跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/15 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林敬甄
研究生(外文):Lin, Jing-Jen
論文名稱:以吳郭魚作為非酒精性脂肪肝動物模式及 HepG2 細胞評估養殖蜆脂溶性成分護肝之功效
論文名稱(外文):Evaluation of the hepatoprotective ability of lipid-soluble compounds of freshwater clam using tilapia as an in vivo liver disease animal modeland HepG2 cells as an in vitro model
指導教授:孫寶年孫寶年引用關係
指導教授(外文):Sun Pan, Bonnie
口試委員:廖一久蕭明熙駱錫能呂廷璋潘敏雄蕭泉源邱思魁蔡震壽
口試委員(外文):Liao, I-ChiuShiao, Ming-ShiLou, Shyi-NengLu, Ting-JangPan, Min-HsiungShiau, Chyuan-YuanChiou, Tze-KueiTsai, Jenn-Shou
口試日期:2019-01-17
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:食品科學系
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:111
中文關鍵詞:吳郭魚HepG2 細胞台灣蜆非酒精性脂肪肝植物固醇多元不飽和脂肪酸
外文關鍵詞:tilapiaHepG2 cellsfreshwater clamnonalcoholic fatty liver diseasephytosterolspolyunsaturated fatty acids
相關次數:
  • 被引用被引用:0
  • 點閱點閱:378
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究建立吳郭魚作為非酒精性脂肪肝 (nonalcoholic fatty liver disease, NAFLD) 之動物模式,以此模式及細胞模式評估台灣蜆 (Corbicula fluminea) 熱水萃後之殘肉 (residual meat of freshwater clam, FCR) 及其乙醇萃取物 (ethanol extract of FCR, FCRE) 減緩 NAFLD 之作用,鑑定 FCR 及 FCRE 之脂溶性機能性成分,並探討提升蜆機能性成分之育肥策略。
吳郭魚攝食高脂飼料 (high-fat diet, HFD) 2 週後,其血漿丙胺酸轉胺酶 (alanine aminotransferase, ALT)、天門冬胺酸基轉移酶 (aspartate transaminase, AST)分別較控制組高 3.7 及 3.3 倍、肝體比增 1.6 倍,肝臟三酸甘油酯和總膽固醇分別增加 2.2、2.3 倍,肝臟脂肪酸含量為控制組的 1.9 倍,單元不飽和脂肪酸 (monounsaturated fatty acids, MUFAs) 最高,佔 53%,其次為飽和脂肪酸 (saturated fatty acids, SFAs) 佔 37%;將 SFAs 去飽和為 MUFAs 的 stearoyl-CoA desaturase (SCD, C18:1n9/ C18:0) 由 2.72 升至 5.26;多元不飽和脂肪酸 (polyunsaturated fatty acids, PUFAs) 的 n3/n6 比值由控制組的 2.4 降至 0.5。肝細胞直徑增為控制組的 1.7 倍,為氣球樣變性 (ballooning degeneration),肝臟並有發炎細胞浸潤,即為非酒精性肝炎 (nonalcoholic steatohepatitis, NASH)。
以攝食 HFD 之吳郭魚作為 in vivo 模式,評估 FCR 或 FCRE 護肝功效,攝食二者 2 週後均顯著 (p<0.05) 降低血漿 AST、ALT、肝體比及肝臟之總膽固醇、三酸甘油酯。FCRE 使肝臟之 SFAs、MUFAs 分別減少 50%、66%,SCD (C18:1n9/ C18:0) 下降 38%,PUFAs n3/n6 比值增加 2.1 倍;FCRE 並減緩肝細胞氣球樣變性、肝臟發炎指標 PGE2 和發炎細胞浸潤。血漿中三酸甘油酯、總膽固醇之濃度也顯著 (p<0.05) 低於 HFD 組,分別減少 50% 和 20% 以上。
吳郭魚作為模式以印證蜆之功效與小鼠之結果相同,均可以 HFD 誘發 NAFLD,並為可逆反應,與餵食小鼠 HFD 10 週後,血漿 ALT、肝臟三酸甘油酯和總膽固醇分別增加 1.9、4.1 和 2.0 倍,症狀相似,但吳郭魚誘導時間為小鼠的 1/5,可做為快篩護肝食品之模式動物。
HepG2 細胞之 in vitro 試驗中,FCRE 提升細胞存活率,減緩游離脂肪酸誘發之脂質堆積,顯著 (p<0.05) 降低脂肪酸合成酶活性、使脂肪酸 β-氧化酵素粒線體之 carnitine palmitoyltransferase-1 (CPT-1)、CPT-2,和過氧化體 (peroxisome) acyl-CoA oxidase (ACO) 之活性顯著 (p<0.05) 增加,並有濃度依存性。
在 FCR 和 FCRE 之脂溶性成分中,鑑定出其機能性含植物固醇,有 campesterol、brassicasterol、β-sitosterol、stigmasterol 及 PUFAs,其 n3/n6 比值均 > 2。FCRE 之總植物固醇 (3.18 mg/g) 和 n3 PUFAs (65.1 mg/g) 含量分別高於 FCR 達 7 倍和 4 倍。
蜆之植物固醇來自所濾食之微藻,以蛋白核小球藻、橢圓小球藻、四尾柵藻及二角盤星藻為主,以微藻或輪蟲育肥,蜆之植物固醇含量分別較控制組增加 13% 和 11%,以蜆殘肉水解物育肥增 5%,大豆蛋白水解物育肥植物固醇含量減少 8%。育肥之蜆。四種餌料均未能增加蜆之 n3 PUFAs,但蜆之肥滿度皆較控制組高,以輪蟲、蜆殘肉水解物育肥蜆之肥滿度均 >15%。
本研究確認吳郭魚可作為非酒精性脂肪肝疾病的模式動物,以製蜆精後之殘肉確認其降低肝臟脂肪酸生合成、提高脂肪酸 β-oxidation、調節肝臟脂肪酸去飽和之作用、減少肝臟脂質堆積、延緩發炎的功效,並發展出提升其機能性成分之育肥策略,自蜆肉護肝素材製成膠囊可於常溫貯藏 3.5 個月。
The purpose of this study was to develop an alternative animal model for assessing nonalcoholic fatty liver disease (NAFLD), applicable to evaluate the hepatoprotective effect of functional foods and ingredients. Tilapia was used as a test animal model and the residual meat of freshwater clam (FCR) and its ethanol extract (FCRE) were determined. The functional compounds of the FCR and FCRE were identified and strategy to increase functional compounds.
Tilapia were fed high-fat diet (HFD) for 2 weeks induced their alanine aminotransferase (ALT) and aspartate transaminase (AST) up to 3.7 times and 3.3 times, respectively, and hepatosomatic index (HSI) became 1.6 times greater. The triacylglycerol and total cholesterol content in liver increased up to 2.2 times and 2.3 times, respectively, being higher than those of the control group. The fatty acid content in the liver of HFD-fed tilapia increased to 1.9 times of the control group, of which monounsaturated fatty acids (MUFAs) was the highest (53%), followed by saturated fatty acids (SFAs, 37%). The stearoyl-CoA desaturase (SCD, C18:1n9/ C18:0), which modulates SFAs to MUFAs increased from 2.72 to 5.26. The ratio of polyunsaturated fatty acids (PUFAs) n3/n6 in liver decreased from 2.4 to 0.5. The histological examination of liver revealed that tilapia fed HFD induced nonalcoholic steatohepatitis (NASH), of which the hepatocyte was 1.7 times of the control group, and showed ballooning degeneration and inflammatory infiltrates.
Using the HFD-fed tilapia as an in vivo model. Intake of FCR or FCRE caused significant amelioration of AST and ALT in plasma, HSI, and total cholesterol and triacylglycerol content in liver. The concentrations of triacylglycerol (TG) and total cholesterol (TC) in tilapia plasma fed HFD supplemented with FCR or FCRE were significantly (p<0.05) lower than those fed only HFD, TG and TC decreased by 50% and 20% respectively. Feeding FCRE to tilapia decreased SFAs and MUFAs in liver by 50% and 60% respectively, SCD (C18:1n9/ C18:0) decreased by 38%, and the n3/n6 PUFAs ratio increased 2.1 times of those fed HFD alone. The ballooning degeneration, inflammatory infiltrates, and prostaglandin E2 (PGE2) in liver were also improved by feeding FCRE.
HFD elicited progression of NAFLD in tilapia similar to what drew forth in mice, expect mice took 10 weeks to induce their ALT in plasma became 1.9 times greater, TG and TC content in liver up to 4.1 times and 2.0 times, respectively, of the control group.
In HepG2 cells treated with free fatty acid increased lipid accumulation, while addition of FCRE significantly reduced lipid accumulation and cell death via decreased fatty acid synthase (FAS) activity and increased activities of carnitine palmitoyltransferase-1 (CPT-1), CPT-2 in mitochondria, and acyl-CoA oxidase (ACO) in peroxisome in a dose-dependent manner.
The lipid-soluble compounds in FCR and FCRE were identified as the functional compounds. They comprised phytosterols including campesterol, brassicasterol, β-sitosterol and stigmasterol, and PUFAs of which the ratio of n3/n6 >2. The total phytosterols (3.18 mg/g) and n3 PUFAs content (65.1 mg/g) in FCRE was 7 and 4 times of those in FCR, respectively.
The strategy to increase the phytosterols content in clam was to fertilize the cultured pond with the microalgae or the rotifer. Both techniques caused the phytosterol to increase by 13% and 11%, respectively, significantly higher than those from the control pond. The n3/n6 ratio of PUFAs in clam were not increased after fertilizing the culture pond. However, rotifer or FCR improved the fatness of clam by >15% increase.
For the first time, tilapia was established as an animal model for screening fatty-liver preventive effects in functional foods. In the in vivo and in vitro models of NAFLD, the residual clam meat generated as a by-product of clam essence production significantly decreased de novo lipogenesis, increased fatty acid β-oxidation and modulated fatty acid desaturation, thus suppressed lipid accumulation and inflammation. Strategy on enrichment of the functional compounds in the cultured pond was also first reported in this study. The residual clam meat can be utilize as a hepatoprotective ingredient was developed into the soft-gel capsule, which shelf life was 4.5 months stored at room temperature.
圖解摘要 I
Abstract IV
英文縮寫對照 XIII
壹、 前言 1
貳、 文獻整理 2
一、 非酒精性脂肪肝 2
1.1 發生率及特徵 2
1.2 病理進展 2
1.2.1 脂肪代謝、脂質毒性及胰島素抗性 3
1.2.2 脂肪組織功能失調 4
1.2.3 腸道菌叢失衡 4
1.3 治療 4
1.3.1 生活型態改變 4
1.3.2 藥物控制 5
二、 非酒精性脂肪肝之試驗模式 7
2.1 細胞模式 7
2.2 動物模式 7
2.2.1 高脂飼料 7
2.2.2 高膽固醇飼料 7
2.2.3 缺乏甲硫胺酸與膽鹼飼料 8
三、 魚類作為人類疾病之動物模式 8
四、 淡水蜆 11
4.1 蜆之生態及養殖 11
4.2 蜆濾食之特性 11
4.3 微藻成分對貝類生成與組成分之影響 12
4.4 蜆之生理活性 13
4.4.1 水萃取物 13
4.4.2 胜肽水解物 15
4.4.3 有機溶劑萃取物 15
參、 實驗架構 16
一、建立非酒精性脂肪肝動物模式 16
二、評估養殖蜆肉 (FCR) 及其萃取物 (FCRE) 護肝之功效-以吳郭魚為模式 16
三、探討蜆肉萃取物調節脂質代謝之作用-以 HepG2 細胞為模式 17
四、確立蜆濾食之特性及增加養殖蜆之機能性成分 17
肆、 材料方法 18
一、 材料 18
1. 台灣蜆 (Corbicula fluminea) 及其萃取物 18
1.1 蜆肉 18
1.2蜆肉乙醇萃取物 18
2. HepG2 細胞 18
3. 藥品 18
二、 方法 19
1. 高脂飼料誘導脂肪肝動物試驗之條件 19
1.1 小鼠 19
1.2 吳郭魚 19
2. 高脂飼料添加蜆殘肉之試驗 22
3. 高脂飼料添加蜆萃取物之試驗 22
4. 一般生理指標 22
5. 採血及血漿之製備 22
6. 血漿生化指標 22
6.1 酵素 ALT、AST 活性測定 22
6.2 三酸甘油酯 (triacylglycerol, TG) 23
6.3 總膽固醇 (Total cholesterol) 23
6.4 血漿中 HDL 與 LDL 23
6.5總抗氧化力 ( total antioxidant capacity, TAC ) 24
7. 肝臟組織 24
7.1 石蠟切片 24
7.2 Hematoxylin and eosin染色 24
8. 肝臟膽固醇及三酸甘油酯定量 25
9. 肝臟脂肪酸分析 25
10. 肝臟脂肪酸去飽和酶活性之計算 25
11. Hep G2細胞培養 25
11.1 細胞培養液 25
11.2 細胞繼代 25
11.3 細胞計數 26
11.4 游離脂肪酸 (free fatty acid, FFA) 誘導脂質堆積 26
11.5 蜆萃物減緩游離脂肪酸誘導細胞脂質堆積之試驗 26
11.6 細胞內中性脂質含量測定 26
11.7 細胞內三酸甘油酯含量測定 27
11.8 細胞內脂肪酸測定 27
11.9 脂質代謝酵素液製備 27
11.10 Fatty acid synthase (FAS) 活性 27
11.11 Acyl-CoA oxidase (ACO) 活性 28
11.12 Carnitine palmitoyltransferase (CPT) 活性 28
12. 蜆殘肉固醇萃取與分析 29
13. 脂肪酸分析 30
14. 葉綠素與總類胡蘿蔔素 30
15. 蜆萃物儲藏試驗 30
16. 蜆消化道及蜆池中藻種之鏡檢 30
17. 蜆組織之判定 31
18. 蜆組織之吸收光譜 31
19. 養殖蜆育肥試驗 31
20. 統計分析 32
伍、 結果與討論 33
一、 吳郭魚作為非酒精性脂肪肝動物模式之建立 33
1.1 攝食行為、肝指數及肝體比 33
1.2 肝臟三酸甘油酯及總膽固醇堆積 33
1.3 肝臟組織病變及脂肪肝 35
1.4 肝臟脂肪酸組成改變 36
1.4.1 飽和脂肪酸轉換成肝臟單元不飽和脂肪酸 36
1.4.2 多元不飽和脂肪酸 n3 及 n6 比例下降與發炎反應 37
二、吳郭魚與小鼠作為動物模式與人類之比較 45
2.1 吳郭魚與小鼠肝病變之異同 46
2.1.1肝指數及肝體比之差異 46
2.1.2 血漿、肝臟中脂質 46
2.1.3肝臟脂肪酸去飽和作用與組織病變程度 46
2.2 吳郭魚與人類肝病變之異同 47
2.2.1血漿中脂質與肝指數之差異 47
2.2.2 肝臟脂肪含量相近 47
2.2.3 肝組織氣球樣變性及發炎 47
2.3 吳郭魚、小鼠、人類共同之病程 48
2.3.1 肝指數 ALT、血漿三酸甘油酯 48
2.3.2. 肝臟飽和脂肪酸去飽和為單元不飽和脂肪酸 48
2.3.3多元不飽和脂肪酸 n3 及 n6 之生合成 48
三、以吳郭魚為模式評估養殖蜆肉護肝功能 52
3.1 肝體比下降 52
3.2 血脂下降及血漿抗氧化力上升 52
3.3 肝指數及肝臟脂質含量下降 53
四、蜆殘肉乙醇萃取物之護肝作用 54
4.1 減緩吳郭魚形成高血脂及脂肪肝 54
4.1.1 血脂濃度下降 54
4.1.2 肝指數及肝臟脂質含量下降 55
4.1.3 肝組織發炎情形及 PGE2 下降 55
4.2 肝臟脂肪酸去飽和作用 57
4.2.1 飽和脂肪酸、及單元不飽和脂肪酸下降 57
4.2.2 多元不飽和脂肪酸 n3 / n6 比例上升 59
4.3 抑制 HepG2 細胞脂質堆積 60
4.3.1 游離脂肪酸誘發肝細胞脂肪肝 60
4.3.2 對 HepG2 細胞脂肪肝之保護作用 61
五、蜆之脂溶性機能性成分及其安定性 67
5.1 固醇 67
5.2脂肪酸 69
5.3類胡蘿蔔素 70
5.4 蜆乙醇萃取物膠囊之儲藏期限 70
六、養殖蜆提升機能性成分之育肥策略 72
6.1 蜆池藻相與蜆濾食之關係 72
6.1.1 蜆池之藻相 72
6.1.2 蜆腸道內與微藻之色素 79
6.1.3 蜆池、蜆內臟及腸道微藻之大小 81
6.1.4 蜆消化微藻之選擇性 83
6.2 人工育肥對蜆之影響 85
6.2.2 育肥後蜆的生長及一般成分 85
6.2.3 葉綠素及類胡蘿蔔素 87
6.2.4 固醇 90
6.2.5 脂肪酸 90
陸、 結論 96
一、吳郭魚、小鼠、人類非酒精性脂肪肝之症狀相似 96
二、蜆逆轉吳郭魚和 HepG2 細胞非酒精性脂肪肝之機制 96
三、蜆機能性成分增加之育肥技術 96
四、總結 96
柒、參考文獻 97
捌、附錄 108
何雲達。1995。貝類養殖 (三) 蜆。臺灣農家要覽漁業篇。豐年社。
古璦寧。2013。臺灣蜆脂溶性機能成分之鑑定、影響因素及對人肝細胞氧化壓力之功效。國立台灣海洋大學食品科學研究所碩士學位論文。基隆。
台灣物種名錄 (http://taibnet.sinica.edu.tw/).
楊子靚。2010。水解小球藻對活性物質釋放之影響。國立台灣海洋大學食品科學研究所碩士學位論文。基隆。
農委會漁業署。2017。中華民國台灣地區漁業年報。農委會漁業署。台北。
A.O.A.C (Association of Official Analytical Chemists). 2012. Official methods of analysis, 19th Ed. Association of Official Analytical Chemists. Washington. DC. USA.
Adolph T., Grander C., Grabherr F., Tilg H. 2017. Adipokines and non-alcoholic fatty liver disease: multiple interactions.International Journal of Molecular Sciences18: 1649.
Aktas B., Yilmaz Y., Eren F., Yonal O., Kurt R., Alahdab Y. O, Celikel C. A, Ozdogan O., Imeryuz N., Kalayci C., Avsar E. 2011. Serum levels of vaspin, obestatin, and apelin-36 in patients with nonalcoholic fatty liver disease. Metabolism 60: 544-549.
Aldridge D. P. and McMahon R. F. 1978. Growth, fecundity, and bioenergetics in a natural population of the Asiatic freshwater clam, Corbicula manilensis Philippi, from North Central Texas. Journal of Molluscan Studies 44: 49-70.
Algaebase (http://www.algaebase.org/).
Alhazzaa R., Oen J. J., Sinclair A. J. 2013. Dietary phytosterols modify the sterols and fatty acid profile in a tissue-specific pattern. Journal of Functional Foods 5: 829-837.
Araya J., Rodrigo R., Pettinelli P., Araya A. V., Poniachik J., Videla L. A. 2010. Decreased liver fatty acid delta-6 and delta-5 desaturase activity in obese patients. Obesity 18: 1460-1463.
Arslan N. 2014. Obesity, fatty liver disease and intestinal microbiota. World Journal of Gastroenterology 20: 16452-16463.
Asaoka Y., Terai S., Sakaida I., Nishina H. 2013. The expanding role of fish models in understanding non-alcoholic fatty liver disease. Disease Models and Mechanisms 6: 905-914.
Athyros V. G., Boutari C., Stavropoulos K., Anagnostis P., Imprialos K. P., Doumas M., Karagiannis A. 2018. Statins: an under-appreciated asset for the prevention and the treatment of NAFLD or NASH and the related cardiovascular risk.Current Vascular Pharmacology 16: 246-253.
Athyros V. G., Tziomalos K., Gossios T. D., Griva T., Anagnostis P., Kargiotis K., Pagourelias E. D., Theocharidou E., Karagiannis A., Mikhailidis D. P. 2010. Safety and efficacy of long-term statin treatment for cardiovascular events in patients with coronary heart disease and abnormal liver tests in the Greek Atorvastatin and Coronary Heart Disease Evaluation (GREACE) Study: a post-hoc analysis. The Lancet 376: 1916-1922.
Baker S. M. and Levinton J. S. 2003. Selective feeding by three native North American freshwater mussels implies food competition with zebra mussels. Hydrobiologia. 505: 97-105.
Baker S. M., Levinton J. S. 2003. Selective feeding by three native North American freshwater mussels implies food competition with zebra mussels. Hydrobiologia. 505: 97-105.
Basen T., Martin-Creuzburg D., Rothhaupt K. O. 2011. Role of essential lipids in determining food quality for the invasive freshwater clam Corbicula fluminea. Journal of the North American Benthological Society 30: 653-664.
Basen T., Rothhaup, K. O., Martin-Creuzburg D. 2012. Absence of sterols constrains food quality of cyanobacteria for an invasive freshwater bivalve. Oecologia 170: 57-64.
Bieber L. L., Abraha T., Helmrath T. 1972. A rapid spectrophotometric assay for carnitine palmitoyltransferase. Analytical Biochemistry 50: 509-518.
Brauner R., Johannes C., Ploessl F., Bracher F., Lorenz R.L. 2012. Phytosterols reduce cholesterol absorption by inhibition of 27-hydroxycholesterol generation, liver X receptor α activation, and expression of the basolateral sterol exporter ATP-binding cassette A1 in Caco-2 enterocytes. Journal of Nutrition 142: 981-989.
Brown A.W., Hang J., Dussault P.H., Carr T. P. 2010. Phytosterol ester constituents affect micellar cholesterol solubility in model bile. Lipid 45: 855-862.
Buettner R., Schölmerich J., Bollheimer L. C. 2007. High‐fat diets: modeling the metabolic disorders of human obesity in rodents. Obesity 15: 798-808.
Buzzetti E., Pinzani M., Tsochatzis E. A. 2016. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism: Clinical and Experimental 65: 1038-1048.
Caldwell S., Ikura Y., Dias D., Isomoto K., Yabu A., Moskaluk C., Pramoonjago P., Simmons W., Scruggs H., Rosenbaum N., Wilkinson T., Toms P., Argo C.K., Al-Osaimi A.M., Redick J.A., Wilkinson T. 2010. Hepatocellular ballooning in NASH. Journal of Hepatology 53: 719-723.
Carlson E., Goldford S. 1979. A sensitive enzymatic method for determination of free and esterified tissue cholesterol. Clinica Chimica Acta 79: 575-582
Chalasani N., Vuppalanchi R., Rinella M., Middleton M. S., Siddiqui M. S., Barritt IV A. S., Kolterman O., Flores O., Alonso C., Iruarrizaga-Lejarreta M., Gil-Redondo R., Sirlin C. B., Zemel M. B. 2018. Randomised clinical trial: a leucine‐metformin‐sildenafil combination (NS‐0200) vs placebo in patients with non‐alcoholic fatty liver disease. Alimentary Pharmacology & Therapeutics 47: 1639-1651.
Chang J. J., Hsu M. J., Huang H. P., Chung D. J., Chang Y. C., Wang C. J. 2013. Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. Journal of Agricultural and Food Chemistry 61: 6069-6076.
Chen T. Y., Lin B. C., Shiao M. S., Pan B. S., 2008. Lipid-lowering and LDL oxidation inhibitory effects of aqueous extract of freshwater clam (Corbicula fluminea) - using tilapia as an animal model. Journal of Food Science 73: 148-154.
Chen T. Y., Pan B. S. 2007. Ex vivo inhibitory effect on tilapia LDL oxidation and hypolipidemia properties of Glycine tomentella root extract. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 148: 189-195.
Chi H. M., Chou S. T., Lin S. C., Su Z. Y., Sheen L. Y. 2010. Protective effects of water extract of clam on normal and CCl4-induced damage in primary cultured rat hepatocytes. American Journal of Chinese Medicine 38: 1193-1205.
Chijimatsu T., Tatsuguchi I., Abe K., Oda H., Mochizuki S. 2008. A freshwater clam (Corbicula fluminea) extract improves cholesterol metabolism in rats fed on a high-cholesterol diet. Bioscience, Biotechnology, and Biochemistry 72: 2566-2571.
Chijimatsu T., Umeki M., Okuda Y., Yamada K., Oda H., Mochizuki S. 2011. The fat and protein fractions of freshwater clam (Corbicula fluminea) extract reduce serum cholesterol and enhance bile acid biosynthesis and sterol excretion in hypercholesterolaemic rats fed a high-cholesterol diet. British Journal of Nutrition. 105: 526-534.
Chijimatsu, T., Tatsuguchi, I., Oda, H., & Mochizuki, S. (2009). A freshwater clam (Corbicula fluminea) extract reduces cholesterol level and hepatic lipids in normal rats and xenobiotics-induced hypercholesterolemic rats. Journal of Agricultural and Food Chemistry 57: 3108-3112.
Chuang W. L., Pan S. B. 2011. Anti-stress effects of Glycine tomentella Hayata in tilapia: Inhibiting COX-2 expression and enhancing EPA synthesis in erythrocyte membrane and fish growth. Journal of Agricultural and Food Chemistry 59: 9532-9541.
Cohen J. C., Horton J. D., Hobbs H. H. 2011. Human fatty liver disease: old questions and new insights. Science 332: 1519-1523.
Corbin K. D., Zeisel S. H. 2012. Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Current Opinion in Gastroenterology 28: 159-165.
Crespo D., Dolbeth M., Leston S., Sousa R., Pardal M. Â. 2015. Distribution of Corbicula fluminea (Müller, 1774) in the invaded range: a geographic approach with notes on species traits variability. Biological Invasions 17: 2087-2101.
Dai W., Wang K., Zheng X., Chen X., Zhang W., Zhang Y., Hou J., Liu L. 2015. High fat plus high cholesterol diet lead to hepatic steatosis in zebrafish larvae: a novel model for screening anti-hepatic steatosis drugs. Nutrition & metabolism 12: Article 42.
Dame R. F., Dankers N. 1988. Uptake and release of materials by a wadden sea mussel bed. Journal of Experimental Marine Biology and Ecology 118: 207-216.
Dashti N., Wolfbauer G. 1987. Secretion of lipids, apolipoproteins, and lipoproteins by human hepatoma cell line, HepG2: effects of oleic acid and insulin. Journal of Lipid Research 28: 423-436.
Dorn C., Riener M. O., Kirovski G., Saugspier M., Steib K., Weiss T. S., Gäbele E, Kristiansen G, Hartmann A, Hellerbrand, C. 2010. Expression of fatty acid synthase in nonalcoholic fatty liver disease. International Journal of Clinical and Experimental Pathology 3: 505-514.
Epifanio C. E. 1979. Growth in bivalve molluscs: Nutrition effects of two or more species of algae in diets fed to the American oyster Crassostrea virginica(Gmelin)and the hard clam Mercenaria mercenaria (L.). Aquaculture 18: 1-12.
FAO. 2018. The State of World Fisheries and Aquaculture 2016. FAO Fisheries and Aquaculture Department. Fisheries Technical Paper.
Foe C., Knight A., 1985. The effect of phytoplankton and suspended sediment on the growth of Corbicula fluminea (Bivalvia). Hydrobiologia 127: 105-115.
Folch J., M. Lees., G. H. Sloane Stanley. 1957. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226: 497-509.
Foster T., Budoff M. J., Saab S., Ahmadi N., Gordon C., Guerci A. D. 2011. Atorvastatin and antioxidants for the treatment of nonalcoholic fatty liver disease: the St Francis Heart Study randomized clinical trial. American Journal of Gastroenterology 106: 71-77.
Gaggini M., Morelli M., Buzzigoli E., DeFronzo R., Bugianesi E., Gastaldelli A. 2013. Non-alcoholic fatty liver disease (NAFLD) and its connection with insulin resistance, dyslipidemia, atherosclerosis and coronary heart disease. Nutrients 5: 1544-1560.
Goad L. J. 1981. Sterol biosynthesis and metabolism in marine invertebrates. Pure and Applied Chemistry 51:837-852.
Gomez-Lechon M. J., Donato M. T., Martínez-Romero A., Jiménez N., Castell J. V., O’Connor J. E. 2007. A human hepatocellular in vitro model to investigate steatosis. Chemico-Biological Interactions165: 106-116.
Gorden D. L., Ivanova P. T., Myers D. S., McIntyre J. O., VanSaun M. N., Wright J. K., Matrisian L. M., Brown H. A. 2011. Increased diacylglycerols characterize hepatic lipid changes in progression of human nonalcoholic fatty liver disease; comparison to a murine model. PLoS One 6: e22775.
Gosling E. 2003. Bivalve Mollusc Biology, Ecology and Culture. Blackwell Publishing, Oxford.
Görs M., Schumann R., Gustavs L., Karsten U. 2010. The potential of ergosterol as chemotaxonomic marker to differentiate between “Chlorella” species (Chlorophyta) 1. Journal of phycology 46: 1296-1300.
Hardy T., Anstee Q. M., Day C. P. 2015. Nonalcoholic fatty liver disease: new treatments. Current Opinion in Gastroenterology 31: 175-183.
Hideki K., Masao O., Yukiko N., Masao A., Mikio K. 2007. Sterol composition in muscle and viscera of the marine bivalve Megangulus zyonoensis from coastal waters of Hokkaido, northern Japan. Journal of Oleo Science 56: 231-235.
Holden M. J., Patterson G. W. 1991. Absence of sterol biosynthesis in oyster tissue culture. Lipids 26: 81-82.
Hsu C. L., Hsu C. C., Yen G. C. 2010. Hepatoprotection by freshwater clam extract against CCl4-induced hepatic damage in rats. American Journal of Chinese Medicine 38: 881-894
Huang S. C., Lin J. J., Lee M. F., Liu Y. C., Pan B. S. 2016. Freshwater clam extracts alleviate dyslipidaemia of tilapia fed a high-fat diet as an animal model. Journal of Function Foods 25: 559-567.
Huang Y. T., Huang Y. H., Hour T. C., Pan B. S., Liu Y. C., Pan M. H. 2006. Apoptosis-inducing active components from Corbicula fluminea through activation of caspase-2 and production of reactive oxygen species in human leukemia HL-60 cells. Food and Chemical Toxicology 44: 1261-1272.
Ichimura K., Kawashima Y., NakamuraT., Powell R., Hidoh Y., Terai S., Sakaida I., Kodera Yo., Tsuji T., Ma J. X., Sakai T., Matsumoto H., Obara T. 2013. Medaka fish, Oryzias latipes, as a model for human obesity-related glomerulopathy. Biochemical and Biophysical Research Communications 431: 712-717.
Ito K., Morioka M., Kimura S., Tasaki M., Inohaya K., Kudo A. 2014. Differential reparative phenotypes between zebrafish and medaka after cardiac injury. Developmental Dynamics 243: 1106-1115.
Izar M. C., Tegani D. M., Kasmas S. H., Fonseca F. A. 2011. Phytosterols and phytosterolemia: gene-diet interactions. Genes and Nutrition 6: 17-26.
Jackson E. W., Wolf H., Sinnhuber, R. O. 1968. The relationship of hepatoma in rainbow trout to aflatoxin contamination and cottonseed meal. Cancer Research 28: 987-991.
Javanmardi M. A., Mohammad shahi M., Seyedian S. S., Haghighizadeh M. H. 2018. Effects of phytosterol supplementation on serum levels of lipid profiles, liver enzymes, inflammatory markers, adiponectin, and leptin in patients affected by nonalcoholic fatty liver disease: a double-blind, placebo-controlled, randomized clinical trial. Journal of the American College of Nutrition 37: 1-8.
Javitt N. B. 1990. HepG2 cells as a resource for metabolic studies: lipoprotein, cholesterol, and bile acids. FASEB Journal 4: 161-168.
Kalueff A. V., Stewart A. M., Gerlai R. 2014. Zebrafish as an emerging model for studying complex brain disorders. Trends in Pharmacological Sciences 35: 63-75.
Knauer J., Kerr R. G., Lindley D., Southgate P. C. 1998. Sterol metabolism of pacific oyster (Crassostrea gigas) spat. Comparative Physiology and Biochemistry. 119: 81-84.
Kolodziej M. P., Crilly P. J., Corstorphine C. G., Zammit V. A. 1992. Development and characterization of a polyclonal antibody against rat liver mitochondrial overt carnitine palmitoyltransferase (CPT I). Distinction of CPT I from CPT II and of isoforms of CPT I in different tissues. Biochemcal Journal 282: 415-421.
Kong Z. L., Yu S. C., Daia S. A., Tu C. C., Pan M. H., Liu Y. C. 2011. Polyoxygenated sterols from freshwater clam. Helvetica Chimica Acta 94: 892-896.
Kořínková T. 2011. Food utilisation in fingernail and pill clams. Malacologica Bohemoslovaca 10: 1-4.
Kuwashiro S., Terai S., Oishi T., Fujisawa K., Matsumoto T., Nishina H., Sakaida I. 2011. Telmisartan improves nonalcoholic steatohepatitis in medaka (Oryzias latipes) by reducing macrophage infiltration and fat accumulation. Cell Tissue Research 344: 125-134.
Lai C. S, Ho M. H., fM. L., Li S., Badmaev V., Ho C. T., Pan M. H. 2013. Suppression of adipogenesis and obesity in high-fat induced mouse model by hydroxylated polymethoxyflavones. Journal of Agricultural and Food Chemistry 61: 10320-10328.
Lamaziere A., Wolf C., Barbe U., Bausero P., Visioli F. 2013. Lipidomics of hepatic lipogenesis inhibition by omega 3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 88: 149-154.
Lau J. K. C., Zhang X., Yu J. 2017. Animal models of non‐alcoholic fatty liver disease: current perspectives and recent advances. The Journal of Pathology 241: 36-44.
Laurent T., Okuda Y., Chijimatsu T., Umeki M., Kobayashi S., Kataoka Y., Iwao T., Mochizuki S., Oda, H. 2013. Freshwater clam extract ameliorates triglyceride and cholesterol metabolism through the expression of genes involved in hepatic lipogenesis and cholesterol degradation in rats. Evidence-Based Complementary and Alternative Medicine 2013: 830684. DOI: 10.1155/2013/830684
Lauringson V., Mälton E., Kotta J., Kangur K., Orav-Kotta H., Kotta I., 2007. Environmental factors influencing the biodeposition of the suspension feeding bivalve Dreissena polymorpha (Pallas): Comparison of brackish and freshwater populations. Estuarine, Coastal and Shelf Science 75: 459-467.
Lauristen D. D. 1986. Filter-feeding in Corbicula fluminea and its effect on seston removal. Journal of the North American Benthological Society 5: 165-172.
Lee R. P., Subeq Y. M., Lee C. J., Hsu B. G. and Peng T. C. 2011. Freshwater clam extract decreased hemorrhagic shock-induced liver injury by attenuating TNF-α production. Biological Research for Nursing. DOI: 10.1177/1099800411408881.
Li Z. Z., Berk M., McIntyre T. M., Feldstein A E. 2009. Hepatic lipid partitioning and liver damage in nonalcoholic fatty liver disease: role of stearoyl-CoA desaturase. Journal of Biological Chemistry 284: 5637-5644.
Liao N., Chen S., Ye X., Zhong J., Wu N., Dong S., Yang B., Liu D. 2013. Antioxidant and anti-tumor activity of a polysaccharide from freshwater clam, Corbicula fluminea. Food & Function 4: 539-548.
Lieber C. S., Jones D. P., Mendelson J., DeCarli L. M. 1963. Fatty liver, hyperlipemia and hyperuricemia produced by prolonged alcohol consumption, despite adequate dietary intake. Transactions of the Association of American Physicians 76: 289-300.
Lieber C. S., Leo M. A., Mak K. M., Xu Y., Cao Q., Ren C., Ponomarenko Anatoly., DeCarli, L. M. 2004. Model of nonalcoholic steatohepatitis. American Journal of Clinical Nutrition 79: 502-509.
Lin C. M., Lin Y. L., Tsai N. M., Wu H. Y., Ho S. Y., Chen C. H., Liu Y. K., Chiu Y. H., Ho L. P., Lee R. P., Liao K. W. 2012. Inhibitory Effects of Chloroform Extracts Derived from Corbicula fluminea on the Release of Pro-inflammatory Cytokines. Journal of Agricultural and Food Chemistry 60: 4076-4082.
Lin C. S. 2003. Effects of freshwater clam extract on liver functions in alcoholic liver injury. Nutritional Sciences Journal 28: 26-33.
Lin J. N., Chang, L. L., Lai, C. H., Lin, K. J., Lin, M. F., Yang, C. H., Lin, H. H, Chen, Y. H. 2015. Development of an animal model for alcoholic liver disease in zebrafish. Zebrafish 12: 271-280.
Lin Y. H., Tasi J. S., Hung L. B., Pun B. S. 2010. Hypocholesterolemic effect of compounded freshwater clam protein hydrolysate and Gracilaria. Food Chemistry 123: 395-399.
Lin Y. H.m Tasi J. S., Hung L. B., Pun B. S. 2011. Plasma lipid regulatory effect of compounded freshwater clam hydrolysate and Gracilaria insoluble dietary fibre. Food Chemistry 125: 397-401.
Loomba R., Lutchman G., Kleiner D. E., Ricks M., Feld J. J., Borg B. B., Modi A., Nagabhyru P., Sumner A. E., Liang T. J., Hoofnagle J. H. 2009. Clinical trial: pilot study of metformin for the treatment of non‐alcoholic steatohepatitis. Alimentary Pharmacology and Therapeutics 29: 172-182.
López-Vicario C., González-Périz A., Rius B., Morán-Salvador E., García-Alonso V., Lozano J J., Bataller R, Cofán M., Kang J.X., Arroyo V., Clària J., Titos E. 2014. Mol’cular interplay between Δ5/Δ6 desaturases and long-chain fatty acids in the pathogenesis of non-alcoholic steatohepatitis. Gut 63: 344-355.
Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951. Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193: 265-275.
Lu K. L., Xu W. N., Li X. F., Liu W. B., Wang L. N., Zhang C. N. 2013. Hepatic triacylglycerol secretion, lipid transport and tissue lipid uptake in blunt snout bream (Megalobrama amblycephala) fed high-fat diet. Aquaculture 408: 160-168.
Mackinney G. 1941. Absorption of light by chlorophyll solutions. The Journal of Biological Chemistry 140: 315-322.
Mader S. S. Biology, 6 edition, 1998. McGraw-Hill. New York, N. Y. http://thepix.info/clam-ganglia/
Maekawa Y., Nagamura Y., Harda, N. 2003. Protective effects of freshwater clam extract supplementation on carbon tetrachloride-induced liver injury in mice. International Journal of Analytical Bio-Science 26: 428- 434.
Maoka T., Fujiwara Y., Hashimoto K., Akimoto N. 2005. Carotenoids in three species of corbicula clams, Corbicula japonica, Corbicula sandai, and Corbicula sp. (Chinese Freshwater Corbicula Clam). Journal of Agricultural and Food Chemistry 53: 8357-8364.
Maoka T., Ochi J., Mori M., Sakagami, Y. 2012. Identification of Carotenoids in the Freshwater Shellfish Unio douglasiae nipponensis, Anodonta lauta, Cipangopaludina chinensis laeta, and Semisulcospira libertina. Journal of Oleo Science 61: 69-74.
Marshall R., McKinley S., Pearce C. M. 2010. Effects of nutrition on larval growth and survival in bivalves. Reviews in Aquaculture 2: 33-55.
Martin-Creuzburg D., Von Elert E. 2009. Ecological significance of sterols in aquatic food webs. Lipids in aquatic ecosystems. pp. 43-64. Springer, New York, NY.
Matsumoto T., Terai S., Oishi T., Kuwashiro S., Fujisawa K., Yamamoto N., Fujita Y., Hamamoto Y., Furutani-Seiki M., Nishina H., Sakaida I. 2010. Medaka as a model for human nonalcoholic steatohepatitis. Disease Models & Mechanisms 3: 431-430.
Michl S. C., Windisch W., Geist J. 2014. Function of the crystalline style and first detection of laminarinase activity in freshwater mussels of the genus Anodonta. Journal of Molluscan Studies 80: 198-200.
Mjoun K., Rosentrater K.A., Brown M.L. 2010. Tilapia: environmental biology and nutritional requirements. South Dakota Cooperative Extension Service Vol. FS963-02. http://works.bepress.com/kurt_rosentrater/223/.
Mo S., Dong L., Hurst W. J., Van Breemen R. B. 2013. Quantitative analysis of phytosterols in edible oils using APCI liquid chromatography–tandem mass spectrometry. Lipids 48: 949-956
Nakamoto K., Shimada K., Harada S., Morimoto Y., Hirasawa A., Tokuyama S. 2018. DHA supplementation prevent the progression of NASH via GPR120 signaling. European Journal of Pharmacology 820: 31-38.
Napolitano G. E., Ackman R. G. and Silva-Serra M. A. 1993. Incorporation of dietary sterols by the sea scallop Placopecten magellanicus (Gmelin) fed on microalgae. Marine Biology. 117: 647-654.
Nepokroeff C. M., Lakshmanan M. R., Porter J. W. 1975. Fatty acid synthase from rat liver. Methods in Enzymology 35: 37-44.
Nishikawa S., Yasoshima A., Doi K., Nakayama H., Uetsuka K. 2007. Involvement of sex, strain and age factors in high fat diet induced obesity in C57BL/6J and BALB/cA mice. Experimental Animals 56: 263-272.
Nixon J. E., Hendricks J. D., Pawlowski N. E., Pereira C. B., Sinnhuber,R. O., Bailey, G. S. 1984. Inhibition of aflatoxin B1 carcinogenesis in rainbow trout by flavone and indole compounds. Carcinogenesis 5: 615-619.
Nobili V., Alisi A., Della Corte C., Risé P., Galli C., Agostoni C., Bedogni G. 2013. Docosahexaenoic acid for the treatment of fatty liver: randomised controlled trial in children. Nutrition, Metabolism and Cardiovascular Diseases 23: 1066-1070.
Nordic Microalgae (http://nordicmicroalgae.org/).
Oka T., Nishimura Y., Zang L., Hirano M., Shimada Y., Wang Z., Umemoto N., Kuroyanagi J., Nishimura N., Tanaka T. 2010. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiology 10: 21. DOI 10.1186/1472-6793-10-21.
Olsen A. S., Sarras M. P., Intine R. V. 2010. Limb regeneration is impaired in an adult zebrafish model of diabetes mellitus. Wound Repair and Regeneration 18: 532-542.
Paterson E., Amado R. 1997. Simplified method for the simultaneous gas chromatographic determination of fatty acid composition and cholesterol in food. Lebenson Wiss Technol-Food Science and Technology 30: 202-209.
Pavlisova J., Bardova K., Stankova B., Tvrzicka E., Kopecky J., Rossmeisl M. 2016. Corn oil versus lard: metabolic effects of omega-3 fatty acids in mice fed obesogenic diets with different fatty acid composition. Biochimie124: 150-162.
Pawlak M., Lefebvre P., Staels B. 2015. Molecular mechanism of PPARα action and its impact on lipid metabolism, inflammation and fibrosis in non-alcoholic fatty liver disease. Journal of Hepatology 62: 720-733.
Peng T. C., Subeq Y. M., Lee C. J., Lee C. C., Tsai C. J., Chang F. M., Lee R. P. 2008. Freshwater clam extract ameliorates acute liver injury induced by hemorrhage in Rats. American Journal of Chinese Medicine 36: 1121-1133.
Pollak O. J. 1953. Reduction of blood cholesterol in man. Circulation 7: 702-706.
Popov S., Stoilov I., Marekov N., Kovachev G., Andreev S. 1981. Sterols and their biosynthesis in some freshwater bivalves. Lipid 16: 663-669.
Prescott G. W., 1978. In: How to know the freshwater algae. Wm. C. Brown Company , U.S.A, 41-293.
Promrat K., Kleiner D. E., Niemeier H. M., Jackvony E., Kearns M., Wands J. R., Fava J. L., Wing R. R. 2010. Randomized controlled trial testing the effects of weight loss on nonalcoholic steatohepatitis. Hepatology 51: 121-129.
Qiu B., Simon M. C. 2016. BODIPY 493/503 Staining of neutral lipid droplets for microscopy and quantification by flow cytometry. Bio-Protocol 6.
Ricchi M., Odoardi M. R., Carulli L., Anzivino C., Ballestri S., Pinetti A., Fantoni L., Marra F., Bertolotti M., Banni S., Lonardo A., Carulli N., Loria P. 2009. Differential effect of oleic and palmitic acid on lipid accumulation and apoptosis in cultured hepatocytes. Journal of Gastroenterology and Hepatology 24: 830-840.
Rinella M. E., Green R. M. 2004. The methionine-choline deficient dietary model of steatohepatitis does not exhibit insulin resistance. Journal of Hepatology 40: 47-51.
Ritchie R. J. 2006. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynthesis Research 89: 27-41.
Romestaing C., Piquet M. A., Bedu E., Rouleau V., Dautresme M., Hourmand-Ollivier I., Filippi C., Duchamp C., Sibille, B. 2007. Long term highly saturated fat diet does not induce NASH in Wistar rats. Nutrition & Metabolism 4: 4. DOI:10.1186/1743-7075-4-4
Sakamoto K., Touhata K., Yamashita M., Kasai A., Toyohara, H. 2007. Cellulose digestion by common Japanese freshwater clam Corbicula japonica. Fisheries Science 73: 675-683.
Sanyal A. J., Chalasani N., Kowdley K. V., McCullough A., Diehl A. M., Bass N. M., Neuschwander-Tetri B. A, Lavine J. E., Tonascia J., Unalp A., Van Natta M., Clark J., Brunt E. M., Kleiner D. E., Hoofnagle J. H., Robuck P. R. 2010. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. New England Journal of Medicine 362: 1675-1685.
Savard C., Tartaglione E. V., Kuver R., Haigh W. G., Farrell G. C., Subramanian S., Chait A., Yeh M. M., Quinn L. S., Ioannou G. N. 2013. Synergistic interaction of dietary cholesterol and dietary fat in inducing experimental steatohepatitis. Hepatology 57: 81-92.
Schartl M. 2014. Beyond the zebrafish: diverse fish species for modeling human disease. Disease Models and Mechanisms 7: 181-192.
Schmitz G., Ecker J. 2008. The opposing effects of n-3 and n-6 fatty acids. Progress in Lipid Research 47:147-155.
Schoefs B. 2002. Chlorophyll and carotenoid analysis in food products. Properties of the pigments and methods of analysis. Trends in Food Science & Technology 13: 361-371.
Schreck C.B., Moyle P.B. 1990. Methods for fish biology. American Fisheries Society. Pp. 191-207.
Shen J., Zhang J., Wen J., Ming Q., Zhang J., Xu Y. 2015. Correlation of serum alanine aminotransferase and aspartate aminotransferase with coronary heart disease. International Journal of Clinical and Experimental Medicine 8: 4399-4404.
Small G. M., Burdett K., Connock M. J. 1985. A sensitive spectrophotometric assay for peroxisomal acyl-CoA oxidase. Biochemical Journal 227: 205-210.
Soupas L., Juntunen L., Säynäjoki S., Lampi A. M., Piironen V. 2004. GC/MS method for characterization and quantification of sitostanol oxidation products. Journal of the American Oil Chemistst’ Society 81: 135-141.
Sousa R., Antunes C., Guilhermino L. 2008. Ecology of the invasive Asian clam Corbicula fluminea (Müller, 1774) in aquatic ecosystems: an overview. Annales de Limnologie-International Journal of Limnology 44: 85-94.
Spahis S., Alvarez F., Ahmed N., Dubois J., Jalbout R., Paganelli M., Grzywacz K, Delvin E, Peretti N., Levy, E. 2018. Non-alcoholic fatty liver disease severity and metabolic complications in obese children: impact of omega-3 fatty acids. Journal of Nutritional Biochemistry 58: 28-36.
Subramanian S., Goodspeed L., Wang S. A., Kim J., Zeng L., Ioannou G. N., Haigh WG, Yeh M. M., Kowdley K.V., O'Brien K. D., Pennathur S., Chait A. 2011. Dietary cholesterol exacerbates hepatic steatosis and inflammation in obese LDL receptor-deficient mice. Journal of Lipid Research 52: 1626-1635.
Sunny N. E., Parks E. J., Browning J. D., Burgess S. C. 2011. Excessive hepatic mitochondrial TCA cycle and gluconeogenesis in humans with nonalcoholic fatty liver disease. Cell Metabolism 14: 804-810.
Tainaka, T., Shimada, Y., Kuroyanagi, J., Zang, L., Oka, T., Nishimura, Y., Nishimura, N. and Tanaka, T. 2011. Transcriptome analysis of anti-fatty liver action by Campari tomato using a zebrafish diet-induced obesity model. Nutrition and Metabolism 8: 1.
Takishita K., Takaki Y., Chikaraishi Y., Ikuta T., Ozawa G., Yoshida T., Ohkouchi N., Fujikura K. 2017. Genomic evidence that methanotrophic endosymbionts likely provide deep-sea bathymodiolus mussels with a sterol intermediate in cholesterol biosynthesis. Genome Biology and Evolution 9: 1148-1160.
Tilg H., Moschen, A. R. 2010. Evolution of inflammation in nonalcoholic fatty liver disease: the multiple parallel hits hypothesis. Hepatology 52: 1836-1846.
Torres D. M., Jones F. J., Shaw J. C., Williams C. D., Ward J. A., Harrison S. A. 2011. Rosiglitazone versus rosiglitazone and metformin versus rosiglitazone and losartan in the treatment of nonalcoholic steatohepatitis in humans: A 12‐month randomized, prospective, open‐label trial. Hepatology 54: 1631-1639.
Trider, D. J., Castell, J. D. 1980. Effect of dietary lipids on growth, tissue composition and metabolism of the oyster (Crassostrea virginica). Journal of Nutrition 110: 1303-1309.
Tronstad K. J., Bruserud Ø., Berge K., Berge R. K. 2002. Antiproliferative effects of a non-β-oxidizable fatty acid, tetradecylthioacetic acid, in native human acute myelogenous leukemia blast cultures. Leukemia 16: 2292-2301.
Tsai J. S., Lin J. L., Chen J. L., Pan B. S. 2006. The inhibitory effects of freshwater clam (Corbicula fluminea, Muller) muscle protein hydrolysates on angiotensin Ι converting enzyme. Process Biochemistry 41: 2276-2281.
Valentim-Zabott M., Vargas L., Ribeiro R.P., Piau R. Jr., Torres M.B., Rönnau M., Souza J.C. 2008. Effects of a homeopathic complex in Nile tilapia (Oreochromis niloticus L.) on performance, sexual proportion and histology. Homeopathy 97: 190-195.
Van Anholt, R. D., Spanings, T., Koven, W., Bonga, S. E. W. 2003. Effects of acetylsalicylic acid treatment on thyroid hormones, prolactins, and the stress response of tilapia (Oreochromis mossambicus). American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 285: 1098-1106.
Van Wettere A. J., Mac Law J., Hinton D. E., Kullman S. W. 2013. Anchoring hepatic gene expression with development of fibrosis and neoplasia in a toxicant-induced fish model of liver injury. Toxicologic pathology 41: 744-760.
Vonck A.P., Wendelaar Bonga S.E., Flik G. 1998. Sodium and calcium balance in Mozambique tilapia, Oreochromis mossambicus, raised at different salinities. Comparative Biochemistry Physiology. Part A, Molecular Integrative Physiology 119: 441-449.
Vos M. B., Jin R., Konomi J. V., Cleeton R., Cruz, J., Karpen S., Rodriguez D. S., Frediani. K., McCracken C., Welsh J. 2018. A randomized, controlled, crossover pilot study of losartan for pediatric nonalcoholic fatty liver disease. Pilot and Feasibility Studies 4:109. DOI: 10.1186/s40814-018-0306-4.
Walton M. J., Pennock J. F. 1972. Some studies on the biosynthesis of ubiquinone, isoprenoid alcohols, squalene and sterols by marine invertebrates. Biochemical Journal 127: 471-479.
Wan Y., Liu L. Y., Hong Z. F., Peng J. 2014. Ethanol extract of Cirsium japonicum attenuates hepatic lipid accumulation via AMPK activation in human HepG2 cells. Experimental and Therapeutic Medicine 8: 79-84.
Way C. M., Hornbach D. J., Miller-Way C. A., Payne B. S., Miller A. C. 1990. Dynamics of filter feeding in Corbicula fluminea (Bivalvia: Corbiculidae). Canadian Journal of Zoology 68: 115-120.
Wikfors G. H., Gladu P. K. and Patterson G. W. 1991. In search of the ideal algal diet for oysters: Recent progress, with emphasis on sterols. Journal of Shellfish Research 10: 292-301.
Williams D. E. 2012. The rainbow trout liver cancer model: response to environmental chemicals and studies on promotion and chemoprevention. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology 155: 121-127.
Wong A. 2014. Chemical and microbiological considerations of phytosterols and their relative efficacies in functional foods for the lowering of serum cholesterol levels in humans: A review. Journal of Functional Foods 6: 60-72.
Yamada T., Obata A., Kashiwagi Y., Rokugawa T., Matsushima S., Hamada T., Watabe H., Abe K. 2016. Gd-EOB-DTPA-enhanced-MR imaging in the inflammation stage of nonalcoholic steatohepatitis (NASH) in mice. Magnetic Resonance Imaging 34: 724-729.
Yamagishi T., Yamaguchi H., Suzuki S., Horie Y., Tatarazako N. 2017. Cell reproductive patterns in the green alga Pseudokirchneriella subcapitata (Selenastrum capricornutum) and their variations under exposure to the typical toxicants potassium dichromate and 3, 5-DCP. PloS One 12: e0171259.
Yamazaki T., Shiraishi S., Kishimoto K., Miura S., Ezaki O. 2011. An increase in liver PPAR γ2 is an initial event to induce fatty liver in response to a diet high in butter: PPAR γ2 knockdown improves fatty liver induced by high-saturated fat. Journal of Nutritional Biochemistry 22: 543-553.
Yan Z., Yuping G., Wenjia H., Yuanxia S. 2014. Antioxidant peptides from freshwater clam extract using enzymatic hydrolysis. African Journal of Food Science 8: 148-154.
Yao H. T., Lee P. F., Lii C. K., Liu Y. T., Chen S. H. 2018. Freshwater clam extract reduces liver injury by lowering cholesterol accumulation, improving dysregulated cholesterol synthesis and alleviating inflammation in high-fat, high-cholesterol and cholic acid diet-induced steatohepatitis in mice. Food & Function 9: 4876-4887.
Yokohama S., Yoneda M., Haneda M., Okamoto S., Okada M., Aso K., Hasegawa T., Tokusashi Y., Miyokawa N., Nakamura K. 2004. Therapeutic efficacy of an angiotensin II receptor antagonist in patients with nonalcoholic steatohepatitis. Hepatology 40: 1222-1225.
Younossi Z. M., Loomba R., Anstee Q. M., Rinella M. E., Bugianesi E., Marchesini G., Neuschwander-Tetri B. A., Serfaty L., Negro F., Caldwell S. H., Ratziu V., Corey K. E., Friedman S. L., Abdelmalek M. F., Harrison S. A., Sanyal A. J., Lavine J. E., Mathurin P., Charlton M. R., Goodman Z. D., Chalasani N. P., Kowdley K. V., George J., Lindor K. 2018b. Diagnostic modalities for nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, and associated fibrosis. Hepatology 68: 349-360.
Younossi Z. M., Loomba, R., Rinella, M. E., Bugianesi, E., Marchesini, G., Neuschwander‐Tetri, B. A., Serfaty L., Negro F., Caldwell S. H., Ratziu V., Corey K. E., Friedman S. L., Abdelmalek M. F., Harrison S. A., Sanyal A. J., Lavine J. E., Mathurin P., Charlton M. R., Chalasani N. P., Anstee Q. M., Kowdley K. V., George J., Goodman Z. D., Lindor K. 2018c. Current and future therapeutic regimens for nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 68: 361-371.
Younossi Z., Anstee Q. M., Marietti M., Hardy T., Henry L., Eslam M., George J., Bugianesi, E. 2018. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nature Reviews Gastroenterology & Hepatology 15: 11-20.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊