跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/09 08:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游錡
研究生(外文):Yu Chi
論文名稱:CMOS溫度感測電路及其應用於感測讀取電路的溫度補償
論文名稱(外文):CMOS Temperature Sensor and Its Application in Temperature Compensation of Sensing Readout Circuits
指導教授:王瑞祿
指導教授(外文):Wang Ruey-Lue
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:124
中文關鍵詞:離子感測場效電晶體酸鹼值延伸式閘極離子感測場效電晶體溫度感測電路多路運算放大器補償電路感測讀取電路
外文關鍵詞:ISFETpH-valueEGFETTemperature SensorMultiple Differential-input Operation AmplifierCompensation CircuitReadout Circuit
相關次數:
  • 被引用被引用:0
  • 點閱點閱:641
  • 評分評分:
  • 下載下載:69
  • 收藏至我的研究室書目清單書目收藏:0
本論文主題為「CMOS溫度感測電路及其應用於感測讀取電路的溫度補償」,主要研究「以TSMC 0.18μm製程實現高線性度電流輸出溫度感測及其讀取電路」、「具溫度補償機制之感測讀取電路」及「具電流補償之多路感測讀取電路」。設計之電路皆透過國家實驗研究院國家晶片系統設計中心(National Chip Implementation Center, National Applied Research Laboratories)提供之TSMC 0.35μm及0.18μm製程技術下線晶片。
  原先實驗室團隊已證實,延伸閘電極之離子感測場效電晶體(ISFET)的鋁金屬電極上,自然形成的氧化鋁,應用於進行酸鹼值檢測,可得到良好的靈敏度與線性度,並提出了相關的讀取電路設計。本論文針對讀取電路做了新的設計,使整體電路的應用更具彈性。
首先提出之電路為「以TSMC 0.18μm製程實現高線性度電流輸出溫度感測及其讀取電路」,TSMC 0.18μm (含)以下的CMOS製程提供多種電阻材料,它們電阻值的溫度特性透過與PTAT電壓產生電路的元件尺寸之整合設計,使電路設計更具彈性,在良好的線性度要求下,可以提供不同的靈敏度。本研究以有/無金屬矽化合物之多晶矽電阻及無金屬矽化合物之擴散摻雜矽電阻來設計此溫度感測器,量測結果顯示,在0~100C溫度範圍內,溫度感測器所量測到的線性度皆在99.993%以上,非線性溫度誤差分別為-0.46~0.43C、-0.28 ~0.37C及-0.29~0.42/C。
接著提出之電路為「具溫度補償機制之感測讀取電路」,透過TSMC0.35μm製程下線。溫度補償機制係以前述的溫度感測器架構進行電流補償。溶液pH值會隨溫度改變而改變,本電路可補償因溫度改變造成的輸出特性飄移現象。量測結果顯示,本電路在補償機制有/無開啟時,線性度均可達99.999%以上,靈敏度約為298 kHz/V。在特定的pH值隨溫度飄移得條件下,本電路在溫度為5、15、25、35、45C,且溫度補償電流開啟時,量測的pH值飄移在-0.013~0.034pH以內。
最後提出之電路為「具電流補償之多路感測讀取電路」,透過TSMC0.35μm製程下線。結合電流補償電路及多路輸入運算放大器,藉由2-to-4 Line 解碼器選擇讀出的感測值,並利用電流補償電路降低輸出的起始值便於後續電路的處理,以及調整製程變異造成無法避免的offset,使各個感測輸入的輸出值幾乎相同。量測結果顯示,當溫度為0、20、40、60C時,對應於類比電壓信號輸入的通道A、C之輸出脈波頻率線性度均達99.9998%以上,靈敏度約為80.36 kHz/V,假設輸入為pH -ISFET而且等效的閘電壓靈敏度為50mV/pH,則pH值誤差在-0.002~0.004。當0~60C時,通道B的溫度感測器之輸出脈波頻率線性度為99.992%,靈敏度為209.52Hz/C,非線性溫度誤差在-0.32~0.15oC。

The topic of the thesis is CMOS temperature sensor and its application in temperature compensation of censing readout circuits. The research aims at CMOS temperature sensors using a PTAT-voltage driving common-source amplifier with a source resistor, a pulse-output readout circuit with temperature compensation for a temperature- dependent input voltage, and a multi-sensor readout circuit with a current offset architecture. The designed circuits are based on the TSMC 0.35μm and 0.18μm processes, which are provided by national chip implementation center, national applied research laboratories.
The former team in the laboratory has proved that using native alumina on the aluminum metal electrode of an extended-gate ion-sensitive field effect transistor (ISFET) to detect pH value can obtain great sensitivity and linearity. They have also proposed several related readout circuit. In this thesis, new designs for the readout circuit are presented in order to make the circuit more flexible.
Firstly, a CMOS temperature sensor using a PTAT-voltage Driving common-source amplifier with a source resistor, which is based on the TSMC 0.18μm process, is presented. Various resistors are provided by 0.18μm and smaller-feature-size CMOS processes. The circuit designs will be more flexible when temperature characteristics of their resistances are considered together with the device size of the PTAT generator. Therefore, the circuits will have different sensitivities with good linearity. In this thesis, silicided p-type polysilicon (Rrppo1), non-silicided p-type polysilicon (Rrppo1rpo), and non-silicided n-type diffused silicon (Rrnodrpo) are used to design the temperature sensor. The measured linearities of the temperature sensors can be up to 99.993% for a temperature range of 0 to 100C. Nonlinear temperature errors are -0.463~0.426 C, -0.275~0.373 C, and -0.291~0.415 C, respectively.
Secondly, a pulse-output readout circuit with temperature compensation for a temperature-dependent input voltage, which is based on the TSMC 0.35μm process, is presented. The temperature compensation is done by using the circuit architecture of the former temperature sensor. The pH value of solution will change with temperature. This circuit can compensate the drift caused by the temperature variation. Measurement results show that the sensitivities are 298 kHz/V with linearities of at least 99.999%, whether the circuit is operated with the temperature compensation or not. When the temperature compensation is on under a certain condition of pH-value drift of solution with temperature, the measured pH values at 5, 15, 25, 35, and 45 C exhibit pH-value drift of -0.013 to 0.034.
Finally, a multi-sensor readout circuit with a current offset architecture, which is based on the TSMC 0.35μm process, is presented. The circuit is integrated with a multiple differential-input operation amplifier and a current-offset circuit, and the sensed value is selectively read out by a 2-to-4 line decode. By using the current-offset circuit, the readout value can be reduced to facilitate the post processing of the following circuit and the readout values related to the different input channels with the same input value can be adjusted to nearly the same value when the process-variation induces the offset between these output data. The measurement results indicates that the sensitivities of the output pulse frequencies related to the analog input voltages of the channel A and B are about 80.36 kHz/V with the linearity of at least 99.9998% at 0, 20, 40, 60 C. Assuming that the input is from pH-ISFET and the sensitivity of the effective gate voltage is 50 mV/pH, the error of pH values is between -0.002 and 0.004. For a temperature range of 0 to 60 C, The sensitivities of output pulse frequency related to the output voltage of the temperature sensor at the channel B is 209.52Hz/°C with the linearity of at least 99.992% and the nonlinear temperature error is between -0.32 and 0.15C.

目 錄
致謝 I
摘 要 III
Abstract VI
目 錄 IX
圖 目 錄 XII
表 目 錄 XVIII
第一章 緒論 1
1-1研究背景 1
1-2研究動機與目的 2
1-3論文內容提要 4
第二章 離子感測場效電晶體(ISFET)原理 6
2-1生物感測器 6
2-1.1生物感測器之定義 6
2-1.2生物感測器之辨識元種類 6
2-1.3生物感測器之換能器種類 8
2-2離子感測場效電晶體(ISFET)工作原理 14
2-2.1 MOSFET操作原理 14
2-2.2 ISFET操作原理 19
2-2.3 EGFET操作原理 23
2-2.4吸附鍵結模型(Site-Binding Model) 25
2-2.5電雙層(Electrical double layer) 30
2-3參考電極(ReferenceElectrode) 31
2-4 ISFET元件(Device)實驗與結果 34
第三章 感測讀取電路之基本電路 39
3-1帶差參考電路(Bandgap Reference Circuit) 39
3-2運算放大器(OPA) 42
3-2.1多路運算放大器(MDI-OPA) 45
3-3電流控制振盪器(Current-Controlled Oscillator) 47
第四章 以TSMC 0.18μm製程實現高線性度電流輸出溫度感測及其讀取電路 53
4-1電路架構介紹 53
4-2先前之電路架構 55
4-3溫度感測器 60
第五章 具溫度補償機制之感測讀取電路 72
5-1電路原理 76
5-2電路架構介紹 80
5-2.1 pH-ISFET感測讀取電路 80
5-2.2具溫度補償機制之感測讀取電路 85
第六章 具電流補償機制之多路感測讀取電路 100
6-1電路架構介紹 102
第七章 結論 109
參考文獻 113


圖 目 錄
圖2-1 MOSFET透視圖[30] 15
圖2-2 n-MOSFET結構圖 16
圖2-3 MOSFET的理想汲極特性 17
圖2-4 MOSFET ID-VD特性圖 18
圖2-5 n-ISFET元件示意圖 19
圖2-6 ISFET複相體結構[32] 21
圖2-7延伸式離子感測場效電晶體之架構圖[18] 24
圖2-8 ISFET元件Site-Binding Model示意圖[37] 26
圖2-9 Site-Binding Model示意圖 27
圖2-10 EIS架構之電荷密度與電位分佈[40] 28
圖2-11 Helmholtz電雙層模型與電位分佈[42] 30
圖2-12 Stern電雙層模型與電位分佈[42] 31
圖2-13銀-氯化銀參考電極(Ag/AgCl electrode)架構圖 33
圖2-14 Extended-gate ISFET結構示意圖 34
圖2-15 ISFET元件佈局圖 35
圖2-16 ISFET元件晶片照相圖 36
圖2-17傳統Ag/AgCl參考電極 36
圖2-18 pseudo Ag/AgCl參考電極 37
圖2-19 pH値與相對應等效閘極電壓 38
圖3-1 帶差參考電路 40
圖3-2 M2隨溫度變化之電流模擬圖 42
圖3-3 Two-Stage OPA 44
圖3-4 Multiple differential-input operational amplifier 46
圖3-5充電式電流控制振盪器 47
圖3-6放電式電流控制振盪器 48
圖3-7放電式電流控制振盪器模擬時序圖 50
圖3-8電流控制振盪器電路佈局圖(TSMC 0.18μm) 52
圖4-1使用BJT-MOSFET架構之溫度感測電路[45] 56
圖4-2定電流偏壓下,BJT之VEB及PMOSFET之VSG與溫度關係圖。圖中亦展示VEB及VSG之非線性誤差 56
圖4-3實測與模擬的溫度與輸出電壓之關係圖及其非線性溫度特性 57
圖4-4高線性輸出電流之溫度感測電路及電流控制震盪電路整合之脈波輸出溫度版測電路圖 59
圖4-5 VPTAT於20及100 ºC時,對控制電壓Vb的關係圖 59
圖4-6 VPTAT、電阻R及電阻壓降對溫度的關係圖。電壓與電阻值溫度特性的非線性偏移量 60
圖4-7高線性度電流輸出溫度感測及其讀取電路之電路圖 61
圖4-8VPTAT與VGS7對在不同Vb下,對溫度的輸出特性 63
圖4-9模擬三種不同電阻在0~100C下的變化 64
圖4-10 Rrppo1、Rrppo1rpo及Rrnodrpo電路與不同Vb下之 IPTAT的輸出特性 66
圖4-11模擬脈波輸出頻率對溫度以及回歸線線性誤差關係圖 67
圖4-12實測脈波輸出頻率對溫度以及回歸線線性誤差比較關係圖 68
圖4-13實際測量時之示波器照相圖 69
圖4-14溫度感測器晶片圖 70
圖4-15溫度感測器晶片核心圖 70
圖5-1 ISFET於pH=4溶液內,在不同溫度下,汲極電流與參考電極電位的關係圖[19] 73
圖5-2 ISFET於pH=4溶液內,以參考電極為等效閘極的等效VTH 中各成份受溫度影響之變化關係[19] 74
圖5-3 ISFET於pH=4溶液內,MOSFET本身及ISFET等效VTH之VTH與溫度之關係[19] 74
圖5-4 ISFET的等效操作模型 77
圖5-5 ISFET的元件模型 77
圖5-6 pH-ISFET之讀取電路 81
圖5-7 pH-ISFET之讀取電路之晶片照相圖 82
圖5-8封裝於PCB板之上視照相圖 82
圖5-9外部Ag/AgCl參考電極偏壓下,量測到的脈波頻率與pH值的關係圖 83
圖5-10、分別在外部Ag/AgCl及內建Au參考電極偏壓下,量測到的脈波頻率與pH值的關係圖 84
圖5-11、內建Au參考電極偏壓下,兩次量測所得脈波頻率與pH值的關係圖 84
圖5-12具溫度補償機制之pH-ISFET讀取電路 85
圖5-13只包含電壓轉電流電路與電流控制振盪電路之晶片的輸出脈波頻率與輸入電壓的關係 86
圖5-14只包含電壓轉電流電路與電流控制振盪電路之晶片,於Vin=0.5V時之輸出脈波頻率的溫度特性圖 87
圖5-15溫度感測電路改變Vtemp,電流IR對溫度之模擬圖 89
圖5-16溫度補償電路三路電流對溫度之模擬圖 89
圖5-17模擬整體電路的輸出脈波頻率與輸入電壓之關係圖 90
圖5-18實測整體電路的輸出脈波頻率與輸入電壓之關係圖 91
圖5-19整體電路的輸出脈波頻率與輸入電壓之模擬與實測關係圖 91
圖5-20模擬在不同溫度下,脈波頻率對pH值之溫度補償效果比較圖 92
圖5-21實際測量在不同溫度下,脈波頻率對pH值之溫度補償效果比較圖 93
圖5-22模擬不同pH溶液中,由輸出脈波頻率透過以線性回歸線做為校正線所得溫度改變造成的pH值飄移特性圖(無溫度補償) 94
圖5-23模擬不同pH溶液中,由輸出脈波頻率透過以線性回歸線做為校正線所得溫度改變造成的pH值飄移特性圖(4IS溫度補償) 94
圖5-24實測由輸出脈波頻率透過以線性回歸線做為校正線所得溫度改變造成的pH值飄移特性圖(無溫度補償) 95
圖5-25實測由輸出脈波頻率透過以線性回歸線做為校正線所得溫度改變造成的pH值飄移特性圖(4IS溫度補償) 96
圖5-26實測由輸出脈波頻率透過以線性回歸線做為校正線所得溫度改變造成的pH值飄移特性圖(4IS+2IS溫度補償) 96
圖5-27實際測量在酸鹼待測溶液環境中的輸出特性 98
圖5-28實際測量時之示波器照相圖 98
圖5-29具溫度補償機制之感測讀取電路晶片圖 99
圖6-1具電流補償之多路感測讀取電路圖 102
圖6-2 pH-ISFET(Ch.A, Ch.C)模擬與實測的輸出頻率對輸入電壓之關係圖 103
圖6-3具電流補償之多路感測讀取電路圖(Channel B溫度感測器) 105
圖6-4 溫度感測器(Ch.B)模擬與實測的輸出頻率與溫度非線性誤差對溫度之關係圖 106
圖6-5實際測量時之示波器照相圖 107
圖6-6具電流補償之多路感測讀取電路晶片圖 108


表 目 錄
表2.1 生物感測器分類 9
表3.1 運算放大器性能比較[50] 43
表3-2 2-to-4 line decoder 46
表3-3 SR NOR latch operation 49
表4-1 0~100C三種源極退化電阻電路改變Vb後之IPTAT輸出變化 66
表4-2 0~100C三種源極退化電阻電路之模擬與實驗整理表 68
表5-1整體電路之模擬與實驗關係表 97
表6-1 BUN:Creatinine ranges and significance [90] 101
表6-2 pH-ISFET(Ch.A, Ch.C)模擬與實測相關數值整理 104
表6-3溫度感測器(Ch.B)模擬與實測相關數值整理 106

[1] N. Yazdi, A. Mason, K. Najafi, K. D. Wise: Sensors and Actuators 84, pp.251, 2000.
[2] E. Lauwers, J. Suls, W. Gumbrecht, D. Maes, G. Gielen, and W. Sansen:IEEE J. Solid-State Circuits 36, pp.2030, 2001.
[3] X. Yu, Y. Tang, H. Zhang, T. Li, and W. Wang: IEEE sensors J. 7, pp.489, 2007.
[4] Y. Li, C. Vancura, K. U. Kirstein, J. Lichtenberg, and A. Hierlemann: IEEETrans. Circuits Syst. I 55, pp.2551, 2008.
[5] P. M. Levine, P. Gong, R. Levicky, and K. L. Shepard: IEEE J. Solid-StateCircuits 43, pp.1859, 2008.
[6] S. H. Choi, S. M. Yee, H. J. Ji, J. W. Choi, Y. S. Cho, and G. T. Kim: Jpn. J.Appl. Phys. 48 pp.06FD13, 2009.
[7] I. Kwon, H. H. Lee, J. Choi, J. K. Shin, S. H. Seo, S. W. Choi, and H. S.Chun: Jpn. J. Appl. Phys. 50, pp06GL08, 2011.
[8] J. H. L. Lu, M. Inerowicz, S. Joo, J. K. Kwon, and B. Jung: IEEE SENSORSJ. 11 ,pp.1134, 2011
[9] H. Reinisch, M. Wiessflecker, S. Gruber, H. Unterassinger, G. Hofer, M.Klamminger, W. Pribyl, and G. Holweg: IEEE J. Solid-State Circuits 46, pp.3075, 2011.
[10] J. Choi, H. H. Lee, J. Ahn, S. H. Seo, and J. K. Shin: Jpn. J. Appl. Phys. 51, pp06FG05, 2012.
[11] M. Kalofonou, P. Georgiou, C. P. Ou, and C. Toumazou: Sens. Actuators B161, pp.156, 2012.
[12] C. M. Lopez, D. Prodanov, D. Braeken, I. Gligorijevic, W. Eberle, C. Bartic,R. Puers, and G. Gielen: IEEE Trans. Biomed. Circuits Syst. 6 , pp.101, 2012.
[13] P. Bergveld, “Development of an ion-sensitive solid-state device forneurophysiological measurements”, IEEE Trans. Bio-Med. Eng.(Short Commun.), Vol. BME-17, pp. 70-71, Jan. 1970.
[14] S. Caras, J. Janata, “Field Effect Transistor Sensitive to Penicillin”, Analytical Chemistry 52, pp. 1935-1937, 1980.
[15] N. Jafiezic-Renault, A. Soldatkin, C. Martelet, P. Temple-Boyer, W. Sant, M.L. Pourciel, P. Montoriol, A. Montiel-Costes, “Tailoring enzymatic membranes for ENFETs for dialysis monitoring”, Trans. Solid-State Sensors, Actuators and Microsystems Conference, 12th International Conference, Vol. 2, pp. 1188-1191, 2003.
[16] J. C. Dutta, M. Hazarika, “Modeling of Enzyme Biosensor based on pH­sensitive Field Effect Transistor for detection of Glucose”, Devices, Circuits and Systems(ICDCS), International Conference, pp. 686-688, 2012.
[17] J. C. Dutta, S. Roy, “Biologically Inspired Circuit Model for Simulation of Acetylcholine Gated Ion Channels of the Postsynaptic Membrane at Synaptic Cleft”, Biomedical Engineering and Sciences(IECBES), IEEE EMBS Conference, pp. 17-19, 2010.
[18] J. V. D. Spiegel, I. Lauks, P. Chan and D. Babic, “ The Extended Gate Chemical Sensitive Field Effect Transistor as Multi-Species Microprobe”, Sensors and Actuators, Vol. 4, pp. 291-298, 1983.
[19] S. Martinoia, L. Lorenzelli, G. Massobrio,P. Conci, and A. Lui, Sensors and Actuators B:Chemical, Vol.50, pp.60-68, 1998.
[20] P. K. Chan and D. Y. Chen, IEEE Trans. Circuits Syst. I. Vol, 54,pp.119, 2007.
[21] R. L. Wang, C. C. Fu, C. Yu, W. D. Wu, Y. T. Chuang, C. F. Lin, H. H. Liao, H. H. Tsai and Y. Z. Juang, “A Multi-sensor Readout Circuit Using a Multiple Differential-input Operation Amplifier with Pulse Output”, Japanese Journal of Applied Physics, Vol. 53, No. 4S, Mar. 2014.
[22] R. L. Wang, C. C. Fu, C. M. Yeh, C. Yu, C. Y. Yu, C. F. Lin, H. H. Tsai and Y. Z. Juang, “A Multisensor Readout Circuit with a Multiplexed Pulse-signal Output”, 2012 International Conference on Solid State Devices and Materials (SSDM 2012), Kyoto, Japan, 25-27 Sep. 2012,
[23] 徐照夫, “光感測器及其使用法”, 全華科技圖書出版, pp. 1-3, 1993.
[24] 陳冠宏, “可攜式微生物毒性感測器: 不同好氧桿菌對廢水毒性反應與判讀方法之比較”, 私立中原大學醫學工程研究所碩士論文, Jun. 2002.
[25] 陳治誠, “生化感測器技術簡介” 科儀新知, 第15卷, 第2期, pp.71-81.
[26] 傅建程, “具溫度感測之CMOS生物感測讀取電路”, 國立高雄師範大學電子工程學系碩士論文, Jul. 2013.
[27] 李坤易, “高感度葡萄糖生物感測器之研究”, 國立雲林科技大學化學工程學系碩士論文, Jun. 2006.
[28] G. A. Saurbery, “Use a Quartz Vibrator from Weight Thin Films on a Microbalance”, Z. Physik., Vol. 155, pp. 206-210, 1959.
[29] 田蔚城, “生物技術的發展與應用”, 九州圖書文物有限公司, Jan. 1997.
[30] 施敏, “半導體元件物理與製作技術”, 國立交通大學出版社, Sep. 2006.
[31] 武世香, 虞惇, 王貴華, “化學量傳感器”, 傳感器技術, 第3期, pp. 55-60, 1990.
[32] P. Bergveld, A. Sibbald, “Analytical and Biomedical Applications of Ion-Selective Field-Effect Transistors”, Elsevier Science publishing Company Inc., Chapter 2~3, 1988.
[33] T. C. W. Yeow, M. R. Haskard, D. E. Mulcahy, H. I. Seo, D. H. Kwon, “A Very Large Integrated pH-ISFET Sensor Array Chip Compatible with Standard CMOS Processes”, Sensors and Actuators B, Vol. 44, pp. 434-440, 1997.
[34] I. Lauks, J. V. D. Spiegel, W. Sansen and M. Steyaert, “Multispecies Integrated Electrochemical Sensor with on-chip CMOS circuitry”, Proceeding of International Conference on Solid-State Sensor and Actuators (Transdures 1985), Philadelphia, PA, June-11-14, 1985, IEEE Press, New York, pp. 122, 1985.
[35] L. L. Chi, J. C. Chou, W. Y. Chung, T. P. Sun and S. K. Hsiung, “New structure of ion sensitive field effect transistor”, Proceeding of the Biomedical Engineering Society 1998 Annuzl Aymposium, Taiwan, pp. 328-331, Dec. 1998.
[36] 黎振策, “氮化鈦感測膜應用在延伸式閘極離子感測場效電晶體”, 中原大學電子工程學系碩士論文, Jun. 2001.
[37] P. Bergveld and A. Sibbald, “Analytical and Biomedical Application of Ion-Sensitive Field-Effect Transistors”, Elsevier Science Publishing Company Inc., New York, pp. 2-60, 1988.
[38] D. E. Yates, S. Levine, and T. W. Healy, "Site-binding model of the electrical double layer at the oxide/water interface," J. Chem. Soc. Faraday Trans. 1, vol. 70, pp. 1807–1818, Jan. 1974.
[39] R. E. G. Van Hall, J. C.T. Eijkel, P. Bergveld, "A Novel Description of ISFET Sensitivity with the Buffer Capacity and Double-Layer Capacitance as Key Parameters," Sensors and Actuators B, Vol. 24-25, PP.201-205, 1995.
[40] C.D. Fung, P.W. Cheung and W. H. Ko, "A generalized theory of an electrolyte-insulator-semiconductor field-effect transistor," IEEE Trans. Electron Devices, Vol. ED-33, NO.1, PP. 8-18, 1986.
[41] 蔡振章編譯, “界面電化學(電化學原理‧電化學實驗)” , 興國發行, pp. 1-8, 1982.
[42] C. H. Hamann, A. Hamnett, and W. Vielstich, “Electrochemistry”, Wiley-Vch: New York, 1998.
[43] 田福助, “電化學:理論與應用”, 高力圖書有限公司, Jul, 2004.
[44] 龔柏誠, “以CMOS為主的離子感測場效電晶體微系統之特性探討及其尿液檢測之應用”, 國立成功大學微電子工程所碩士論文, Jul. 2010.
[45] R. L. Wang, C. W. Yu, C. Yu, T. H. Liu, C. M. Yeh, C. F. Lin, H. H. Tsai and Y. Z. Juang, “A temperature sensor using a BJT-MOSFET pair”, Electronics Letters, vol. 48, No.9, pp.503-504. 26 Apr. 2012.
[46] R. L. Wang, C. C. Fu, C. Yu, Y. F. Hao, J. L. Shi, C. F. Lin, H. H. Liao, H. H. Tsai and Y. Z. Juang, “CMOS Temperature Sensor Using a Resistively Degenerated Common-source Amplifier Biased by an Adjustable Proportional-to-absolute-temperature Voltage”, Japanese Journal of Applied Physics, Vol. 53, No. 4S, Feb. 2014
[47] R. L. Wang, C. C. Fu, C. Yu, P. Y. Liu, Y. T. Chuang, C. F. Lin, H. H. Liao, H. H. Tsai and Y. Z. Juang, “A Multi-sensor Readout Circuit Using Multiple Differential-input Operation Amplifier with Pulse Output”, 2013 International Conference on Solid State Devices and Materials (SSDM 2013), Fukuoka, Japan, pp.118-119, 24-27 Sep. 2013.
[48] R. L. Wang, C. C. Fu, C. Yu, Y. F. Hao, J. L. Shi, C. F. Lin, H. H. Liao, H. H. Tsai and Y. Z. Juang, “CMOS Temperature Sensor Using a PTAT-voltage Biasing Common-source Amplifier with a Source-degeneration Polycrystalline Silicon Resistor”, 2013 International Conference on Solid State Devices and Materials (SSDM 2013), Fukuoka, Japan, pp.300-301, 24-27 Sep. 2013.
[49] H. H. Liao, H. H. Tsai, Y. Z. Juang, R. L. Wang, C. C. Fu and C. Yu, “ISFET with Built-in Gold Electrode and Readout Circuit with Frequency-Adjustable Pulse Output”, 7th International Conference on Sensing Technology (ICST 2013), Wellington, New Zealand, pp. 461-464, 3-5 Dec. 2013.
[50] 陳耀鵬, “以管線式為架構設計高速類比數位轉換器”, 朝陽科技大學資訊工程系碩士論文, Jan. 2005.
[51] D. Johns and K. Martin, “Analog Integrated Circuit Design”, ISBN 0-471-14448-7, Wiley, 1997.
[52] P. Chen, C. C. Chen, C. C. Tsai, and W. F. Lu: IEEE J. Solid-State Circuits, Vol. 40, pp.1642, 2005.
[53] C. C. Chen, P. Chen, A. W. Liu, W. F. Lu, and Y. C. Chang: Meas. Sci.Technol., Vol. 17, pp.840, 2006.
[54] H. F. Hamann, A. Weger, J. A. Lacey, Z. Hu, P. Bose, E. Cohen, and J. Wakil: IEEE J. Solid-State Circuits, Vol. 42, pp.50, 2007.
[55] A.C. Paglinawan, Y. H. Wang, S. C. Cheng, C. C. Chuang, and W. Y.Chung: Electron. Lett., Vol. 45, pp.1291, 2009.
[56] M. K. Law, A. Bermark, and H. C. Luong: J. Solid-State Circuits, Vol.45, pp.1246, 2010.
[57] F. Sebastiano, L.J. Breems, K. A. A. Makinwa, S.D. Drago, M.W. Leenaerts, and B. Nauta: IEEE J. Solid-State Circuits, Vol. 45, pp.2591, 2010.
[58] A. Vaz, A. Ubarretxena, I. Zalbide, D. Pardo, H. Solar, A. García-Alonso, and R. Berenguer: IEEE Trans. Circuits Syst. II, Vol. 57, pp.95 2010.
[59] D. Ha, K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, and D. Ham: IEEE Trans. Very Large Scale Integration Syst., Vol. 20, pp.1590, 2012.
[60] J. Cheon, J. Lee, I. Lee, Y. Chae, Y. Yoo, and G. Han: IEEE Sensors J., Vol. 9, pp.914, 2009.
[61] G. C. M. Meijer: Sens. Actuators, Vol. 10, pp103-125, 1986.
[62] A. Bakker: Proc. IEEE Sensors, Vol. 2, pp.1423, 2002.
[63] M. A. P. Pertijs, G. C. M. Meijer, and J. H. Huijsing: IEEE Sensors J., Vol. 4, pp.294, 2004.
[64] M. A. P. Pertijs, K.A.A. Makinwa, and J.H.Huijsing, IEEE J. Solid-State Circuits, Vol. 40, pp.2805, 2005.
[65] H. Lakdawala, Y. W. Li, A. Raychowdhury, G. Taylor, and K. Soumyanath:IEEE J. Solid-State Circuits, Vol.44, pp.3621, 2009.
[66] A. L. Aita, M. A. P. Pertijs, K. A. A. Makinwa, J. H. Huijsing, and G. C. M.Meijer: IEEE Sensors J., Vol. 13, pp.1840, 2013.
[67] A. Bakker and J. H. Huijsing: IEEE J. Solid-State Circuits, Vol.31, pp.933, 1996.
[68] C. Falconi, A. D’Amicoa, C. D. Natale, and M. Faccio: Sens. Actuators A, Vol. 117, pp.127, 2005.
[69] A. Vaz et al., “Full passive UHF tag with a temperature sensor suitable for human body temperature monitoring”, IEEE Trans. Circuits Syst. II, Vol. 57, no. 2, pp. 95–99, 2010.
[70] G. C. M. Meijer, A. J. M. Boomkamp, and R. J. Duguesnoy, “An accurate biomedical temperature transducer with on-chip microcomputer interfacing”, IEEE J. Solid-State Circuits, Vol. 23, no. 6, pp.1405–1410, 1998.
[71] K. Opasjumruskit, T. Thanthipwan, O. Sathusen, P. Sirinamarattana, P. Gadmanee, E. Pootarapan, N. Wongkomet, A. Thanachayanont, M. Thamsirianunt, “Self-powered wireless temperature sensors exploit RFID technology”, IEEE Pervasive Comput., Vol. 5, pp. 54-61, 2006.
[72] M. Tuthill, “A switched-current, switched-capacitor temperature-sensor in 0.6-μm CMOS”, IEEE J. Solid-State Circuits, Vol. 33, no. 7, pp. 1117-1122, 1998.
[73] M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS smart temperature sensor with a 3σ inaccuracy of ±0.1°C from -55°C to 125°C”, IEEE J. Solid-State Circuits, Vol. 40, no. 12, pp. 2805-2815, 2005.
[74] A. L. Aita, M. A. P. Pertijs, K. A. A. Makinwa, and J. H. Huijsing, “A CMOS smart temperature sensor with a batch-calibrated inaccuracy of ±0.25°C (3σ) From -70 to 130°C”, in Proc. IEEE ISSCC Dig. Tech. Papers, pp. 342-343, Feb. 2009.
[75] K. Souri, Y. Chae, and K. Makinwa, “A CMOS temperature sensor with a voltage-calibrated inaccuracy of ±0.15°C (3σ) from 55°C to 125°C”, in Proc. IEEE ISSCC Dig. Tech. Papers, Feb. 2012.
[76] C. P. L. van Vroonhoven, D. d’Aquino, and K. A. A. Makinwa, “A thermal-diffusivity-based temperature sensor with an untrimmed inaccuracy of ±0.2°C(3σ) from 55°C to 125°C”, in Proc. IEEE ISSCC Dig. Tech. Papers, pp. 314-315, Feb. 2010.
[77] P. Chen, C.-C. Chen, T.-K. Chen, and S.-W. Chen, “A time domain mixed-mode temperature sensor with digital set-point programming”, in Proc. IEEE Custom Integr. Circuits Conf., pp. 821-824, Sep. 2006.
[78] M. K. Law, A. Bermak, and H. C. Luong, “A sub-μW embedded CMOS temperature sensor for RFID food monitoring application”, IEEE J. Solid-State Circuits, Vol. 45, no. 6, pp. 1246-1255, Jun. 2010.
[79] M. K. Law and A. Bermak, “A 405-nW CMOS temperature sensor based on linear MOS operation”, IEEE Trans. Circuits Syst. II, Vol. 56, no. 12, pp. 891-895, Dec. 2009.
[80] K. Woo, S. Meninger, T. Xanthopoulos, E. Crain, D. Ha, and D. Ham, “Dual-DLL-based CMOS all-digital temperature sensor for microprocessor thermal monitoring”, in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 68–69, Feb. 2009.
[81] S. Hwang, J. Koo, K. Kim, “A 0.008 mm2 500μW 469 kS/s Frequency-to-Digital Converter Based CMOS Temperature Sensor With Process Variation Compensation”, IEEE Trans. Circuits Syst. I, Vol. 60, no. 9, pp.2241-2248, Sep. 2013.
[82] K. Kim, H. Lee, and C. Kim, “366-kS/s 1.09-nJ 0.0013-mm2 Frequency-to-Digital Converter Based CMOS Temperature Sensor Utilizing Multiphase Clock”, IEEE Trans. Very Large Scale Integration (VLSI) Syst., Vol. 21, no. 10, pp.1950-1954, Oct. 2013.
[83] P. Chen, C. C. Chen, C. C. Tsai, W. F. Lu, “A Time-to-Digital-Converter-Based CMOS Smart Temperature Sensor”, IEEE J. Solid-State Circuits, Vol. 40, no. 8, pp.1642-1648, 2005.
[84] R. L. Wang, C. Yu, W. D. Wu, Y. F. Hao, J. L. Shi, Y. Z. Juang, H. H. Tsai, and H. H. Liao, “CMOS temperature sensor using a PTAT-voltage Driving Common-source Amplifier with a Source Resistor”, has been submitted to Electronics Letter, 2014.
[85] P. Bergveld, “Thirty years of ISFETOLOGY What happened in the past 30 years and what may happen in the next 30 years”, Sensors and Actuators B Vol.88 pp.1–20, 2003.
[86] Y. Z. Juang, C. F. Lin, H. H. Tsai, H. H. Liao, R. L. Wang, , “CMOS Biomedical Sensor with In Situ Gold Reference Electrode for Urine Detection Application”, Procedia Engineering Vol. 47, pp. 1005-1008, 2012.
[87] G. Dhawan, G. Sumana, B. D. Malhotra, “Review : Recent developments in urea biosensors”, Biochemical Engineering Journal Vol.44, pp.42–52, 2009.
[88] http://www.fbpf.org.tw/front/bin/ptdetail.phtml?Part=a004
[89] http://en.wikipedia.org/wiki/BUN-to-creatinine_ratio
[90] D. B. Morgan, et al., “Plasma creatinine and urea: creatinine ratio in patients with raised plasma urea”, British Medical Journal Vol.2, pp.929-932, 1977.
[91] W. Juffali, P. Georgiou, and C. Toumazou “ISFET based urea: creatinine translinear sensor”, Electronics Letters, Vol.46 pp.746-748, 2010.
[92] K. M. Chang, C. T. Chang, and K. M. Chan, “Development of an Ion Sensitive Field Effect Transistor Based Urea Biosensor with Solid State Reference Systems”, Sensors. Vol.10, 6115–6127, Jun. 2010.
[93] P. K. Chan and D. Y. Chen, “A CMOS ISFET Interface Circuit With Dynamic Current Temperature Compensation Technique”, IEEE Trans. Circuits Syst. I,, Vol.54, no. 1, pp.119-129, 2007.
[94] Y. L. Chin, J. C. Chou, T. P. Sun, W. Y. Chung, and S. K. Hsiung, “A novel pH sensitive ISFET with on-chip temperature sensing using COS standard process”, Sensors and Actuators B, Vol.76, pp.582-593, 2001.
[95] J. C. Chou, Y. F. Wang, J. S. Lin, “Temperature effect of a-Si:H pH-ISFET”, Sensors and Actuators B, Vol.62, pp. 92–96, 2000.
[96] D. Y. Chen and P. K. Chan, “An Intelligent ISFET Sensory System With Temperature and Drift Compensation for Long-Term Monitoring”, IEEE Sensors Journal, Vol.8, No.12, pp. 1948-1959, Dec. 2008.
[97] R. L. Wang, C. Yu, W. D. Wu, Y.F. Hao, J. L. Shi, H. H. Liao, H. H. Tsai and Y. Z. J, “Pulse-Output Readout Circuit with Temperature Compensation for a Temperature-Dependent Input Voltage”, has been accepted by 2014 International Conference on Solid State Devices and Materials (SSDM 2014), 2014.
[98] C. Y. Chen, H. Li. Shieh, T. P. Sun, “Portable Urea Biosensor Based on The Extended Base Bipolar Junction Transistor”, IEEE Sensor, pp.789-792, Nov. 2010.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top