跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 07:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馬惟達
研究生(外文):M, Vedamalai
論文名稱:有機染料之螢光感測分子於活性氧物質及金屬離子之偵測與生物影像之應用
論文名稱(外文):Fluorescent Sensors for Reactive Oxygen Species and Metal Ions Based on Organic Dyes and Their Applications in Bioimaging
指導教授:吳淑褓
學位類別:博士
校院名稱:國立交通大學
系所名稱:應用化學系碩博士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:208
中文關鍵詞:化學感測分子活性氧物質汞離子
外文關鍵詞:ChemosensorBODIPYCoumarinReactive oxygen speciesMecury
相關次數:
  • 被引用被引用:0
  • 點閱點閱:217
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
Abstract
Organic compounds have been used extensively to construct photo luminescent materials, solar cells and chemosensors. Its significance can be attributed to easy synthesis, inexpensive staring materials, easy to tune photo physical properties and easy to link with other supporting materials. Fluorescence sensing is a process in which interaction between species is detected by change in the fluorescence intensity of system. Organic dyes are ideally suited to be used as probes for fluorescence sensing. This work therefore is focused on synthesis of organic fluorophores and their applications in bioimaging.
Chapter 1 describes importance of chemosensors, mechanism of signal transduction, and parameters needed to optimize in every sensor. How organic dyes been used as fluorescent sensors is further explained in following chapters.
Chapter 2 describes the synthesis of BODIPY based fluorescent probes (HCS and HCS2) for hypochlorite sensing. Both probes exhibited highly sensitive to hypochlorite over other reactive oxygen species and reactive nitrogen species. HCS and HCS2 are virtually non-fluorescent as photo-induced electron transfer taking place from sulfur to BODIPY. Hypochlorite induced oxidation of sulfur to sulfoxide which inhibited the PET process and generates turn-on fluorescence in a molecule. This mechanism was further supported by DFT calculations (B3LYP/6-31G (d)). Both probes are shown their ability to map external addition and internal secretion of hypochlorite in RAW 264.7 cells.
Chapter 3 reports design, synthesis and characterization of hydrogen peroxide sensing probes HP1 and HP2. Both probes exhibited highly sensitive to hydrogen peroxide over other reactive oxygen species and reactive nitrogen species. Hydrogen peroxide triggers cleavage of boronic ester and followed by intramolecular nucleophilic attack of the phenolic oxygen to the nitrile group resulting cyclized iminocoumarin-benzothiazoles and iminocoumarin, respectively. HP1 and HP2 are shown their ability to map intercellular accumulation of hydrogen peroxide in HeLa cells.
iii
Chapter 4 reports engineering boron-dipyrromethene (BODIPY) scaffold for chemosensing. A new boron–dipyrromethene (BODIPY) derivative (FS1) containing two triazole units exhibits an enhanced fluorescence in the presence of Hg2+ ions and a high selectivity for Hg2+ ions over competing metal ions in methanol: Ag+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Fe3+, K+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+ produced only minor changes in the fluorescence of FS1. The apparent dissociation constant (Kd) of FS1–Hg2+ was found to be 62 μM. Moreover, fluorescence microscopy experiments showed that FS1 can be used as a fluorescent probe for detecting Hg2+ ions in living cells.
Chapter 5 discusses a new monostyryl boron dipyrromethene derivative (MS1) which is appended with two triazole units and indicates the presence of Hg2+ among other metal ions with high selectivity by color change and red emission. Upon Hg2+ binding, the absorption band of MS1 is blue-shifted by 29 nm due to the inhibition of the intramolecular charge transfer from the nitrogen to the BODIPY, resulting in a color change from blue to purple. Significant fluorescence enhancement is observed with MS1 in the presence of Hg2+; the metal ions Ag+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Fe3+, K+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+ cause only minor changes in the fluorescence of the system. The apparent association constant (Ka) of Hg2+ binding in MS1 is found to be 1.864 × 105 M−1. In addition, fluorescence microscopy experiments show that MS1 can be used as a fluorescent probe for detecting Hg2+ in living cells.
Chapter 6 describes colorimetric detection of Hg2+ ion by an NBD dye. Upon Hg2+ recognition, the absorption band of CS1 is red-shifted by 39 nm and caused color change from orange to red. The absorption of CS1 is red sifted only in the presence of Hg2+; the metal ions Ag+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, V2+, Mg2+, Mn2+, Ni2+, and Zn2+ cause only minor changes in the absorbance spectra. The apparent association constant (Ka) of Hg2+-CS1 is found to be 1.71 × 104 M−1. In addition, NMR spectrometric titrations were also carried out to demonstrate Hg2+ binding event with CS1.
Abstract
Organic compounds have been used extensively to construct photo luminescent materials, solar cells and chemosensors. Its significance can be attributed to easy synthesis, inexpensive staring materials, easy to tune photo physical properties and easy to link with other supporting materials. Fluorescence sensing is a process in which interaction between species is detected by change in the fluorescence intensity of system. Organic dyes are ideally suited to be used as probes for fluorescence sensing. This work therefore is focused on synthesis of organic fluorophores and their applications in bioimaging.
Chapter 1 describes importance of chemosensors, mechanism of signal transduction, and parameters needed to optimize in every sensor. How organic dyes been used as fluorescent sensors is further explained in following chapters.
Chapter 2 describes the synthesis of BODIPY based fluorescent probes (HCS and HCS2) for hypochlorite sensing. Both probes exhibited highly sensitive to hypochlorite over other reactive oxygen species and reactive nitrogen species. HCS and HCS2 are virtually non-fluorescent as photo-induced electron transfer taking place from sulfur to BODIPY. Hypochlorite induced oxidation of sulfur to sulfoxide which inhibited the PET process and generates turn-on fluorescence in a molecule. This mechanism was further supported by DFT calculations (B3LYP/6-31G (d)). Both probes are shown their ability to map external addition and internal secretion of hypochlorite in RAW 264.7 cells.
Chapter 3 reports design, synthesis and characterization of hydrogen peroxide sensing probes HP1 and HP2. Both probes exhibited highly sensitive to hydrogen peroxide over other reactive oxygen species and reactive nitrogen species. Hydrogen peroxide triggers cleavage of boronic ester and followed by intramolecular nucleophilic attack of the phenolic oxygen to the nitrile group resulting cyclized iminocoumarin-benzothiazoles and iminocoumarin, respectively. HP1 and HP2 are shown their ability to map intercellular accumulation of hydrogen peroxide in HeLa cells.
iii
Chapter 4 reports engineering boron-dipyrromethene (BODIPY) scaffold for chemosensing. A new boron–dipyrromethene (BODIPY) derivative (FS1) containing two triazole units exhibits an enhanced fluorescence in the presence of Hg2+ ions and a high selectivity for Hg2+ ions over competing metal ions in methanol: Ag+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Fe3+, K+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+ produced only minor changes in the fluorescence of FS1. The apparent dissociation constant (Kd) of FS1–Hg2+ was found to be 62 μM. Moreover, fluorescence microscopy experiments showed that FS1 can be used as a fluorescent probe for detecting Hg2+ ions in living cells.
Chapter 5 discusses a new monostyryl boron dipyrromethene derivative (MS1) which is appended with two triazole units and indicates the presence of Hg2+ among other metal ions with high selectivity by color change and red emission. Upon Hg2+ binding, the absorption band of MS1 is blue-shifted by 29 nm due to the inhibition of the intramolecular charge transfer from the nitrogen to the BODIPY, resulting in a color change from blue to purple. Significant fluorescence enhancement is observed with MS1 in the presence of Hg2+; the metal ions Ag+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, Fe3+, K+, Mg2+, Mn2+, Ni2+, Pb2+, and Zn2+ cause only minor changes in the fluorescence of the system. The apparent association constant (Ka) of Hg2+ binding in MS1 is found to be 1.864 × 105 M−1. In addition, fluorescence microscopy experiments show that MS1 can be used as a fluorescent probe for detecting Hg2+ in living cells.
Chapter 6 describes colorimetric detection of Hg2+ ion by an NBD dye. Upon Hg2+ recognition, the absorption band of CS1 is red-shifted by 39 nm and caused color change from orange to red. The absorption of CS1 is red sifted only in the presence of Hg2+; the metal ions Ag+, Ca2+, Cd2+, Co2+, Cu2+, Fe2+, V2+, Mg2+, Mn2+, Ni2+, and Zn2+ cause only minor changes in the absorbance spectra. The apparent association constant (Ka) of Hg2+-CS1 is found to be 1.71 × 104 M−1. In addition, NMR spectrometric titrations were also carried out to demonstrate Hg2+ binding event with CS1.
Contents Page No
ABSTRACT i
DEDICATION iii
ACKNOWLEDGEMENT iv
DECLARATION v
ACRONYMS vi
CONTENTS viii
CONTENT OF FIGURES xiii
CONTENT OF TABLES xx
CONENT OF SCEMES xxi
Chapter 1 Theoretical Features of Fluorescence Sensing
1.1 Importance of Chemosensors 01
1.2 Classical design of Fluorescent sensors 01
1.3 Mechanism of Signal Transduction 01
1.3.1 Chemosensors 01
1.3.2 Chemodosimeter 02
1.4 Photo-induced Electron Transfer 03
1.5 Intra Molecular Charge Transfer 04
1.5.1 ICT mechanism 05
1.6 Detection Mechanism 05
1.6.1 Fluorophore having inert substituent 06
1.6.2 Fluorophore with electron donating and withdrawing
groups (OFF state) 06
1.6.3 Metal ion sensing (ON state) 07
1.7 References 07
Chapter 2
Development of BODIPY-Based Fluorescence Probes Selective for Hypochlorite and Their Applications for Biological Imaging
2.1 Introduction 08
2.2 Fluorogenic probes for ROS in bioimaging 09
2.2.1 Hydrogen peroxide sensing probes. 09
2.2.2 Hydroxyl radical detecting fluorescent and luminescent probes 10
2.2.3 Fluorescent probes for singlet oxygen 11
2.2.4 Probes for superoxide radical 12
2.2.5 Probes for hypochlorous acid/hypochlorite 12
2.2.6 Probes for ozone 13
2.3 Fluorescent probes to detect RNS 13
2.3.1 Probes for nitric oxide 13
2.3.2 Probes for peroxynitrite 14
2.4 A Highly Selective Green Light Emitting Probe for Hypochlorite..…16
2.4.1 Importance of Hypochlorite Sensors 16
2.4.2 Objectives 16
2.4.3 Synthesis 17
2.4.4 Photo physical properties 17
2.4.5 Selectivity 18
2.4.6 Reaction kinetics 19
2.4.7 Effect of pH 20
2.4.8 Electrochemical study 21
2.4.9 Crystal Structure 25
2.4.10 Detection of intracellular generation of HOCl in RAW 264.7 cells …27
2.4.11 Metal ion selectivity 28
2.4.12 Calculation of fluorescence quantum yield 29
2.5 Synthesis and characterization of hypochlorite sensing probe HCS2 …31
2.5.1 Introduction 31
2.5.2 Synthesis 31
2.5.3 Photo physical properties 32
2.5.4 Selectivity 32
2.5.5 Effect of pH 34
2.5.6 Electrochemical study 34
2.5.7 Crystal Structure 38
2.5.8 Bioimaging 40
2.6. Conclusion 41
2.7. Experimental Section 41
2.8 References 44
Chapter 3 Fluorogenic Probes for detection of Hydrogen peroxide in HeLa cells
3.1 Introduction 48
3.2 Synthesis 48
3.3 Photo Physical properties 49
3.4 Selectivity 51
3.5 Bioimaging 55
3.6 Conclusion 56
3.7 Experimental section 56
3.8 References 59
Chapter 4 Engineering Boron-dipyrromethene Scaffold (BODIPY) for Chemosensing
4.1 Introduction to BODIPY Fluorophores 60
4.2 Substituent effect on pyrrole units of BODIPY core 61
4.3 Electrophilic substitution 61
4.4 Substituent effect on 3, 5 position of BODIPY core 62
4.5 Substituent effect on Boron atom of BODIPY core 62
4.6 Chemosensors 63
4.6.1 Sensors for redox active molecules 64
4.6.2 pH probes 65
4.6.3 Metal-chelators 65
4.6.4 Logic gates 66
4.6.5 Labeling Biomolecule 67
4.7 Selective Detection of Neurofibrillary Tangles in the Brains of Alzheimer’s disease Patients 67
4.8 Bifunctional Reporter for Hybrid Optical/Positron Emission Tomography Imaging 68
4.9 A BODIPY based Highly Selective Turn-on Fluorescent Chemosensor
for Hg2+ Ions and Its Application to Live Cell Imaging 69
4.9.1 Synthesis of FS1 70
4.9.2 Cation sensing selectivity 71
4.9.3 Competitive test 73
4.9.4 Stoichiometry and Dissociation constant 74
4.9.5 Limit of Detection 75
4.9.6 NMR titration 76
4.9.7 Live Cell Imaging 76
4.9.8 Conclusion 78
4.9.9 Experimental section 78
4.9.10 Non-Linear Regression Analysis 80
4.9.11 Procedure for Fluorescence imaging 81
4.9.12 References 81
Chapter 5
Synthesis of Styryl group functionalized BODIPY Fluorophore and Its Applications
5.1 Introduction 84
5.2 Synthesis of near IR emitters by Knoevenagel condensation reactions 84
5.3 Metal ion sensors 85
5.4 Labeling of biological significant amines by BODIPY probes 86
5.5 Photodynamic therapy (PDT) sensitizers 86
5.6 BODIPY-Metal complex conjugates 87
5.7 pH Sensors 88
5.8 Metal Catalyzed Coupling Reactions at the 3- and 5-Positions 89
5.9 Design Strategies for Ratio metric Chemosensors 89
5.10 Molecular Probe for Imaging of Cerebral β-Amyloid Plaques 90
5.11 Glucagon imaging 91
5.12 A Colorimetric and Fluorometric detection of Hg2+ Ions by based BODIPY probe 92
5.12.1 Outline of Design 92
5.12.2 Synthesis of MS1 93
5.12.3 Photo physical properties 94
5.12.4 Cation sensing selectivity 95
5.12.5 Competitive test 98
5.12.6 Stoichiometry and Apparent association constant 98
5.12.7 Limit of Detection 100
5.12.8 Effect of pH 101
5.12.9 NMR Titration 102
5.12.10 Living cell imaging 104
5.12.11 Conclusion 104
5.12.12 Experimental procedures 105
5.12.13 Determination of the binding stoichiometry and the apparent dissociation constants for the binding of Hg(II) to MS1 107
5.12.14 Fluorescence imaging 108
5.13 References 108
Chapter 6
Fluorogenic and Chromogenic Chemosensors for Biomolecules Detection by a NBD Dye
6.1 Introduction 111
6.2 Salient features of NBD Fluorophore 111
6.3 Colorimetric sensor for Hg2+ based on NBD dye 111
6.3.1 Synthesis of CS1 112
6.3.2 Result and discussion 113
6.3.3 NMR Titration 117
6.3.4 Conclusion….. 118
6.3.5 Experimental procedure 118
6.3.6 Metal ion binding study by UV-vis spectroscopy 119
6.3.7 Determination of the binding stoichiometry and the association constant (KA) 119
6.4 References 119
Chapter 7 Supplementary Information 122
1.7 References
1) a) McRae, R.; Bagchi, P.; Sumalekshmy, S.; Fahrni, C. J. Chem. Rev. 2009, 109, 4780–
4827. b) McDonagh, C.; Burke, C. S; MacCraith, B. D. Chem. Rev. 2008, 108, 400-422. c)
Que, E. L.; Domaille, D. W.; Chang, C. J. Chem. Rev. 2008, 108, 1517–1549.
2) Tsien, Y, R. Biochemistry, 1980, 19, 2396-2404.
3) a) Lourdes, B-D.; Reinhoud, N. D.; Mercedes, C- C. Chem. Soc. Rev., 2007, 36, 993–1017.
b) Bren, V. A. Russ. Chem. Rev., 2001, 70, 1017 -1036. c) Quang, D. T.; Kim, J. S. Chem.
Rev. 2010, 110, 6280–6301.
4) Introduction to Fluorescence Sensing; Demchenko, A. P.; Springer science publications,
USA, 2009.
5) Molecular Fluorescence; Valeur, B., Ed.; Wiley-VCH: Weinheim, Germany, 2002.
6) Lu, H.; Zhang, S. S.; Liu, H. Z.; Wang, Y. W.; Shen, Z.; Liu, C. G.; You, X. Z. J. Phys.
Chem. A, 2009, 113, 14081–14086.
2.8. References
1. a) Chen, X.; Tian, X.; Shin, I.; Yoon, J. Chem. Soc. Rev., 2011, 40, 4783–4804. b)
Halliwell, B.; Gutteridge, J. M. C. Free Radicals in Biology and Medicine, Oxford
University Press, Oxford, 2007, 1–677.
2. Smith, L. L. Free Radical Biol. Med., 2004, 37, 318–324.
3. Nathan, C. J. Clin. Invest. 2003, 111, 769–778.
4. Wentworth Jr., P.; McDunn, J. E.; Wentworth, A. D.; Takeuchi, C.; Nieva, J.; Jones, T.;
Bautista, C.; Ruedi, J.M.; Gutierrez, A.; Janda, K. D.; Babior, B. M.; Eschenmoser, A.;
Lerner, R. A. Science, 2002, 298, 2195–2199.
5. Wentworth Jr., P.; Nieva, J.; Takeuchi, C.; Galve, R.; Wentworth, A. D.; Dilley, R. B.;
DeLaria, G A.; Saven, A.; Babior, B.M.; Janda, K.D.; Eschenmoser, A.; Lerner, R. A.
Science, 2003, 302, 1053–1056.
6. Yamashita, K.; Miyoshi, T.; Arai, T.; Endo, N.; Itoh, H.; Makino, K.; Mizugishi, K.;
Uchiyama T.; Sasada, M. Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 16912–16917.
45
7. Bove P.F.; van der Vliet, A. Free Radical Biol. Med., 2006, 41, 515–527.
8. Stuehr, D. J.; Santolini, J.; Wang, Z-Q.; Wei, C-C.; Adak, S. J. Biol. Chem., 2004, 279,
36167–36170.
9. Fukumura, D.; Kashiwagi, S.; Jain, R.K. Nat. Rev. Cancer, 2006, 6, 521–534.
10. Szabo, C.; Ischiropoulos H.; Radi, R. Nat. Rev. Drug Discovery, 2007, 6, 662–680.
11. Ko, S-K.; Chen, X.; Yoon, J.; Shin, J. Chem. Soc. Rev., 2011, 40, 2120.
12. Nagano, T. Chem. Rev., 2002, 102, 1235–1269.
13. Rhee, S.G. Science, 2006, 312, 1882–1883.
14. Hempel, S. M.; Buettner, G. R.; O’Malley, Y.Q.; Wessels, D. A.; Flaherty, D. M.
Free Radical Biol.Med. 1999, 27, 146-159.
15. Kim, G.; Lee, Y-E.; Xu, H.; Philbert, M.A.; Kopelman, R. Anal. Chem., 2010, 82,
2165-2169.
16. Lo, L-C.; and Chu, C-Y. Chem. Commun., 2003, 2728–2729.
17. Chang, M. C. Y.; Pralle, A.; Isacoff, E. Y.; Chang, C. J. J. Am. Chem. Soc. ,2004, 126,
15392-15393.
18. He, F.; Tang, Y.; Wang, S.; Li, Y.; Zhu, D. Adv. Funct. Mater, 2006, 16, 91-94.
19. Miller, E.W.; Albers, A.E.; Pralle, A.; Isacoff, E.Y.; Chang, C.J. J. Am. Chem. Soc.
2005, 127, 16652-16659.
20. Pou, S.; Huang. Y-I.; Bhan, A.; Bhadti, V.S.; Hosmane, R.S.; Wu, S.Y.; Cao, G-I.;
Rosen, G.M. Anal. Biochem. 1993, 212, 85-90.
21. Yang, X-F.; Guo, X-Q. Anal. Chim. Acta. 2001, 434, 169-177.
22. Yang, X-F.; Guo, X-Q. Analyst, 2001, 126, 1800–1804.
23. Umezawa, N.; Tanaka, K.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano, T. Angew.
Chem. Int. Ed.; 1999, 38, 2899-2901.
24. Tanaka, K.; Miyura, T.; Umezawa, N.; Urano, Y.; Kikuchi, K.; Higuchi, T.; Nagano,
T. J.Am. Chem. Soc., 2001, 123, 2530-2536.
25. Zhao, H.; Kalivendi, S.; Zhang, H.; Joseph, J.; Nithipatikom, K.; Vasques-Vivar, J.;
Kalyanaraman, B. Free Radical Biol.Med, 2003, 34, 1359-1368.
26. Georgiou, C.D.; Papapostolou, I.; Patsoukis, N.; Tsegenidis, T.; Sideris, T. Anal.
Biochem., 2005, 347, 144-151.
27. Robinson, K. M.; Janes, M. S.; Pehar, M.; Monette, J. S.; Ross, M. F.; Hagen, T. M.;
46
Murphy, M. P.; Beckman, J. S. Proc. Natl. Acad. Sci. U.S.A, 2006, 103, 15038-15043.
28. Kenmoku, S.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem .Soc., 2007, 129, 7313-
7318.
29. Sun, Z-N.; Liu, F-Q.; Chen, Y.; Tam, P.K.H.; Yang, D. Org.Lett., 2008, 10, 2171-
2174.
30. Garner, A.L.; St Croix, C.M.; Pitt, B.R.; Leikauf, G.D.; Ando, S.; Koide, K. Nat.
Chem, 2009, 1, 316-321.
31. Sasaki, E.; Kojima, H.; Nishimatsu, H.; Urano, Y.; Kikuchi, K.; Hirata, Y.; Nagano,
T. J.Am.Chem.Soc, 2005, 127, 3684-3685.
32. Hilderbrand, S.A.; Lippard, S. J. Inorg.Chem, 2004, 43, 4674-4682.
33. Gabe, Y.; Urano, Y.; Kikuchi, K.; Kojima, H.; Nagano, T. J.Am.Chem.Soc,
2004, 126, 3357-3367.
34. Huang, K-J.; Wang, H.; Ma, M.; Zhang, X.; Zhang, H-S. Nitric Oxide, 2007, 16, 36-
43.
35. Yang, D.; Wang, H.L.; Sun, Z-N.; Chung, N-W.; Shen, J-G. J.Am.Chem.Soc., 2006,
128, 6004-6005.
36. Sun, Z-N.; Wang, H-L.; Liu, F-Q.; Chen, Y.; Tam, P. K. H.; Yang, D. Org.Lett.
2009, 11, 1887-1890.
37. a) Apel. K.; Hirt, H. Annu. Rev. Plant Biol. 2004, 55, 373–99. b) B. D.Autréaux, D.; Toledano, M.B. Nat. Rev. Mol. Cell. Biol. 2007, 8, 813-824. 38. a) Forman, H. J.; Maiorino, M.; Ursini, F. Biochemistry, 2010, 49, 835–842, b) Thannickal, V. J.; Fanburg, B. L. Am J Physiol Lung Cell Mol Physiol. 2000, 279,
L100 – L1028. c) Torres, M. A.; Jones, J.D.G.; Dangl, J. L. Plant physiol, 2006,
141, 373-376. 39. a) Yang, Y-C.; Lu, H-H.; Wang, W-T.; Liau, I. Anal, Chem, 2011, 83, 8267-8272. b) Beal, J. L.; Foster, S. B.; Ashby, M. T. Biochemistry, 2009, 48, 11142–11148 c) Oushiki, D.; Kojima, H.; Terai, T.; Arita, M.; Hanaoka, K.; Urano, Y.; Nagano, T. J. Am. Chem. Soc., 2010,132, 2795–2801. 40. a) Khansari, N.; Shakiba, Y.; Mahmoudi, M. Recent Pat Inflamm Allergy Drug Discov. 2009, 3, 73-80. b) Krajeovieova-Kudlaekova, M.; Dusinska, M.; Valachovicova, M.; Blazieek, P.; Paukova, V. Physiol. Res. 2006, 55, 227-231.
47
41. a) Yuan, L.; Lin, W.; Song, J.; Yang, Y. Chem. Commun., 2011, 47, 12691–12693, b) Kim, T-I.; Park, S.; Choi, Y.; Kim, Y. Chem. Asian J. 2011, 6, 1358 – 1361, c) Kenmoku, S.; Urano, Y.; Kojima,H.; Nagano, T. J. Am. Chem. Soc. 2007, 129, 7313-7318.
42. a) Loudet, A.; Burgess, K. Chem. Rev., 2007, 107, 4891-4932. b) Ulrich, G.; Ziessel, R.; Harriman, A. Angew. Chem. Int. Ed. 2008, 47, 1184 – 1201.
43. a) Lai, R. Y.; Bard, A. J. J. Phys. Chem. B. 2003, 107, 5036–5042. b) Nepomnyashchii, A. B.; Cho, S.; Rossky, P. J.; Bard, A. J. J. Am. Chem. Soc. 2010, 132, 17550–17559.
44. Kennedy, D. P.; Kormos, C. M.; Burdette, S. C. J. Am. Chem. Soc. 2009, 131, 8578–8586.
3.8 References
1) Halliwell, B.; Gutteridge, J. M. C. Free Radicals in Biology and Medicines 3rd ed.; Clarendon Press: Oxford, UK, 1999.
2) Finkel, T. Curr. Opin. Cell Biol. 2003, 15, 247-254.
3) Ohshima, H.; Tatemichi, M.; Sawa, T. Arch. Biochem. Biophys. 2003, 417, 03-11.
4) Shah, A. M.; Channon, K. M. Heart, 2004, 90, 486-487.
5) Barnham, K. J.; Masters, C. L.; Bush, A. I. Nat. Rev. Drug DiscoVer. 2004, 3, 205-214.
6) Wood, Z. A.; Poole, L. B.; Karplus, P. A. Science, 2003, 300, 650-653.
7) Guyton, K. Z.; Liu, Y.; Gorospe, M.; Xu, Q.; Holbrook, N. J. J. Biol.Chem, 1996, 27, 4138-4142.
8) a) Kim, T-I.; Kim, H.; Choi, Y.; Kim, Y. Chem. Commun., 2011, 47, 9825–9827. b) Major, J. L.; Cohen, S. M. Angew.Chem. Int. Ed. 2010, 49, 6795-6797.
9) a) Turki, H.; Abid, S.; Suzanne, F-F.; Gharbi, R. E. Dyes and Pigments, 2007, 73, 311-316 b) Komatsu, K.; Urano, Y.; Kojima, H.; Nagano, T. J. Am. Chem. Soc., 2007, 129, 13447-13454.
4.9.12 References
1. a) Loudet, A.; Burgess, K. Chem. Rev., 2007, 107, 4891-4932. b) Ulrich, G.; Ziessel, R.; Harriman, A. Angew. Chem. Int. Ed. 2008, 47, 1184 – 1201.
2. Treibs, A.; Kreuzer, F. H. Justus Liebigs Ann. Chem, 1968, 718, 208-210.
3. a) Shah, M.; Thangaraj, K.; Soong, M.-L.; Wolford, L. T.; Boyer, J. H.; Politzer, I. R.; Pavlopoulos, T. G. Heteroat. Chem. 1990, 1, 389-390. b) Boyer, J. H.; Haag, A. M.; Sathyamoorthi, G.; Soong, M. L.; Thangaraj, K.; Pavlopoulos, T. G. Heteroat. Chem. 1993, 4, 39-41.
4. Qin, W.; Rohand, T.; Dehaen, W.; Clifford, J. N.; Drisen, K.; Beljonne, D.; Averbeke, B. V.; Auweraer, M. K.; Boens, N. J. Phys. Chem. A, 2007, 111, 8588-8597.
5. a) Yuan, M.; Li, Y.; Li, J.; Li, C.; Liu, X.; Lv, J.; Xu, J.; Liu, H.; Wang, S.; Zhu, D. Org. Lett., 2007, 9, 2313-2316. b) Samsonov, A. V.; Mihalyov, I.; Cohen, F. S. Biophys. J. 2001, 81, 1486-1500. c) Tahtaoui, C.; Parrot, I.; Klotz, P.; Guillier, F.; Galzi, J.-L.; Hibert, M.;
82
Ilien, B. J. Med. Chem. 2004, 47, 4300-4315. d) Boldyrev, I. A.; Molotkovsky, J. G. Russ. J. Bioorg. Chem, 2006, 32, 78-83. e) Werner, T.; Huber, C.; Heinl, S.; Kollmannsberger, M.; Daub, J. Wolfbeis, O. S.; Fresenius, J. Anal. Chem, 1997, 359, 150-154. f) Baruah, M.; Qin, W.; Basaric, N.; De Borggraeve, Wim, M.; Boens, N. J. Org. Chem. 2005, 70, 4152-4157. g) Qi, X.; Jun, E. J.; Xu, L.; Kim, S.-J.; Hong, J. S. J.; Yoon, Y. J.; Yoon, J. J. Org. Chem. 2006, 71, 2881-2884. h) Bricks, J. L.; Kovalchuk, A.; Trieflinger, C.; Nofz, M.; Bueschel, M.; Tolmachev, A. I.; Daub, J.; Rurack, K. J. Am. Chem. Soc. 2005, 127, 13522-13529. i) Wu, Y.; Peng, X.; Guo, B.; Fan, J.; Zhang, Z.; Wang, J.; Cui, A.; Gao, Y. Org. Biomol. Chem. 2005, 3, 1387-1392. j) Martin, V. V.; Rothe, A.; Gee, K. R. Bioorg. Med. Chem. Lett. 2005, 15, 1851-1855.
6. a) Bozdemir, O. A.; Guliyev, R.; Buyukcakir, O.; Selcuk, S.; Kolemen, S.; Gulseren, G.; Nalbantoglu, T.; Boyaci, H.; Akkaya, E. U. J. Am. Chem. Soc. 2010, 132, 8029-8036.b) DiCesare, N.; and Lakowicz, J. R.; Tetrahedron Lett. 2001, 42, 9105–9108. c) Li, J.-S.; Wang, H.; Huang, K.-J.; Zhang, H.-S.; Anal. Chim. Acta, 2006, 575, 255-261.
7. Ojida, A.; Sakamoto, T.; Inoue, M.; Fujishima, S.; Lippens, G.; Hamachi, I. J. Am. Chem. Soc. 2009, 131, 6543–6548.
8. Hendricks, J.A.; Keliher, E.J.; Wan, D.; Hilderbrand, S. A.; Weissleder, R.; Mazitschek, R. Angew. Chem. Int. Ed. 2012, 51, 4603 –4606.
9. (a) Boening, D. W. Chemosphere 2000, 40, 1335-1351. (b) Benoit, J. M.; Fitzgerald, W. F.; Damman, A. W. EnViron. Res. 1998, 78, 118-133. (c) Renzoni, A.; Zino, F.; Franchi, E. Environ. Res. 1998, 77, 68-72. (d) Harris, H. H.; Pickering, I. J.; George, G. N. Science, 2003, 301, 1203–1203.
10. (a) Takeuchi, T.; Morikawa, N.; Matsumoto, H.; Shiraishi, Y. Acta Neuropathol. 1962, 2, 40-57. (b) Harada, M. Crit. ReV. Toxicol. 1995, 25, 1-24.
11. K. Leopold, M. Foulkes, P. Worsfold, Anal. Chim. Acta, 2010, 663, 127-138.
12. (a) Gao, Y.; De Galan, S.; De Brauwere, A.; Baeyens, W.; Leermakers, M. Talanta 2010, 82, 1919-1923. (b) da Silva, M. J.; Paim, A. P. S.; Pimentel, M. F.; Cervera, M. L.; de la Guardia, M. Anal. Chim. Acta, 2010, 667, 43-48.
13. (a) Moreno, F.; Garcia-Barrera, T.; Gomez-Ariza, J. L. Analyst 2010, 135, 2700-2705. (b) Balarama Krishna, M. V.; Chandrasekaran, K.; Karunasagar, D. Talanta 2010, 81, 462-472. (c) Cairns, W. R. L.; Ranaldo, M.; Hennebelle, R.; Turetta, C.; Capodaglio, G.; Ferrari, C. F.;
83
Dommergue, Aurelien; Cescon, P.; Barbante, C. Ana. Chim. Acta, 2008, 622, 62-69.
14. Chai, Xiaoli; Chang, Xijun; Hu, Zheng; He, Qun; Tu, Zhifeng; Li, Zhenhua. Talanta 2010, 82, 1791-1796.
15. (a) Fu, X.; Chen, X.; Guo, Z.; Xie, C.; Kong, L.; Liu, J.; Huang, X. Analytica Chimica Acta 2011, 685, 21-28. (b) Wang, F.; Wei, X.; Wang, C.; Zhang, S.; Ye, B. Talanta 2010, 80, 1198-1204.
16. (a) Guo, X.; Qian, X.; Jia, L. J. Am. Chem. Soc. 2004, 126, 2272-2273. (b) Wang, J.; Qian, X. Chem. Comm. 2006, 109-111. (c) Yuan, M.; Li, Y.; Li, J.; Li, C.; Liu, X.; Lv, J.; Xu, J.; Liu, H.; Wang, S.; Zhu, D. Org. Lett. 2007, 9, 2313-2316. (d) Lee, M. H.; Lee, S. W.; Kim, S. H.; Kang, C.; Kim, J. S. Org. Lett. 2009, 11, 2101-2104. (e) Fan, J.; Guo, K.; Peng, X.; Du, J.; Wang, J.; Sun, S.; Li, H. Sens. Actuators B, 2009, 142, 191-196. (f) Bhalla, V.; Tejpal, R.; Kumar, M. J.; Sethi, A. Inorg. Chem. 2009, 48, 11677–11684. (g) Vaswani, K. G.; Keranen, M. D. Inorg. Chem. 2009, 48, 5797–5800. (h) Wanichacheva, N.; Siriprumpoonthum, M.; Kamkaew, A.; Grudpan, K. Tetrahedron. Lett. 2009, 50, 1783–1786. (i) Du, J.; Fan, J.; Peng, X.; Sun, P.; Wang, J.; Li, H.; Sun, S. Org. Lett. 2010, 12, 476-479. (j) Shi, W.; Sun, S.; Li, X.; Ma, H. Inorg. Chem. 2010, 49, 1206–1210.
17. McClure, D. S. J. Chem. Phys. 1952, 20, 682-686.
18. (a) Qin, W.; Rohand, T.; Dehaen, W.; Clifford, J. N.; Driesen, K.; Beljonne, D.; Van Averbeke, B.; Van der Auweraer, M.; Boens, N. J. Phys. Chem. A. 2007, 111, 8588-8597. (b) Loudet, A.; Burgess, K. Chem. Rev. 2007, 107, 4891-4932.
19. Kundu, N. G.; Nandi, B. J. Org. Chem. 2001, 66, 4563-4575.
20. Dodani, S. C.; He, Q.; Chang, C. J. J. Am. Chem. Soc. 2009, 131, 18020–18021.
5.13 References
1) Coskun, A.; Akkaya, E. U. Terahedron Lett. 2004, 45, 4947-4949
2) Atilgan, S.; Ozdemir, T.; Akkaya, E. U. Org.Lett. 2008, 10, 4065-4067.
3) Yu, Y-H.; Descalzo, A.B.; Shen, Z.; Rohr, H.; Liu, Q.; Wang, Y-W.; Spieles, M.; Li, Y-Z.;
Rurack, K.; You, X-Z. Chem. Asian. J, 2006, 1, 176-187.
4) Coskun, A.; Deniz, E.; Akkaya, E. U. Org.Lett. 2005, 7, 5187-5189.
5) (a) Baruah, M.; Qin, W.; Basaric, N.; De Borggraeve, W. M.; Boens, N. J. Org. Chem. 2005,
70, 4152-4157. (b) Wu, Y.; Peng, X.; Guo, B.; Fan, J.; Zhang, .Z; Wang, J.; Cui, A.; Gao, Y.
Org. Biomol. Chem., 2005, 3, 1387-1392.
109
6) Dahim, M.; Mizuno, N. K.; Li, X.-M.; Momsen, W. E.; Momsen, M.; Brockman, H. L. Biophys. J. 2002, 83, 1511-1524.
7) Erbas, S.; Gorgulu, A.; Kocakusakogullaric, M.; Akkaya, E. U. Chem. Commun., 2009, 4956–4958.
8) a) Kam, N. W. S.; Jessop, T. C.; Wender, P. A.; Dai, H. J. J. Am. Chem. Soc. 2004, 126, 6850-6851. b) Kam, N. W. S.; Liu, Z.; Dai, H. J. Angew. Chem., Int. Ed., 2005, 44, 1–6.
9) Liu, Z.; Davis, C.; Cai, W.; He, L.; Chen, X.; Dai, H. Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 1410–1415.
10) Ulrich, G.; Goeb, S.; De Nicola, A.; Retailleau, P.; Ziessel, R. Synlett., 2007, 1517 – 1520.
11) Ziessel, R.F.; Ulrich, G.; CharbonniRre, L.; Imbert, D.; Scopelliti, R.; BJnzli, J-C.G. Chem. Eur. J. 2006, 12, 5060 – 5067.
12) Rurack, K.; Kollmannsberger, M.; Daub, J. New J.Chem, 2001, 25, 289-292.
13) Rohand, T.; Qin, W.; Boens, N.; Dehaen, W. Eur. J. Org. Chem 2006, 4658-4663.
14) a) Coskun, A.; Akkaya, E.U. J. Am. Chem. Soc. 2006, 128, 14474-14475. b) Guliyev, R.; Coskun, A.; Akkaya, E.U. J. Am. Chem. Soc. 2009, 131, 9007–9013. 15) Ono, M.; Watanabe, H.; Kimura, H.; Saji, H. ACS Chem. Neurosci., 2012, 3, 319–324.
16) Lee, J-S.; Kang, N-Y.; Kim, Y-K. Samanta, A.; Feng, S.; Kim, H-K.; Vendrell, M.; Park, J-H.; Chang Y-T. J. Am. Chem. Soc. 2009, 131, 10077–10082
17) (a) Takeuchi, T.; Morikawa, N.; Matsumoto, H.; Shiraishi, Y. Acta Neuropathol. 1962, 2, 40–57; (b) Harada, M. Crit. Rev. Toxicol., 1995, 25, 1–24.
18) Leopold, K.; Foulkes, M.; Worsfold, P. Anal. Chim. Acta, 2010, 663, 127–138.
19) (a) Gao, Y.; De Galan, S.; De Brauwere, A.; Baeyens W.; Leermakers, M. Talanta, 2010, 82, 1919–1923; (b) da Silva, M. J.; Paim, A.P.S.; Pimentel, M.F.; Cervera, M.L.; de la Guardia, M. Anal. Chim. Acta, 2010, 667, 43–48.
20) (a) Moreno, F.; Garcia-Barrera, T.; Gomez-Ariza, J. L. Analyst, 2010, 135, 2700–2705; (b) Krishna, M.V.B.; Chandrasekaran, K.; Karunasagar, D. Talanta, 2010, 81, 462–472; (c) Cairns, W.R.L.; Ranaldo, M.; Hennebelle, R.; Turetta, C.; Capodaglio, G.; Ferrari, C.F.; Dommergue, A.; Cescon, P.; Barbante, C. Anal. Chim. Acta, 2008, 622, 62–69.
21) Chai, X.; Chang, X.; Hu, Z.; He, Q.; Tu, Z.; Li, Z. Talanta, 2010, 82, 1791–1796.
22) (a) Lee, M.H.; Lee, S.W.; Kim, S.H.; Kang, C.; Kim, J. S. Org. Lett., 2009, 11, 2101–2104; (b) Fan, J.; Guo, K.; Peng, X.; Du, J.; Wang, J.; Sun, S.; Li, H. Sens. Actuators, B, 2009,
110
142, 191–196; (c) Bhalla, V.; Tejpal, R.; Kumar, M. J.; Sethi, A. Inorg. Chem., 2009, 48, 11677–11684; (d) Vaswani, K.G.; Keranen, M. D. Inorg. Chem., 2009, 48, 5797–5800; (e) Wanichacheva, N.; Siriprumpoonthum, M.; Kamkaew, A.; Grudpan, K. Tetrahedron Lett., 2009, 50, 1783–1786; (f ) Du ,J.; Fan, J.; Peng, X.; Sun, P.; Wang, J.; Li, H.; Sun, S. Org. Lett., 2010, 12, 476–479; (g) Shi, W.; Sun, S.; Li, X.; Ma, H. Inorg. Chem., 2010, 49, 1206–1210; (h) Atilgan, S.; Ozdemir, T.; EAkkaya, E.U. Org. Lett., 2010, 12, 4792–4795; (i) Bozdemir, O.A.; Guliyev, R.; Buyukcakir, O.; Selcuk, S.; Kolemen, S.; Gulseren, G.; Nalbantoglu, T.; Boyaci H.; Akkaya, E.U. J. Am. Chem. Soc., 2010, 132, 8029–8036; ( j) Ahamed, B.N.; Ghosh, P. Dalton Trans., 2011, 40, 12540–12547; (k) Wang, F.; Nam, S-W.; Guo, Z.; Park , S.; Yoon, J. Sens. Actuators B, 2012, 161, 948–953; (l) Ma, X.; Wang, J.; Shan, Q.; Tan, Z.; Wei, G.; Wei, D.; Du, Y. Org. Lett., 2012, 14, 820–823; (m) Jiang, X.; Wong, C.; Lo, P.; Ng, D. K. P. Dalton Trans., 2012, 41, 1801–1807; (n) Vedamalai, M.; Wu, S-P. Eur. J. Org. Chem., 2012, 6, 1158–1163; (o) Dessingou, J.; Tabbasum, K.; Mitra, A.; Hinge, V.K.; Rao, C.P. J. Org. Chem., 2012, 77, 1406–1413; (p) Bag, B.; Biswal, B. Org. Biomol. Chem., 2012, 10, 2733–2738.
23) McClure, D.S. J. Chem. Phys., 1952, 20, 682–686.
24) (a) Qin, W.; Rohand, T.; Dehaen, W.; Clifford, J.N.; Driesen, K.; Beljonne, D.; Van Averbeke, B.; Van der Auweraer, M.; Boens, N. J. Phys. Chem. A, 2007, 111, 8588–8597; (b) Loudet A.;Burgess, K. Chem. Rev., 2007, 107, 4891–4932.
25) Kaupp, M.; Malkina, O.L.; Malkin, V.G.; Pyykko, P. Chem.–Eur. J., 1998, 4, 118–126.
26) Brinnas, R.P.; Bruckner, C. Tetrahedron, 2002, 58, 4375–4381.
27) Senthilvelan, A.; Ho, I.; Chang, K.; Lee, G.; Liu, Y.; Chung, W-S. Chem.–Eur. J., 2009, 15, 6152–6160.
28) Benesi, H.A.; Hildebrand, J. H. J. Am. Chem. Soc., 1949, 71, 2703– 2707.
29) Singh, R.B.; Mahanta, S.; Guchhait, N. J. Mol. Struct., 2010, 963, 92–97.
6.4 References
1. a) Goncalves, T. Chem. Rev. 2009, 109, 190–212. b) Nolan, E.M.; Lippard, S. J. Chem. Rev.
2008, 108, 3443–3480. c) McDonagh, C.; Burke, C. S.; MacCraith, B. D.; Chem. Rev. 2008,
108, 400-422.
2. a) Kim, H. N.; Ren, E.X.; Kim, J. S.; Yoon, J.; Chem. Soc. Rev., 2012, 41, 3210–3244. b)
Bren, V. A.; Russian Chemical reviews, 2001, 70, 1017-1036. c) Introduction to
Fluorescence Sensing; Demchenko, A. P.; Springer science publications, USA, 2009.
3. (a) Gunnlaugsson, T.; Glynn, M.; Tocci, G. M.; Kruger, P. E.; Pfeffer, F. M. Coord. Chem.
Rev. 2006, 250, 3094–3117. (b) Coskun, A.; Akkaya, E. U. Terahedront. Lett. 2004, 45,
120
4947–4949. (c) Shao, J. Dyes and Pigments, 2010, 87, 272-276. (d) Raad, F. S.; El-Ballouli, A.O.; Moustafa, R. M.; Al-Sayah, M. H.; Kaafarani, B. R. Tetrahedron, 2010, 66, 2944-2952.
4. (a) Anzenbacher.Jr., P.; Jursikova, K.; Aldakov, D.; Marquez. M.; Pohl, R. Tetrahedron, 2004, 60, 11163–11168. (b) Starnes, S. D.; Arungundram, S.; Saunders, S. H. Terahedront .Lett., 2002, 43, 7785-7788. (c) Imanaka, N.; Okamoto, K.; Adachi, G. Sens. and Actuators B, 2003, 93, 233-236. (c) Kumar, V.; Kaushik, M. P.; Srivastava, A. K.; Pratap, A.; Thiruvenkatam, V.; Guru Row, T. N. Anal. Chim. Acta. 2010, 663, 77-84. (d) Lee, D.; Lee, K. H.; Hong, J-I. Org. Lett., 2001, 3, 5–8.
5. (a) Grabchev, I.; Chovelon, J. M.; Nedelcheva, A. J. Photochem. Photobiol. A: Chem., 2006, 183, 9–14. (b) Faulkner, S.; Carrié, M-C.; Pope, S. J. A.; Squire, J.; Beeby, A.; Sammes, P. G. Dalton Trans., 2004, 1405-1409. (c) Wang, H-H.; Xue, L.; Yu, C-L.; Qian, Y-Y.; Jiang, H. Dyes and Pigments, 2011, 91, 350-355. (d) Burdette, S. C.; Frederickson, C. J.; Bu, W.; Lippard, S. J. J. Am. Chem. Soc., 2003, 125, 1778–1787.
6. (a) Domaille, D. W.; Que, E. L.; Chang, C. J. nat.chem.biol. 2008, 4, 168-175. (b) Arunkumar, E.; Ajayaghosh, A.; Daub, J. J. Am. Chem. Soc., 2005, 127, 3156–3164. (c) Dai, Z.; Canary, J. W. New J. Chem., 2007, 31, 1708-1710.
7. (a) Boening, D. W. Chemosphere, 2000, 40, 1335 –135. (b) Gnamuš, A.; Byrne, A. R.; Horvat, M. Environ. Sci. Technol., 2000, 34, 3337–3345, (c) Peterson, S. A.; Sickle, J. V.; Herlihy, A. T.; Hughes, R. M. Environ. Sci. Technol., 2007, 41, 58–65.
8. (a) Harris, H. H.; Pickering, I. J.; George, G. N. Science, 2003, 301, 1203-1203. (b) Foucher, D.; Hintelmann, H. Environ. Sci. Technol., 2009, 43, 33–39. (c) Inácio, M. M.; Pereira, V.; Pinto, M. S. Geoderma, 1998, 85, 325-339. (d) Endo, T.; Hotta, Y.; Haraguchi, K.; Sakata, M. Environ. Sci. Technol., 2003, 37, 2681–2685. (e) Yang, H.; Zhou, Z.; Huang, K.; Yu, M.; Li, F.; Yi, T.; Huang, C. Org. Lett., 2007, 9 , 4729–4732.
9. (a) Prodi, L.; Bargossi, C.; Montalti, M.; Zaccheroni, N.; Su, N.; Bradshaw, J. S.; Izatt, R. M.; Savage, P. B. J. Am. Chem. Soc., 2000, 122, 6769-6770. (b) Liu, Y.; Zhang, N.; Chen, Y.; Wang, L-H. Org. Lett., 2007, 9, 315–318.
10. (a) Pallavicini, P.; Diaz-Fernandez, Y. A.; Foti, F.; Mangano, C.; Patroni, S. Chem. Eur. J. 2007, 13, 178 – 187. (b) Y. Zhao, Y.; Zhong, Z. J. Am. Chem. Soc, 2006, 128, 9988-9989.
121
11. (a) Yan, Y.; Hu, Y.; Zhao, G.; Kou, X. Dyes and Pigments, 2008, 79, 210-215.(b) Lee, S. H.; Helal, A.; Kim, H- S. Bull. Korean Chem. Soc. 2010, 31, 615-619.
12. (a) Liu, Y.; Meng1, L.; Lu1, X.; Zhang1, L.; He, Y. Polym. Adv. Technol. 2008, 19, 137–143. (b) Hassan, S. M.; Mahmoud, W. H.; Mohamed, H. K.; Kelany, A. E. Anal.Sci., 2006, 22, 877-881.
13. (a) Wang, J.; Qian, X. Org. Lett., 2006, 8, 3721-3724. (b) Sun, H-B.; Liu, S-J.; Ma, T-C.; Song, N-N.; Zhao, Q.; Huang, W. New J. Chem., 2011, 35, 1194-1197.
14. (a) Yoon, S.; Albers, A. E.; Wong, A. P.; Chang, C. J. J. Am. Chem. Soc. 2005, 127, 16030-16031. (b) Ando, S.; Koide, K. J. Am. Chem. Soc. 2011, 133, 2556–2566.
15. (a) Chen, Q. Y.; Chen, C. F. Terahedron. Lett. 2005, 46, 165–168. (b) Mahajan, R. K.; Kaur, R.; Bhalla, V.; Kumar, M.; Hattori, T.; Miyano, S. Sens. and Actuators B, 2008, 130, 290–294.
16. (a) Ye, B. C.; Yin, B. C. Angew. Chem. Int. Ed. 2008, 47, 8386 –8389. (b) Lee, C.; Choo, J. Bull. Korean Chem. Soc. 2011, 32, 2003-2007.
17. a) Soh, J. H.; Swamy, K. M. K.; Kim, S. K.; Kim, S.; Lee, S. H.; Yoon, J. Terahedron. Lett. 2007, 48, 5966–5969. b) Chen, X.; Nam, S. W.; Jou, M. J.; Kim, Y.; Kim, S. J.; Park, S.; Yoon, J. Org.lett., 2008, 10, 5235-5238.
18. Levi, J.; Cheng, Z.; Gheysens, O.; Patel, M.; Chan, C. T.; Wang, Y.; Namavari, M.; Gambhir, S. S. Bioconjugate. Chem., 2007, 18, 628-634.
19. Benesi, H. A.; Hildebrand, J. H. J. Am. Chem. Soc., 1949, 71, 2703-2707.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top