跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝東浦
研究生(外文):Hsieh Tong-Pu
論文名稱:共聚物Poly(HB1-x-co-HVx)之變溫顯微拉曼光譜研究
論文名稱(外文):Temperature-dependent Micro-Raman Study of Copolymer Poly(HB1-x-co-HVx)
指導教授:梁君致
指導教授(外文):Jun-Jih Liang
口試委員:周秀慧吳允中
口試委員(外文):Shiu-Huey ChouY.-J. Wu
學位類別:碩士
校院名稱:輔仁大學
系所名稱:物理學系
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:75
中文關鍵詞:聚羥基丁酯聚羥基戊酯顯微拉曼光譜術C…H氫鍵
外文關鍵詞:Poly(3-hydroxybutyrate)poly(3-hydroxyvalerate)micro- Raman spectroscopyC-H…O hydrogen bond
相關次數:
  • 被引用被引用:1
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:39
  • 收藏至我的研究室書目清單書目收藏:0
聚3-羥基丁酯(polyhydroxybutyrate,簡稱PHB)為一種具有生物可分解性和熱塑性的高分子,大家對它有強烈的興趣基於它是一種新環保材料且發現可以被應用在塑膠產業上。然而PHB結晶度高達55-80%,其硬脆的力學性質,不適合應用於需延展性佳的塑膠商品。混合聚3-羥基戊酯(poly-hydroxyvalerate,簡稱PHV)後,形成共聚物P(HB1-x-co-HVx),它也是生物可分解高分子的一種,與PHB相比,共聚物P(HB1-x-co-HVx)在本質上結晶度較低而彈性較高。調整過的力學性質,使這個共聚物P(HB1-x-co-HVx)在材料的應用方面更具吸引力。本論文利用變溫顯微拉曼光譜術(temperature-dependent micro-Raman spectroscopy)觀察不同比例下、共聚物P(HB1-x-co-HVx) (x=0, 0.05, 0.08)薄膜之結構及結晶度。
實驗的結果顯示,共聚物P(HB1-x-co-HVx)的結晶度在常溫下隨著x比例的增加而減低,而在到達熔點之前的升溫過程中結晶度幾乎保持不變。從研究中可以得知,共聚物P(HB1-x-co-HVx)的平行螺旋結構靠著C=O和CH3之間的氫鍵(hydrogen bonding)對連結,在常溫下隨著x比例的增加,氫鍵會變得越來越弱。此外,在升溫的過程中當溫度超過常溫以後,氫鍵會持續地減弱。這象徵著,共聚物結晶部分的平行螺旋結構瓦解後,會導致整體螺旋結構的變形。當x≦0.08且溫度低於熔點時,熱效應在共聚物P(HB1-x-co-HVx)薄膜的平行螺旋結構穩定性上扮演很重要的角色,但它難以影響其共聚物的結晶度。相反地,共聚物P(HB1-x-co-HVx)薄膜的結晶度和平行的螺旋結構都受到PHV含量的影響很大。

Poly(3-hydroxybutyrate) (PHB) is one of the biodegradable and thermoplastic polymers. It has been receiving keen interest as new environmentally friendly material that will find applications in plastic industries. However, the rather high crystallinity (55-80%) of PHB keeps it from being a replaceable material for commodity plastics, mainly due to its stiff and brittle mechanical properties. Blended with poly(3- hydroxyvalerate) (PHV), which is also a biodegradable polymer, the copolymer P(HBx-co-HV1-x) shows substantially a reduced crystallinity and increased flexibility compared to those of the PHB homopolymer. The modified mechanical properties make this copolymer more attractive with regard to material applications. In this context, the composition dependent structure and crystallinity of the copolymer P(HBx-co-HV1-x) thin films with x = 0, 0.05, 0.08 were studied by temperature-dependent micro-Raman spectroscopy. Experimental results revealed that the crystallinity of the copolymers decreases with increasing x at room temperature, whereas it remains nearly unchanged until below their melting temperatures. From the study of the parallel helical structures of the copolymer linked by a chain of C–H…O hydrogen bond pair, it shows that the hydrogen bond becomes weakened with increasing x at room temperature. Moreover, the weakening of the hydrogen bonds starts from just above room temperature and proceeds gradually with increase in temperature. This indicates the occurrence of the deformation of helical structures, leading eventually to the collapse of the parallel helical structures in the crystal parts of the copolymers. While thermal effect plays an important role in the stability of the parallel helical structures of the P(HBx-co-HV1-x) copolymer thin films, it affects hardly the crystallinity of the copolymer well below the melting point for x≦0.08. Contrarily, crystallinity as well as parallel helical structures of the thin films are strongly influenced by the PHV content incorporated into the P(HBx-co-HV1-x) copolymer.
目錄
第一章 緒論 1
1.1 PHAs的形成 1
1.2 PHAs的結構與特性 1
1.3 不同共聚物和混合物的研究 4
第二章 拉曼散射 6
2.1 光散射 6
2.2 拉曼散射之古典電磁學理論基礎 8
2.3 拉曼散射之微觀描述 13
第三章 實驗裝置 17
3.1 光路 17
3.2 氬離子氣體雷射 19
3.3 Jobin Yvon U1000型雙光柵單色儀 21
3.4 電荷耦合元件 25
第四章 結果與討論 28
4.1 拉曼常溫光譜 28
4.2 拉曼變溫光譜 37
4.3 常溫下和變溫下的結晶度變化 53
4.3.1 結晶度在常溫下之變化 55
4.3.2 結晶度隨溫度的變化 59
4.4 C=O和CH3之間的氫鍵振動模 64
4.4.1 C=O和CH3之間的氫鍵振動模在常溫下之變化 65
4.4.2 C=O和CH3之間的氫鍵振動模隨溫度之變化 67
第五章 總結 72
參考文獻 73

參考文獻
[1] A. J. Anderson and E. A. Dawes, “Occurrence, Metabolism, Metabolic Role, and Industrial Uses of
Bacterial Polyhydroxyalkanoates”, Microbiol. Rev. 54, 450-472 (1990).
[2] S. Y. Lee, “Review Bacter Polyhydroxyalkanoates” , Biotec. and Bioeng., 49, 1-14 (1996).
[3] L. L. Madison and G. W. Huisman, “Metabolic Engineering of Poly (3-Hydroxyalkanoates): From DNA to
Plastic”, Microbiol. Mol. Biol. Rev. 63, 21-53 (1999).
[4] K. Sudesh, H. Abe, and Y. Doi, “Synthesis, structure and properties of polyhydroxyalkanoates:
biological polyesters”, Prog. Polym. Sci. 25, 1503-1555 (2000).
[5] S. Philip, T. Keshavarz and I. Roy, “Review Polyhydroxyalkaniates: biodegradable polymers with a
range of applications”, J. Chem Technol Biotechnol, 82, 233-247 (2007).
[6] 高健智, “玻璃材料中無序程度之研究”, 私立輔仁大學物理研究所
碩士論文, (1997).
[7] D. A. Long, The Raman Effect, 1ed, p.31-35 (John Wiley and Sons, Chichester, 2002).
[8] 鄭義全, “玻璃態物質拉曼散射之理論探討”, 私立輔仁大學物理研究所碩士論文, (1994).
[9] 程光煦, 拉曼布里淵散射, 第二版, p.70-71 (科學出版社, 北京, 2007).
[10] C. Kittel, Introduction to Solid State Physics, 7ed, p.322-324 (Wiley, New York, 1996).
[11] 程光煦, 拉曼布里淵散射, 第二版, p.91-93 (科學出版社, 北京, 2007).
[12] D. A. Long, Raman Spectroscopy, 1ed, p.134 (Mcgraw-Hill, New York, 1997).
[13] 徐宸科, “以低頻拉曼散射來研究重金屬氟化物玻璃中無序的程度”, 私立輔仁大學物理研究所碩士論文, (1996).
[14] Manual: Innova 90 ion lasers, p.1-10 (Coherent, 1984).
[15] K. D. Moller, Optics, p.147-149 (University Science Books, Mill Valley, 1988).
[16] 蕭建國, “鑭鍺鎵玻璃系統之偏極化拉曼散射”, 私立輔仁大學物理研究所碩士論文, (1999).
[17] Manual: Spectrum one CCD detection system, p.14 (Jobin Yvon-Spex, Instruments S. A., Inc., 1996).
[18] H. Sato, R. Murakami, A. Padermshoke, F. Hirose, K. Senda, I. Noda, and Y. Ozaki, “Infrared
Spectroscopy Studies of C-H…O=C Hydrogen Bondings and Thermal Behavior of Biodegradable poly
(hydroxyalkanoate)” ,Macromolecules 37, 7203-7213 (2004).
[19] H. Sato, J. Dybal, R. Murakami, I. Noda, Y. Ozaki, ”Infrared and Raman spectroscopy and quantum
chemistry calculation studies of C-H…O hydrogen and thermal behavior of biodegradable
polyhydroxyalkanoate”, J. molecular structure 744, 35-46 (2005).
[20] T. Furukawa, H. Sato, R. Murakami, J. Zhang, Y. X. Duan, I. Noda,S. Ochiai, Y. Ozaki, “Structure,
Dispersibility, and Crystallinity of Poly(hydroxybutyrate)/poly(L-latic acid) Blends Studied by FT-
IR Microspectroscopy and Differential Scanning Calorimetry”, Macromolecules 38, 6445-6454 (2005).
[21] T. Furukawa, H. Sato, R. Murakami, J. Zhang, I. Noda, S. Ochiai, and Y. Ozaki, “Raman
microspectroscopy study of structure, dispersibility, and crystallinity of poly
(hydroxybutyrate)/poly (L-lactic acid) blends”, Polymer 47, 3132-3140 (2006).
[22] R. Murakami, H. Sato, J. Dybal, T. Iwata, Y. Ozaki, “Formation and stability of β-structure in
biodegrable ultra-high-molecular-weight poly(3-hydroxybutyrate) by infrared, Raman, and quantum
chemical calculation studies”, Polymer 48, 2672-2680 (2007).
[23] H. Sato, Y. Ando, J. Dybal, T. Iwata, I. Noda, and Y. Ozaki, ”Crystal Structures, Thermal
Behaviors, and C-H…O=C Hydrogen Bondings of Poly(3-hydroxyvalerate) and Poly(3-hydroxybutyrate)
Studied by Infrared Spectroscopy and X-ray Diffraction”, Macromolecules 41, 4305-4312 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊