peramivir, and an RNA-dependent RNA polymerase ( RdRp ) inhibitor, favipiravir ( Avigan ). Since influenza virus RdRp lacks proofreading activity, the genome is easy to mutate when replicating. As a result, drug resistance and limited vaccine protection occur. In this project, we hope to repurpose FDA-proved drugs for treating influenza. As to all viruses, influenza virus depends heavily on cellular mechanism to complete its life cycle. If inhibited cellular factors mediate the antiviral effects ( cellular factor-targeting ), drug-resistant influenza viruses may not be selected easily by cellular factor-targeting drugs as compared to virus-targeting drugs.
Previously our lab used RdRp reporter assay to screen drugs, and found six drugs may inhibit influenza virus infection. All six drugs are generic drugs. Here I looked for combinations with synergistic anti-viral effects even at low drug dosages. A lower drug dosage will assert lower selection pressure on influenza virus and less cytotoxicity on host. In addition, treatment with multiple drugs decrease the possibility of drug-resistant viruses.
First, the CC50 and IC50 of each of these six drugs were determind on MDCK and influenza-infected MDCK cells, respectively. Therapeutic index for each compound was calculated. Four out of six drugs tested were found to inhibit influenza virus replication by itself. Next, all of the binary and ternary combinations were tested, which concluded that a particular binary combination is most effective. In order to identify the likely steps suppressed by this combination, I added the drug combination at different time points post infection in time course assays and found that combination inhibited at early stage of the infection cycle. The results of hemagglutinin assay excluded that the combination inhibited HA protein binding to its receptor. Instead, the preliminary results supported that the combination acts on the step prior to viral RNP into cell nucleus. Testing the anti-viral ability of the combination on an animal model will further demonstrate its efficacy and potential in the future.
誌謝 i
中文摘要 ii
英文摘要 iv
目錄 v
圖目錄 vii
表目錄 viii
第一章 緒論 1
第一節 流行性感冒病毒簡介 1
第二節 現存抗流感病毒藥物 4
第三節 RdRp報導系統 ( reporter system ) 7
第四節 六種藥物簡介 9
第五節 藥物有效濃度計算軟體 ( compusyn ) 15
第六節 實驗目的 16
第二章 實驗材料與方法 18
第一節 實驗材料 18
第二節 實驗方法 22
第三章 結果 32
一. 六種藥物不同濃度與降低RdRp報導能力呈現正相關 32
二. 六種藥物毒性測試 33
三. 六種藥物對抑制PR8及pdm 2009流感病毒感染效果測試 34
四. 尋找具有協同作用的藥物組合 36
五. Auranofin + pimozide作用在病毒感染的早期 38
六. Auranofin + pimozide無法直接與流感病毒HA蛋白結合 40
七. Auranofin + pimozide抑制RNP進入細胞核內 40
八. Auranofin或pimozide單獨使用降低病毒量 42
九. Auranofin或pimozide單獨使用作用在病毒感染的早期 42
十一. Auranofin或pimozide皆可以抑制RNP進入細胞核內 44
第四章 結論 46
第一節 個別藥物抑制流感病毒感染 46
第二節 藥物組合抑制流感病毒感染 48
第五章 討論 50
第六章 圖 53
第七章 表 84
參考文獻 87
附錄 96

圖次
圖1. 不同濃度的六種藥物降低RdRp報導能力 53
圖2. Tamiflu和六種藥物細胞毒性與藥物濃度關係 55
圖3. 藥物對抑制PR8流感病毒感染效果 57
圖4. 藥物對抑制pdm 2009流感病毒感染效果 59
圖5. 2種藥物組合或3種藥物組合對抑制PR8流感病毒感染效果 61
圖6. 2種藥物組合或3種藥物組合對抑制pdm 2009流感病毒感染效果 63
圖7. Auranofin + pimozide降低病毒viral titer 65
圖8. Auranofin + pimozide作用在病毒感染的早期 67
圖9. Auranofin+ pimozide無法直接與PR8或pdm 2009流感病毒HA蛋白結合 70
圖10. Auranofin + pimozide抑制RNP進入細胞核內 72
圖11. Auranofin或pimozide單獨使用降低viral titer 75
圖12. Auranofin或pimozide單獨使用作用在病毒感染的早期 77
圖13. Auranofin或pimozide無法與流感病毒HA protein結合 79
圖14. Auranofin或pimozide皆可以抑制RNP進入細胞核內 81

表次
表1. 統整七種藥物藥物毒性與效果 84
表2. 兩種藥物組合感染病毒後細胞存活率 85
表3. 三種藥物組合感染病毒後細胞存活率 86
[1] Tong, S., Zhu, X., Li, Y., Shi, M., Zhang, J., Bourgeois, M., …Donis, R. O. (2013). New World Bats Harbor Diverse Influenza A Viruses. PLOS Pathogens, 9(10), e1003657. https://doi.org/10.1371/journal.ppat.1003657
[2] Tong, S., Zhu, X., Li, Y., Shi, M., Zhang, J., Bourgeois, M., …Donis, R. O. (2013). New World Bats Harbor Diverse Influenza A Viruses. PLOS Pathogens, 9(10), e1003657. https://doi.org/10.1371/journal.ppat.1003657
[3] Lamb, R. A., & Takeda, M. (2001). Death by influenza virus protein. Nature Medicine, 7(12), 1286-1288. https://doi.org10.1038/nm1201-1286
[4] Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., …Yewdell, J. W. (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine, 7, 1306. http://dx.doi.org/10.1038/nm1201-1306
[5] Yamayoshi, S., Watanabe, M., Goto, H., & Kawaoka, Y. (2015). Identification of a Novel Viral Protein Expressed from the PB2 Segment of Influenza A Virus. Journal of Virology, 90(1), 444-456. https://doi.org10.1128/jvi.02175-15
[6] Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., …Yewdell, J. W. (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine, 7, 1306. http://dx.doi.org/10.1038/nm1201-1306
[7] Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., …Yewdell, J. W. (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine, 7, 1306. http://dx.doi.org/10.1038/nm1201-1306
[8] Selman, M., Dankar, S. K., Forbes, N. E., Jia, J., & Brown, E. G. (2012). Adaptive mutation in influenza A virus non-structural gene is linked to host switching and induces a novel protein by alternative splicing. Emerging Microbes & Infections, 1(11). https://doi.org10.1038/emi.2012.38
[9] Webster, R. G., Bean, W. J., Gorman, O. T., Chambers, T. M., & Kawaoka, Y. (1992). Evolution and ecology of influenza A viruses. Microbiological Reviews, 56(1), 152–179.


[10] Horimoto, T., & Kawaoka, Y. (2005). Influenza: Lessons from past pandemics, warnings from current incidents. Nature Reviews Microbiology, 3(8), 591-600. https://doi.org10.1038/nrmicro1208
[11] Wagner, R., Matrosovich, M., & Klenk, H. (2002). Functional balance between haemagglutinin and neuraminidase in influenza virus infections. Reviews in Medical Virology, 12(3), 159-166. https://doi.org10.1002/rmv.352
[12] Cros, J. F., & Palese, P. (2003). Trafficking of viral genomic RNA into and out of the nucleus: Influenza, Thogoto and Borna disease viruses. Virus Research, 95(1-2), 3-12. https://doi.org10.1016/s0168-1702(03)00159-x
[13] Tang, Y., Venkataraman, P., Knopman, J., Lamb, R. A., & Pinto, L. H. (n.d.). The M2 Proteins of Influenza A and B Viruses are Single-Pass Proton Channels. Protein Reviews Viral Membrane Proteins: Structure, Function, and Drug Design, 101-111. https://doi.org10.1007/0-387-28146-0_8
[14] Kochs, G., Garcia-Sastre, A., & Martinez-Sobrido, L. (2007). Multiple Anti-Interferon Actions of the Influenza A Virus NS1 Protein. Journal of Virology, 81(13), 7011-7021. https://doi.org10.1128/jvi.02581-06
[15] Jia, D., Rahbar, R., Chan, R. W. Y., Lee, S. M. Y., Chan, M. C. W., Wang, B. X., … Fish, E. N. (2010). Influenza Virus Non-Structural Protein 1 (NS1) Disrupts Interferon Signaling. PLoS ONE, 5(11), e13927. https://doi.org:10.1371/journal.pone.0013927
[16] Oneill, R. E. (1998). The influenza virus NEP (NS2 protein) mediates the nuclear export of viral ribonucleoproteins. The EMBO Journal, 17(1), 288-296. https://doi.org10.1093/emboj/17.1.288
[17] Das, K., Aramini, J. M., Ma, L., Krug, R. M., & Arnold, E. (2010). Structures of influenza A proteins and insights into antiviral drug targets. Nature Structural & Molecular Biology, 17(5), 530-538. https://doi.org10.1038/nsmb.1779
[18] Schnell, J. R., & Chou, J. J. (2008). Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 451(7178), 591-595. https://doi.org10.1038/nature06531
[19] Krug, R. M. (1981). Priming of Influenza Viral RNA Transcription by Capped Heterologous RNAs. Current Topics in Microbiology and Immunology Initiation Signals in Viral Gene Expression, 125-149. https://doi.org10.1007/978-3-642-68123-3_6
[20] Plotch, S. J., Bouloy, M., Ulmanen, I., &Krug, R. M. (1981). A unique cap(m7GpppXm)-dependent influenza virion endonuclease cleaves capped RNAs to generate the primers that initiate viral RNA transcription. Cell, 23(3), 847–858. https://doi.org/10.1016/0092-8674(81)90449-9
[21] Guilligay, D., Tarendeau, F., Resa-Infante, P., Coloma, R., Crepin, T., Sehr, P., …Cusack, S. (2008). The structural basis for cap binding by influenza virus polymerase subunit PB2. Nature Structural &Amp; Molecular Biology, 15, 500. http://dx.doi.org/10.1038/nsmb.1421
[22] Dias, A., Bouvier, D., Crépin, T., McCarthy, A. A., Hart, D. J., Baudin, F., …Ruigrok, R. W. H. (2009). The cap-snatching endonuclease of influenza virus polymerase resides in the PA subunit. Nature, 458, 914. Retrieved from http://dx.doi.org/10.1038/nature07745
[23] Martín-Benito, J., &Ortín, J. (2013). Chapter Four - Influenza Virus Transcription and Replication. In K.Maramorosch &F. A. B. T.-A. in V. R.Murphy (Eds.) (Vol. 87, pp. 113–137). https://doi.org/https://doi.org/10.1016/B978-0-12-407698-3.00004-1
[24] Reich, S., Guilligay, D., Pflug, A., Malet, H., Berger, I., Crépin, T., …Cusack, S. (2014). Structural insight into cap-snatching and RNA synthesis by influenza polymerase. Nature, 516, 361. http://dx.doi.org/10.1038/nature14009
[25] Chen, W., Calvo, P. A., Malide, D., Gibbs, J., Schubert, U., Bacik, I., …Yewdell, J. W. (2001). A novel influenza A virus mitochondrial protein that induces cell death. Nature Medicine, 7, 1306. Retrieved from http://dx.doi.org/10.1038/nm1201-1306
[26] Portela, A., &Digard, P. (2002). The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. Journal of General Virology, 83(4), 723–734. https://doi.org/10.1099/0022-1317-83-4-723
[27] Resa-Infante, P., Jorba, N., Coloma, R., & Ortín, J. (2011). The influenza RNA synthesis machine: Advances in its structure and function. RNA Biology, 8(2), 207–215. http://doi.org/10.4161/rna.8.2.14513
[28] Neumann, G., Noda, T., & Kawaoka, Y. (2009). Emergence and pandemic potential of swine-origin H1N1 influenza virus. Nature, 459(7249), 931-939. https://doi.org10.1038/nature08157
[29] Bouvier, N. M., & Palese, P. (2008). THE BIOLOGY OF INFLUENZA VIRUSES. Vaccine, 26(Suppl 4), D49–D53.
[30] Schnell, J. R., & Chou, J. J. (2008). Structure and mechanism of the M2 proton channel of influenza A virus. Nature, 451(7178), 591-595. https://doi.org10.1038/nature06531
[31] Okada, A., Miura, T., & Takeuchi, H. (2001). Protonation of Histidine and Histidine−Tryptophan Interaction in the Activation of the M2 Ion Channel from Influenza A Virus†. Biochemistry, 40(20), 6053-6060. https://doi.org10.1021/bi0028441
[32] Wang, C., Lamb, R., & Pinto, L. (1995). Activation of the M2 ion channel of influenza virus: A role for the transmembrane domain histidine residue. Biophysical Journal, 69(4), 1363-1371. https://doi.org10.1016/s0006-3495(95)80003-2
[33] Tang, Y., Zaitseva, F., Lamb, R. A., & Pinto, L. H. (2002). The Gate of the Influenza Virus M2Proton Channel Is Formed by a Single Tryptophan Residue. Journal of Biological Chemistry, 277(42), 39880-39886. https://doi.org10.1074/jbc.m206582200
[34] Davies, W. L., Grunert, R. R., Haff, R. F., Mcgahen, J. W., Neumayer, E. M., Paulshock, M., . . . Hoffmann, C. E. (1964). Antiviral Activity of 1-Adamantanamine (Amantadine). Science, 144(3620), 862-863. https://doi.org10.1126/science.144.3620.862
[35] Clercq, E. D. (2006). Antiviral agents active against influenza A viruses. Nature Reviews Drug Discovery, 5(12), 1015-1025. https://doi.org10.1038/nrd2175
[36] Deyde, V., Xu, X., Bright, R., Shaw, M., Smith, C., Zhang, Y., . . . Klimov, A. (2007). Surveillance of Resistance to Adamantanes among Influenza A(H3N2) and A(H1N1) Viruses Isolated Worldwide. The Journal of Infectious Diseases, 196(2), 249-257. https://doi.org10.1086/518936
[37] Pielak, R. M., Schnell, J. R., & Chou, J. J. (2009). Mechanism of drug inhibition and drug resistance of influenza A M2 channel. Proceedings of the National Academy of Sciences, 106(18), 7379-7384. https://doi.org10.1073/pnas.0902548106
[38] Hayden, F. G. (2001). Perspectives on antiviral use during pandemic influenza. Philosophical Transactions of the Royal Society of London. Series B, 356(1416), 1877–1884. /https://doi.org/10.1098/rstb.2001.1007
[39] Kim, C. U., Lew, W., Williams, M. A., Liu, H., Zhang, L., Swaminathan, S., . . . Stevens, R. C. (1997). Influenza Neuraminidase Inhibitors Possessing a Novel Hydrophobic Interaction in the Enzyme Active Site: Design, Synthesis, and Structural Analysis of Carbocyclic Sialic Acid Analogues with Potent Anti-Influenza Activity. Journal of the American Chemical Society, 119(4), 681-690. https://doi.org10.1021/ja963036t
[40] Moscona, A. (2005). Neuraminidase Inhibitors for Influenza. New England Journal of Medicine, 353(13), 1363–1373. https://doi.org/10.1056/NEJMra050740
[41] Bantia, S., Arnold, C. S., Parker, C. D., Upshaw, R., &Chand, P. (2006). Anti-influenza virus activity of peramivir in mice with single intramuscular injection. Antiviral Research, 69(1), 39–45. https://doi.org/10.1016/J.ANTIVIRAL.2005.10.002
[42] Mckimm-Breschkin, J. L. (2012). Influenza neuraminidase inhibitors: Antiviral action and mechanisms of resistance. Influenza and Other Respiratory Viruses, 7, 25-36. https://doi.org10.1111/irv.12047
[43] Memoli, M. J., hrabal, R. J., Hassantoufighi, A., Eichelberger, M. C., &Taubenberger, J. K. (2010). Rapid Selection of Oseltamivirand Peramivir-Resistant Pandemic H1N1 Virus during Therapy in 2 Immunocompromised Hosts. Clinical Infectious Diseases, 50(9), 1252–1255. http://dx.doi.org/10.1086/651605Samson
[44] Samson, M., Pizzorno, A., Abed, Y., &Boivin, G. (2013). Influenza virus resistance to neuraminidase inhibitors. Antiviral Research, 98(2), 174–185. https://doi.org/10.1016/J.ANTIVIRAL.2013.03.014
[45] Le, Q. M., Kiso, M., Someya, K., Sakai, Y. T., Nguyen, T. H., Nguyen, K. H. L., …Kawaoka, Y. (2005). Isolation of drug-resistant H5N1 virus. Nature, 437(7062), 1108–1108. https://doi.org/10.1038/4371108a
[46] Furuta, Y., Gowen, B. B., Takahashi, K., Shiraki, K., Smee, D. F., &Barnard, D. L. (2013). Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Research, 100(2), 446–454. https://doi.org/10.1016/J.ANTIVIRAL.2013.09.015
[47] Oestereich, L., Lüdtke, A., Wurr, S., Rieger, T., Muñoz-Fontela, C., &Günther, S. (2014). Successful treatment of advanced Ebola virus infection with T-705 (favipiravir) in a small animal model. Antiviral Research, 105, 17–21. https://doi.org/10.1016/J.ANTIVIRAL.2014.02.014
[48] Amorim, M. J., Kao, R. Y., &Digard, P. (2013). Nucleozin targets cytoplasmic trafficking of viral ribonucleoprotein-Rab11 complexes in influenza A virus infection. Journal of Virology, 87(8), 4694–4703. https://doi.org/10.1128/JVI.03123-12
[49] Watanabe, K., Ishikawa, T., Otaki, H., Mizuta, S., Hamada, T., Nakagaki, T., …Nishida, N. (2017). Structure-based drug discovery for combating influenza virus by targeting the PA–PB1 interaction. Scientific Reports, 7(1), 9500. https://doi.org/10.1038/s41598-017-10021-w
[50] Kadam, R. U., &Wilson, I. A. (2017). Structural basis of influenza virus fusion inhibition by the antiviral drug Arbidol. Proceedings of the National Academy of Sciences, 114(2), 206 LP-214. Retrieved from http://www.pnas.org/content/114/2/206.abstract
[51] Heo, Y.-A. (2018). Baloxavir: First Global Approval. Drugs, 78(6), 693–697. https://doi.org/10.1007/s40265-018-0899-1
[52] Neumann, G., &Hobom, G. (1995). Mutational analysis of influenza virus promoter elements in vivo. Journal of General Virology, 76(7), 1709–1717. https://doi.org/10.1099/0022-1317-76-7-1709
[53] Marsh, G. A., Rabadán, R., Levine, A. J., &Palese, P. (2008). Highly conserved regions of influenza a virus polymerase gene segments are critical for efficient viral RNA packaging. Journal of Virology, 82(5), 2295–2304. https://doi.org/10.1128/JVI.02267-07
[54] Park, Y. W., &Katze, M. G. (1995). Translational control by influenza virus. Identification of cis-acting sequences and trans-acting factors which may regulate selective viral mRNA translation. The Journal of Biological Chemistry, 270(47), 28433–28439. https://doi.org/10.1074/JBC.270.47.28433
[55] ZHENG, H., PALESE, P., &GARCÍA-SASTRE, A. (1996). Nonconserved Nucleotides at the 3’ and 5’ Ends of an Influenza A Virus RNA Play an Important Role in Viral RNA Replication. Virology, 217(1), 242-251. https://doi.org/10.1006/VIRO.1996.0111
[56] Ma, J., Liu, K., Xue, C., Zhou, J., Xu, S., Ren, Y., …Cao, Y. (2013). Impact of the segment-specific region of the 3’-untranslated region of the influenza A virus PB1 segment on protein expression. Virus Genes, 47(3), 429–438. https://doi.org/10.1007/s11262-013-0969-0
[57] Lutz, A., Dyall, J., Olivo, P. D., &Pekosz, A. (2005). Virus-inducible reporter genes as a tool for detecting and quantifying influenza A virus replication. Journal of Virological Methods, 126(1), 13–20. https://doi.org/https://doi.org/10.1016/j.jviromet.2005.01.016
[58] Jo-Yu Hung. Screening for anti-influenza virus compounds.2015 Master's Thesis of Institute of Microbiology and Immunology. National Yang Ming University p52
[59] Chirullo, B., Sgarbanti, R., Limongi, D., Shytaj, I. L., Alvarez, D., Das, B., …Palamara, A. T. (2013). A candidate anti-HIV reservoir compound, auranofin, exerts a selective ‘anti-memory’ effect by exploiting the baseline oxidative status of lymphocytes. Cell Death &Amp; Disease, 4, e944. Retrieved from http://dx.doi.org/10.1038/cddis.2013.473
[60] Shytaj, I. L., Chirullo, B., Wagner, W., Ferrari, M. G., Sgarbanti, R., Corte, A.Della, …Savarino, A. (2013). Investigational treatment suspension and enhanced cell-mediated immunity at rebound followed by drug-free remission of simian AIDS. Retrovirology, 10(1), 71. https://doi.org/10.1186/1742-4690-10-71
[61] Hoffmann, H.-H., Palese, P., &Shaw, M. L. (2008). Modulation of influenza virus replication by alteration of sodium ion transport and protein kinase C activity. Antiviral Research, 80(2), 124–134. https://doi.org/https://doi.org/10.1016/j.antiviral.2008.05.008
[62] Karlas, A., Berre, S., Couderc, T., Varjak, M., Braun, P., Meyer, M., …Lecuit, M. (2016). A human genome-wide loss-of-function screen identifies effective chikungunya antiviral drugs. Nature Communications, 7, 11320. Retrieved from http://dx.doi.org/10.1038/ncomms11320
[63] Funke, C., Farr, M., Werner, B., Dittmann, S., Uberla, K., Piper, C., …Horstkotte, D. (2010). Antiviral effect of Bosentan and Valsartan during coxsackievirus B3 infection of human endothelial cells. Journal of General Virology, 91(8), 1959–1970. https://doi.org/10.1099/vir.0.020065-0
[64] Kim, Y., Kim, H., Bae, S., Choi, J., Lim, S. Y., Lee, N., … Lee, W. J. (2013). Vitamin C Is an Essential Factor on the Anti-viral Immune Responses through the Production of Interferon-α/β at the Initial Stage of Influenza A Virus (H3N2) Infection. Immune Network, 13(2), 70–74. http://doi.org/10.4110/in.2013.13.2.70
[65] Li, W., Maeda, N., &Beck, M. A. (2006). Vitamin C Deficiency Increases the Lung Pathology of Influenza Virus–Infected Gulo−/− Mice. The Journal of Nutrition, 136(10), 2611–2616. http://dx.doi.org/10.1093/jn/136.10.2611
[66] Chou, T.-C. (1976). Derivation and properties of Michaelis-Menten type and Hill type equations for reference ligands. Journal of Theoretical Biology, 59(2), 253–276. https://doi.org/https://doi.org/10.1016/0022-5193(76)90169-7
[67] Chou, T.-C., &Talalay, P. (1984). Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in Enzyme Regulation, 22, 27–55. https://doi.org/10.1016/0065-2571(84)90007-4
[68] Chou, T.-C., Motzer, R. J., Tong, Y., &Bosl, G. J. (1994). Computerized Quantitation of Synergism and Antagonism of Taxol, Topotecan, and Cisplatin Against Human Teratocarcinoma Cell Growth: a Rational Approach to Clinical Protocol Design. JNCI: Journal of the National Cancer Institute, 86(20), 1517–1524. Retrieved from http://dx.doi.org/10.1093/jnci/86.20.1517
[69] Liu, P.-Y., Jiang, N., Zhang, J., Wei, X., Lin, H.-H., &Yu, X.-Q. (2006). The Oxidative Damage of Plasmid DNA by Ascorbic Acid Derivativesin vitro: The First Research on the Relationship between the Structure of Ascorbic Acid and the Oxidative Damage of Plasmid DNA. Chemistry & Biodiversity, 3(9), 958–966. https://doi.org/10.1002/cbdv.200690104
[70] Kim, M. S., Yoo, B. C., Yang, W. S., Han, S. Y., Jeong, D., Song, J. M., …Cho, J. Y. (2018). Src is the primary target of aripiprazole, an atypical antipsychotic drug, in its anti-tumor action. Oncotarget, 9(5), 5979–5992. https://doi.org/10.18632/oncotarget.23192
[71] König, R., Stertz, S., Zhou, Y., Inoue, A., Hoffmann, H.-H., Bhattacharyya, S., …Chanda, S. K. (2009). Human host factors required for influenza virus replication. Nature, 463, 813. Retrieved from http://dx.doi.org/10.1038/nature08699
[72] Karlas, A., Machuy, N., Shin, Y., Pleissner, K.-P., Artarini, A., Heuer, D., …Meyer, T. F. (2010). Genome-wide RNAi screen identifies human host factors crucial for influenza virus replication. Nature, 463, 818. Retrieved from http://dx.doi.org/10.1038/nature08760
[73] Ma, C., Polishchuk, A. L., Ohigashi, Y., Stouffer, A. L., Schön, A., Magavern, E., …Pinto, L. H. (2009). Identification of the functional core of the influenza A virus A/M2 proton-selective ion channel. Proceedings of the National Academy of Sciences, 106(30), 12283 LP-12288. Retrieved from http://www.pnas.org/content/106/30/12283
[74] Fujioka, Y., Nishide, S., Ose, T., Suzuki, T., Kato, I., Fukuhara, H., …Ohba, Y. (2018). A Sialylated Voltage-Dependent Ca2+ Channel Binds Hemagglutinin and Mediates Influenza A Virus Entry into Mammalian Cells. Cell Host & Microbe. https://doi.org/https://doi.org/10.1016/j.chom.2018.04.015
[75] Nimmerjahn, F., Dudziak, D., Dirmeier, U., Hobom, G., Riedel, A., Schlee, M., …Mautner, J. (2004). Active NF- B signalling is a prerequisite for influenza virus infection. Journal of General Virology, 85(8), 2347–2356. https://doi.org/10.1099/vir.0.79958-0
[76] Ludwig, S., &Planz, O. (2008). Influenza viruses and the NF-κB signaling pathway – towards a novel concept of antiviral therapy. Biological Chemistry, 389(10), 1307–1312. https://doi.org/10.1515/BC.2008.148
[77] Kumar, N., Xin, Z., Liang, Y., Ly, H., &Liang, Y. (2008). NF-κB Signaling Differentially Regulates Influenza Virus RNA Synthesis. Journal of Virology , 82(20), 9880–9889. https://doi.org/10.1128/JVI.00909-08
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top