跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.11) 您好!臺灣時間:2025/09/23 18:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許師瑜
研究生(外文):Shih-Yu Hsu
論文名稱:改良式動力三軸系統模擬波浪力作用下海床土壤動態強度之研究
論文名稱(外文):The Dynamic Strength of Seabed Soil under Simulation of Wave-Induced Force by Improved Dynamic Triaxial System
指導教授:簡連貴簡連貴引用關係
指導教授(外文):Lien-Kwei CHIEN
學位類別:碩士
校院名稱:國立臺灣海洋大學
系所名稱:河海工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2005
畢業學年度:93
語文別:中文
論文頁數:132
中文關鍵詞:改良式動力三軸系統波浪力海床土壤動態強度
外文關鍵詞:Improved Dynamic Triaxial SystemWave-Induced ForceSeabed SoilDynamic Strength
相關次數:
  • 被引用被引用:10
  • 點閱點閱:291
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由於海床內部土壤受波浪外力作用下,同時承受垂直及水平兩方向壓力,以及與孔隙水壓等動態應力之共同影響。為了評估海床土壤的動態強度,本研究主要研發製作一套可控制三軸向動態外力之動力三軸試驗系統(Triaxial Cyclic Testing System,TCTS),並利用圓柱試體進行海床土壤動態強度之研究,以模擬現地實際狀態。
該系統主要參考傳統動力三軸系統(CKC triaxial testing system)架構,除在增加反水壓(孔隙水壓)動態控制機構與手動調壓閥,也配合上排水之體積變化儀與部份排水調壓閥的增設,以達三軸向動態應力自動控制與部份排水條件模擬的硬體需求。在自動控制與量測軟體開發部份則利用AD/DA資料擷取卡及Labview軟體撰寫系統基本參數輸入、系統量測、輸出感應器校正與試驗控制程式等三大部分程式。本系統可進行試體之均向、K0與任意K值等壓密,並可進行透水、靜態三軸、垂直向動態三軸、垂直與水平二向動態三軸與垂直、水平與孔隙水壓三向動態三軸等試驗,其中,動態外力形式除了可利用內建之sin波型式進行試驗外,也可載入任意波型檔案以模擬不規則波的情況,而且,兩動態外力間之作用延時可分別設定,以模擬各應力間相位偏移的情況。
由垂直向動態試驗結果得知本系統與CKC傳統動力三軸系統在相同試驗條件下之試驗結果有良好的一致性。而由新系統之垂直向與垂直、水平二向動態三軸試驗結果則發現:在相同反覆剪應力作用下,其所得到之土壤動態強度結果有明顯的不同,顯示波浪作用下的海床土壤動態強度試驗研究,必需模擬現地三動態應力的共同影響。
Under the ocean wave actions, the seabed soil is subjected to the dynamic interactions from both vertical, horizontal and pore pressures. In order to investigate the dynamic strengths of seabed soil, a triaxial cyclic testing system (TCTS) was established and the cylindrical samples were used in the tests.
By adding the manual pressure adjusting valves and the dynamic control mechanism of back pressure(pore pressure), upper-drained volume meter and partial drain adjusting valve to the CKC triaxial testing system, the system can automatic control the dynamic stresses in all axes, and can simulate the partial drain conditions. Labview software and AD/DA card were employed in automatic control, calibration, data acquisition and data analysis software. With this testing system, many soil tests can be processed, through the selectable uniform, K0 and arbitrary K consolidations, including drain test, static, dynamic axial load, dynamic axial load and confined pressure, and dynamic axial load, confined and pore water pressures triaxial tests. The dynamic stresses can be either the build-in sine waves or imported arbitrary wave forms to simulate irregular wave actions. Time delay between any two dynamic loads is selectable to simulate the phase shifting between each pair of stresses.
From the dynamic axial load test results under the same test conditions, the new TCTS system was proved to have good consistency with CKC triaxial testing system. However, from the results of dynamic axial load tests and dynamic axial load and confined pressure tests of the TCTS system, the soil dynamic strengths were found to be different which showed that the interaction between axial load, confined and pore water pressures should be taken into account when studying the dynamic seabed soil strength under the wave actions.
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 3
1-3 研究目的 5
1-4 研究架構 6
1-5 研究內容 7
第二章 文獻回顧 8
2-1 波浪引致海床應力評估之相關研究 9
2-1-1 理論解析與數值模擬 9
2-1-2 室內實驗和現地測量 12
2-2 動態外力作用下之土壤動態強度 15
2-2-1 土壤之動態強度 15
2-2-2 土壤液化潛能之相關影響因素 17
2-3 海床土壤之動態特性相關研究 24
2-3-1 作用於海床土壤之動態外力 24
2-3-2 海床不穩定之研究 26
2-4 綜合論述 32
第三章 模擬波浪力之改良動力三軸系統 33
3-1 模擬波浪力之動力三軸系統改良規劃說明 33
3-2 動力三軸壓力供給系統 35
3-3 動力三軸試驗與量測系統 37
3-3-1 動力三軸試驗系統 37
3-3-2 動力三軸量測系統 39
3-4 動力三軸自動控制系統 41
3-4-1 動力三軸自動控制硬體 41
3-4-2 自動控制系統操作介面 42
3-5 試驗儀器校正 62
3-6 模擬波浪力之動力三軸系統之特性 73
第四章 波浪作用下海床土壤動態力學試驗規劃 74
4-1 作用於海床土壤之外力 74
4-1-1 波浪與現地條件設定 74
4-1-2 波浪外力之考量 76
4-2 海床土壤動態力學試驗 80
4-2-1 海床現地應力 80
4-2-2 海床土壤動態力學試驗內容 81
4-3 試體準備 83
4-3-1 試驗砂樣基本性質 83
4-3-2 試體準備方法 84
4-4 試驗組數規劃 87
第五章 波浪作用下之海床土壤動態強度 88
5-1 CKC與模擬波浪力之動力三軸系統試驗結果比較 88
5-2 單向與雙向動態作用之應力路徑分析 91
5-2-1 單向與雙向動態作用之應力路徑分析 92
5-2-2 單向與雙向動態作用之有效應力路徑分析 92
5-3 單向與雙向動態作用下海床土壤之液化阻抗 97
5-4 單向與雙向動態作用下海床土壤之孔隙水壓激發模式 100
5-4-1 單向與雙向動態作用之孔隙水壓激發情況 101
5-4-2 Seed孔隙水壓激發模式曲線分析 102
5-4-3 黃俊鴻孔隙水壓激發三階段分析 107
第六章 結論與建議 110
6-1 結論 110
6-2 建議 112
參考文獻 113
1.Barends, F. B. J. and Spierenburg, S.E.J., 1991, “Interaction between ocean waves andseabed”, Proceedings of the International Conference on Geotechnical Engineering for Coastal Development –Theory and Practice on Soft Ground (Geot-Coastal’91), Yokohama, Japan, 2, pp.1091-1108.
2.Bea, R. G., Wright, S. G., Sircar, P., and Niedoroda, A. W., 1983, “Wave-induced slides in South Pass Block 70, Mississippi Delta’’, J. Geotech. Engng, ASCE Vol.109, No.4, pp.619-644.
3.Biot, M. A., 1941, “General theory of three-dimensional consolidation”, J. Appl. Phys. 12, pp.155-165.
4.Bjerrum, L., 1973, “Geotechnical Problems in Foundations of Structures in the North Sea”, Geotechnique, Vol.23, No.3, pp.319-358.
5.Bouckovalas, G., Stamatopoulos, C.A. , and Whitman, R.V., 1991, “Analysis of Seismic Settlements and Pore Pressures in Centrifuge Tests”, Journal of the Geotechnical Engineering Division, ASCE, Vol.117,10, pp.1492-1508.
6.Bretch, H. & Schwab, H. H., 1977, “Liquefaction of a Fully Saturated Sand under Anisotropic Initial State of Stress in a Controlled Drainage System”, Proceedings of DMSR 77, Vol.2, pp.149-159.
7.Castro, G.C., and Poulos, S.J., 1977, “Factors Affecting Liquefaction and Cyclic Mobility”, Journal of the Geotechnical Engineering Division, ASCE, Vol.103, No.GT6, pp.501-516.
8.Dean, R. G. & Dalrymple R. A., 1993, “Water Wave Mechanics for Engineers and Scientists”, World Scientific, pp.353.
9.Demars, K. R., 1983, “Transient stresses induced in sandbed by wave loading”, J. Geotech. Engng, ASCE Vol.109, No.4, pp.591-602.
10.Demars, K. R. and Vanover, E.A., 1985, “Measurement of wave-induced pressures and stress in a sandbed”, Marine Geotechnology, Vol.12, No.1, pp.29-59.
11.Finn, W.D.L., Siddnarthan, R., and Martin, G.R., 1983, “Response of seafloor to ocean waves”, Journal of Geotechnical Engineering, ASCE, Vol.109, No.4, pp.556-572.
12.Foda, M.A. and Tzang, S.Y., 1994, “Resonant fluidization of silty soil by water waves”. Journal of Geophysical Research, Vol. 99(C10), pp. 20463-20475.
13.Henkel, D.H., 1970, “The role of waves in causing submarine landslides”, Geotechnique, Vol.20,No.1, pp.75-80.
14.Huang, H. H., Hwang, K. S. and Lee, B. H., 1996, “Wave boundary layer flows and pore pressures in permeable beds”, Proceedings 25th International Conference on Coastal Engineering, ASCE, pp.3219-3230.
15.Ishibashi, I., Sherif, M. A., and Cheng, W. L., 1982, “The Effects of Soil Parameters on Pore-Pressure-Rise and Liquefaction Prediction”, Soils and Foundations, Vol.22, No.1, pp.39-48.
16.Ishihara, K., 1984, “Soil Response in Cyclic Loading Induced by Earthquakes, Traffic and Waves”, Proc. 7th Asian Regional Conference on Soil Mechanics and Foundation Engineering, Haifa, Israel, Vol. 2, pp.42-66.
17.Ishihara, K. and Yamazaki, A., 1984, “Analysis of wave-induced liquefaction in seabed deposits of sand”, Soils and Foundations, Vol.24, No.3, pp.85-100, Japanese Society of Soil Mechanics and Foundation Engineering.
18.Ishihara, K., 1993, “Liquefaction and flow failure during earthquakes”, Geotechnique, Vol.43, No.3, pp.351-415.
19.Jeng, D. S., 2001, “Mechanism of the wave-induced seabed instability in the vicinity of a breakwater: a review”, Ocean Engineering, Vol.28, pp.537-570.
20.Jeng, D. S., 2003, “Wave-induced sea floor dynamics”, American Society of Mechanical Engineers, Vol.56, No.4, pp.537-570.
21.Lee & Fitton, 1969, “Factors Affecting The Cyclic Loading Strength of Soil”, Vibration Effects of Earthquakes on Soils and Foundations, ASTM, STP 450, pp71-96.
22.Lee, K.L. & Focht, J.A., 1975, “Liquefaction Potential of Ekofisk Tank in North Sea”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 100, No. GT1, pp.1-18.
23.Lin Main and Li Jia-chun, 2001, “Effects of surface waves and marine soil parameters on seabed stability”, Applied Mathematics and Mechanics, Vol.22, No.8, pp.904-916.
24.Liu, P. L. F., 1973, “Damping of water waves over porous bed”, J. Hydraul.Div., Am. Soc. Civ. Eng., Vol.99, No.12, pp.2263–2271.
25.Madsen, O. S., 1978, “Wave-induced pore pressures and effective stresses in a porous bed”, Geotechnique, Vol.28, No.4, pp.377-393
26.Maeno, Y. H. and Hasegawa, T., 1985, “Evaluation of wave-induced pore pressure in sand layer by wave steepness”, Coastal Engineering in Japan,28, pp.31-44
27.Maeno, Y. H. and Hasegawa, T., 1987, “In-situ measurements of wave-induced pore pressure for predicting properties of seabed deposits”, Coastal Engineering in Japan, Vol.30, No.1, pp.99-115.
28.Mitchell, J.K., Tsui, K.K., Sangrey, D.A., 1972, “Failure of submarine slopes under wave action”, Proceeding 13th International Conference on Coastal Engineering, ASCE, 2, pp.1515-1539.
29.Mitchell, R. J. and Dubin, B. I., 1982, “Pore Pressure Generation and Dissipation in Dense Sands under Cyclic Loading”, Journal of the Canada Geotechnics, Vol.108, No.GT7, pp935-952.
30.Mulilis, J.P., C. K. Chan, and Seed H.B., 1975, “The Effect of Method of Sample Preparation on The Cyclic Stress-Strain Behavior of Sand”, Report No. EERC 75-18, U.C.Berkeley Earthquake Engineering Research Center.
31.Mulilis, J. P., Seed, H. B., and Chan, C. K., 1977,〝Resistance to Liquefaction Due to Sustained Pressure〞Journal of Geotechnical Engineering Division, ASCE, Vol.103, No.GT7, July, pp.793-797.
32.Mulilis, J. P., et al., 1978, “Triaxial Testing Techniques and Sand Liquefaction”, Dynamic Geotechnical Testing, ASTM, STP 654, pp.265-279.
33.Nataraja, M. S. and Gill, H. S., 1983, “Ocean Wave-Induced Liquefaction Analysis”, Journal of Geotechnical Engineering, ASCE, Vol.109, No.4, April pp.573-590.
34.Okusa, S., 1985, “Wave-Induced Stresses in Unsaturated Submarine Sediments”, Geotechnique, Vol.35, No.4, pp.517-532.
35.Okusa, S. and Uchida, A., 1980, “Pore-water pressure change in submarine sediments due to waves”, Marine Geotechnology, Vol.4, No.2, pp.145-161.
36.Peacock, W.H. and Seed, H.B., 1968, “Sand Liquefaction under Cyclic Loading Simple Shear Conditions”, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.94, No.SM3, pp.689-708.
37.Pickering, D. J., 1973, “Drained Liquefaction Testing in Simple Shear”, Journal of the Soil Mechanics and Foundations Division, ASCE, Vol.99, No.SM12, pp.1179-1184.
38.Poulos, H. G., 1988, “Marine Geotechnics”, Prentice Hall, London, pp.344-436.
39.Putnam, J. A.,1949, “Loss of wave energy due to percolation in a permeable sea bottom”, Transactions, American Geophysical Union, Vol.30, No.3, pp.349-356.
40.Rahman, M. S., 1991, “Wave-induced Instability of Seabed: Mechanism and Condition”, Marine Geotechnology, Vol.10, pp.277-299.
41.Rahman, M. S., 1997, “Instability and Movement of Oceanfloor Sediments: A Review”, International Journal of Offshore and Polar Engineering, Vol.7, No.3, pp.220-225.
42.Rahman, M.S. & Jaber, W.Y., 1986, “A simplified drained analysis for wave-induced liquefaction in ocean floor sands”, Soils and Foundations Vol.26, No.1, pp.57-68.
43.Reid, R. O. and Kajiura, K., 1957, “On the damping of gravity waves over a permeable sea bed”, Transactions, American Geophysical Union,38, pp.662-666.
44.Sassa, S. & Sekiguchi, H., 1999, “Wave-induced liquefaction of beds of sand in a centrifuge”, Geotechnique, Vol.49, No.5, pp.621–638.
45.Sato, K. & Yoshida, N., 1996, “Effect of Principal Stress Direction on Undrained Cyclic Shear Behaiour of Dense Sand”, Proceedings of the Ninth (1999) International Offshore and Polar Engineering Conference,Brest, France.
46.Seed, H., 1979, “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes”, Journal of the Geotechnical Engineering Division, ASCE, Vol.105, No.GT2, Proc. Paper 14380, pp.201-255.
47.Seed, H.B. and Idriss, I.M., 1971, “Simplified Procedure for Evaluating Soil Liquefaction Potential”, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol. 97, No. SM9, pp.1249-1273.
48.Seed, H. B., Martin, P. P., and Lysmer, J., 1976, “Pore-Water Pressure Changes During Soil Liquefaction”, Journal of the Geotechnical Engineering Division, ASCE, Vol.102, No.GT4, Proc. Paper 12074, Apr., pp.323-346.
49.Seed, H.B., 1979, “Soil Liquefaction and Cyclic Mobility Evaluation for Level Ground During Earthquakes”, Journal of The Geotechnical Engineering Division, ASCE, Vol.105, No.GT2, Feb., pp.201-255.
50.Sharma, S. S., and Fahey, M., 2003, “Evaluation of Cyclic Shear Strength of TwoCemented Calcareous Soils”, Journal of Geotechnical and eoenvironmental Engineering, ASCE, Vol. 129, No. 7, pp.608-618.
51.Sherif M. A., Ishibashi I. and Tsuchiya C., 1977, “Saturation Effects on Initial Soil Liquefaction”, Journal of The Geotechnical Engineering Division, ASCE, Vol.103, No.GT8, Aug., pp.914-917.
52.Sleath, J. F. A., 1970, “Wave-Induced Pressures in Bed of Sand”, Journal of the Hydraulics Division, ASCE, Vol.96, No.HY2, pp.367-378.
53.Suzuki, K., Takahashi, S., and Kang, Y. K., 1998, “Experimental analysis of wave-induced liquefaction in a fine sandbed”, Coastal Engineering 1998, pp.3643-3654.
54.Tsai, C. P. 1995, “Wave-induced Liquefaction Potential in a Porous Seabed in Front of a Breakwater”, Ocean Engineering, Vol. 22, No.1, pp. 1-18.
55.Tsai, C. P. and Lee, T. L., 1994, “Standing wave induced soil response in a porous seabed”, Proceedings 24th International Conference on Coastal Engineering, ASCE, pp.3369-3377.
56.Tsai, C. P. and Lee, T. L., 1995, “Standing wave induced pore pressure in a porous seabed”, Ocean Engineering, Vol.22, No.6, pp.505-517.
57.Tsotsos, S., Georgiadis, M., and Damaskindou, A., 1989, “Numerical analysis of liquefaction potential of partially drained seafloor”, Coastal Engineering ,Vol.13, No.2, pp.117-128.
58.Tsui, Y., Helfrich, S.C., 1983, “Wave-Induced Pore Pressures in Submerged Sand Layer”, Journal of Geotechnical Engineering, ASCE, Vol.109, No.4, April, pp.603-618.
59.Umehara, Y., Zen, K. , and Hamada, K., 1985, “Evaluation of soil Liquefaction Potentials in Partially Drained Conditions”, Soils and Foundations, Vo1.25, No.2, pp.57-72.
60.Vaid, Y. P. & Chern, J.C., 1985, “Cyclic and monotonic undrained response of saturated sands”, Advances in the art of testing soils under cyclic condition, ASCE,pp.120-147.
61.Vaid, Y. P. et al., 1990, “Particle Gradation and Liquefaction”, Journal of Geotechnical Engineering, ASCE, Vol.116, No.4, April, pp.698-703.
62.Xia, H. & Hu, T., 1991, “Effects of Saturation and Back Pressure on Sand Liquefaction”, Journal of Geotechnical Engineering, ASCE, Vol.117, No.9, pp.1347-1362.
63.Wong, R.T., Seed H. B., and Chan, C. K., 1975, “Cyclic Loading Liquefaction of Gravelly Soils”, Journal of The Soil Mechanics and Foundations Division, ASCE, Vol.101, No.GT6, pp.571-583.
64.Yamamoto, T., H. L. Koning, H. Sellmeijer, and E. V. Hijum, 1978, “On the reponse of a pore-elastic bed to water waves”, J. Fluid Mech., Vol.87, Part 1, pp.193-206, Printed in Great Britain.
65.Yoshiaki Yoshimi, Kohji Tokimatsu, Osamu Kaneko, and Yorio Makihara., (1984),〝Undrained Cyclic Shear Strength of A Dense Niigata Sand〞Soils and Foundations,Vol.24,No.4,Dec,Pp.131-145.
66.Zen, K. and Yamazaki, H., 1990(a), “Mechanism of wave-induced liquefaction and densification in seabed”, Japanese Society of Soil Mechanics and Foundation Engineering, Vol.30, No.4, pp.90-104,.
67.Zen, K. and Yamazaki, H., 1990(b), “Oscillatory pore pressure and liquefaction in seabed induced by ocean wave”, Japanese Society of Soil Mechanics and Foundation Engineering, Vol.30, No.4, pp.147-161.
68.Zen, K. and Yamazaki, H., 1991, “Field observation and analysis of wave-induced liquefaction in seabed”, Soils and Foundations, Vol.30, No.4, pp.90-104.
69.Zen, K. and Yamazaki, H., 1993, “Wave-induced liquefaction in a permeable seabed”, Report, Port and Harbour Research Institite., Japan, Vol.31, No.5, pp.155-192.
70.江鈞平,1984,“壓密與顆粒性質對含微量黏土細砂之液化潛能的影響”,碩士論文,國立台灣大學土木工程研究所,台北台灣。
71.楊騰芳,1986, “細料在過壓密及前期微震作用下對飽和砂性土壤液化潛能之影響”,碩士論文,國立台灣大學土木工程研究所,台北台灣。
72.鄭文隆,郭奇正,1987,“未飽和砂性土壤承受反覆剪應力之孔隙水壓上升研究”,土木水利季刊第十四卷,第三期,pp.59-74。
73.黃俊鴻,1990, “水平地盤受震反應分析” ,博士論文,國立台灣大學土木工程研究所,台北台灣。
74.陳景文,楊朝景,1996, “高雄附近沿海砂質海床之液化潛能評估”,中國土木水利工程學刊,第八卷,第一期,第1-12 頁。
75.臧效義,歐善惠,蘇美光,王智民,1998,“規則波浪作用下細顆粒海床反應特性實驗研究”,第二十屆海洋工程研討會論文集,第459-466 頁。
76.張燿顯,2002,“波浪作用對海床砂土動態特性與液化行為之研究”,碩士文,國立台灣海洋大學河海工程學系,基隆台灣。
77.張志新,2004,“波浪作用下海床砂土液化機制與評估模式之研究”,博士文,國立台灣海洋大學河海工程學系,基隆台灣。
78.Chang S. C., L. K. Chien, J. G. Lin and Y. F. Chiu(張上君等人),2004,“An Experimental Study on Wave-induced Dynamic Stresses in Seabed”,
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top