跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.124) 您好!臺灣時間:2025/09/19 11:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍國瑋
研究生(外文):Kuo-Wei Lan
論文名稱:印度洋黃鰭鮪鮪釣漁況與海洋環境變動關係之研究
論文名稱(外文):Longline Fishing Conditions of Yellowfin Tuna (Thunnus albacares) Associated with Marine Environmental Variations in the Indian Ocean
指導教授:李明安李明安引用關係
指導教授(外文):Ming-An Lee
學位類別:博士
校院名稱:國立臺灣海洋大學
系所名稱:環境生物與漁業科學學系
學門:農業科學學門
學類:漁業學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:144
中文關鍵詞:印度洋黃鰭鮪鮪釣漁況衛星遙測
外文關鍵詞:Indian OceanYellowfin TunaLongline Fishing ConditionsSatellite Remote Sensing
相關次數:
  • 被引用被引用:7
  • 點閱點閱:775
  • 評分評分:
  • 下載下載:92
  • 收藏至我的研究室書目清單書目收藏:0
本研究蒐集臺灣鮪釣漁船於印度洋釣獲黃鰭鮪的漁獲統計資料與多衛星和模式演算之不同水文環境資料,除了分析印度洋黃鰭鮪的時空間分布外,亦利用主成分分析及小波轉換分析法解明漁況與海洋環境變動關係,以及探討氣候變異與變遷下對黃鰭鮪漁況和時空間分布的影響。結果如下:
(一) 印度洋黃鰭鮪漁獲區域主要集中於阿拉伯海和中西印度洋兩個海域,分別各占印度洋黃鰭鮪總漁獲量之35%和47%,其中阿拉伯海之主要漁期集中於每年第一、二季,此時季平均名目單位努力漁獲量(catch per unite effort, CPUE)約為14.92 (fish/103 hooks)且季平均漁獲量約為401公噸,主要捕獲單尾平均漁獲重量大於30公斤的黃鰭鮪。而中西印度洋黃鰭鮪之漁獲量與努力量皆為印度洋最高之海域,但其名目CPUE無明顯的季節變動,其平均名目CPUE約為3.13 (fish/103 hooks)。至於南印度洋於每年6–10月時亦有大量的努力量集中於該海域,但黃鰭鮪之月別名目CPUE皆小於2(fish/103 hooks)。
(二) 阿拉伯海黃鰭鮪之CPUE主要與水溫、混合層深度與葉綠素a濃度變化有關。該海域於每年第二季表水溫最高時之海況穩定,水深105m之次表層水溫變化不明顯,而黃鰭鮪CPUE則有正向之變動趨勢,反之當第三季索馬利亞附近海域湧昇強度增強時,表水溫變低且水深105m之次表層水溫變化較劇烈,CPUE呈現的下降趨勢。此外,漁場位置亦主要分布於葉綠素a濃度值較高的區域,且與CPUE存在著1–3個月延遲的正向關係,此一現象顯示CPUE之變動可能受到餌料生物變動的影響。而高CPUE現象之出現則與混合層深度變動有關,當混合層深度較淺,單位體積內魚群密度的增加,致使淺層式鮪釣(regular longline, RLL)較易有高CPUE出現,反之,當混合層深度變深時,較高的海水溫度會增加黃鰭鮪的來游量且棲息深度也隨之變深,因此深層式鮪釣(deep longline, DLL)漁況較易出現高CPUE現象。而阿拉伯海與中西印度洋之RLL與DLL CPUE與海洋環境因子間之長期關係隨著時間推移有不同之周期變動,兩者皆於1980年代初期至1990年代中期RLL、DLL CPUE與表水溫和印度洋偶極模指數呈現顯著的正相關變動關係,並與混合層深度皆在著3年的變動周期關係。
(三) 鮪延繩釣黃鰭鮪的漁場重心位置會與印度洋偶極正負值有相似的變動趨勢,當偶極值為負時(負事件),在西印度洋海域由於黃鰭鮪的最適表水溫(26–29.5°C)與淨初級生產力(220–380 C/m2/d)範圍的面積增加,也會使得黃鰭鮪的CPUE有上升的趨勢,但在偶極值為正時(正事件),由於表水溫普遍高於黃鰭鮪的最適水溫範圍,且淨初級生產力減少,導致CPUE呈現下降的趨勢。顯示氣候變異所造成的海洋環境改變是影響黃鰭鮪鮪釣漁況的重要因子之一。

Yellowfin tuna (YFT; Thunnus albacares) is one of the main target species of the commercial tuna longline (LL) fishery and has a long history of being the subject of scientific research in the Indian Ocean. In this study, we collected Taiwanese LL fishery data and environment variables during the period of 1980–2005. The principal component analysis (PCA) and wavelet analysis were used to investigate the relationship between LL catch data of YFT and oceanic environmental factors. The results were summarized as below:
In the Indian Ocean, YFT is one of the most important target species in the Arabian Sea and Western-Center Indian Ocean. The major fishing season in the Arabian Sea is in the first and second quarters with a average nominal catch per unit effort (CPUE) about 14.92 fish/103 hooks and a average catch about 401 metric tons. In the Western-Center Indian Ocean, the catch and effort were the highest in all of the Indian Ocean and the average nominal CPUE was about 3.13 fish/103 hooks. Although there were highest effort in the Southern Indian Ocean from June to September, but the average nominal CPUE was lower than 2 (fish/103 hooks) and the average catch was lower than 50 metric tons.
Results of the PCA showed that monthly variations in values were significantly correlated with the sea surface temperature (SST), subsurface temperature at 105 m and chlorophyll-a concentration. In April and May, the SST was generally higher with deep mixed layer depth. After July, a drop in the temperature below the preferred temperature range for YFT is probably the reason why the CPUE subsequently decreased. In addition, the CPUE at a given time was significantly affected by chlorophyll-a concentrations 1–3 months prior to that time were probably due to a lag effect of trophic transformation. The regular LL (RLL) CPUE had a negative coefficient and deep LL (DLL) had a positive coefficient with the mixed layer depth anomaly. This implies that the shallow mixed layer depth produces a high CPUE for the RLL and the deep mixed layer depth causes a high CPUE for the DLL. In the long-term time series analysis, the main factor causing interannual variations in the CPUE of the RLL and DLL might change with time. RLL and DLL CPUE values showed positive correlations with SST and Dipole Mode Index from the beginning of the 1980s to the middle of the 1990s. The RLL and DLL CPUE were found to have a significant coherence of the two phases with a periodicity of 3 yr with and mixed layer depth.
Finally, we investigated the catches and distributions of yellowfin tuna in relation to climatic and marine environmental variations in the Indian Ocean. The gravity of yellowfin tuna fishing grounds showed similar variations with a climatic index, and an advanced time series analysis also showed a significant negative correlation between the climatic index and the CPUE with a periodicity of 2–3 yr. It suggested that decreases in areas of SST and net primary production optimal for YFT during positive Indian Ocean Dipole events would decrease the CPUE in the western Indian Ocean, while an increase in optimal areas would result in an increased CPUE in negative Indian Ocean Dipole events, especially in the Arabian Sea and surrounding seas of Madagascar.

目 錄............................................................................................I
表目錄.......................................................................................IV
圖目錄........................................................................................V
謝辭...........................................................................................XI
摘要.........................................................................................XII
Abstract.................................................................................XIV
第一章 導論...............................................................................1
1.1印度洋黃鰭鮪分布與鮪釣概況.....................................1
1.2印度洋海洋環境與氣候的變異.....................................2
1.3海洋環境變動對鮪類分布與資源之影響.....................3
1.4衛星遙測影像資料之應用.............................................5
1.5研究動機與目的……………………………….………6
第二章 黃鰭鮪漁況與海洋環境之關係...................................8
2.1材料與方法.....................................................................8
2.1.1漁獲資料收集與分析……….……………..……….……….8
2.1.2 泛線性模式CPUE標準化……….……………………….10
2.1.3 水文環境資料蒐集……….……………………………….11
2.1.4主成份分析法……….………………………………..……13
2.1.5 時間序列分析法…………………………………………..14
2.2印度洋黃鰭鮪漁獲資料之時空間分布.…..…….........18
2.3阿拉伯海漁況與海洋環境之特性................................20
2.3.1 阿拉伯海之海洋環境..………….………….….….……....21
2.3.2 阿拉伯海黃鰭鮪漁況變動………………….………....…22
2.3.3 影響黃鰭鮪漁況之主要環境因子……….…....................23
2.4 阿拉伯海與中西印度洋鮪釣作業型態與海洋環境之時序列分析.................................................................24
2.4.1淺層與深層式鮪釣黃鰭鮪之漁況…………….…….……25
2.4.2漁況與環境因子間之時序列變動趨勢……..….….….….26
2.5 討論…………………………………………….….…27
2.5.1 阿拉伯海海洋環境特性………………………..………...27
2.5.2 黃鰭鮪漁況與環境因子間的關係…………………….....28
2.5.3 1993與2004年黃鰭鮪高漁獲量之探討…………..............29
2.5.4 海洋環境變化對於鮪釣作業型態之影響…………..…...31
第三章 氣候變異與變遷對黃鰭鮪時空間分布之影響.........35
3.1 引言..............................................................................35
3.2 材料與方法..................................................................36
3.2.1漁獲資料收集與分析……………………………..………36
3.2.2 海洋環境資料蒐集……………………………………….37
3.2.3 漁獲重心之計算………………………………………….38
3.2.4 時間序列分析法………………………………….………38
3.3 氣候變異與黃鰭鮪時空間分布..................................39
3.3.1黃鰭鮪分布、漁況與印度洋偶極模指數.………….……39
3.3.2黃鰭鮪CPUE與DMI指數之時序列分析………….......39
3.4氣候變異對印度洋黃鰭鮪漁場之影響.......................40
3.4.1黃鰭鮪漁場重心與DMI變動之關係……………………40
3.4.2氣候變異對黃鰭鮪最適潛在棲地位置分布變動……..…40
3.5 討論..............................................................................42
3.5.1 氣候變異對黃鰭鮪漁況與分布之影響………………..……42
3.5.2 氣候變遷效應對黃鰭鮪漁場之影響…………………..……45
第四章 結論與未來展望.........................................................47
4.1 結論..............................................................................47
4.2 未來展望......................................................................48
References.................................................................................52
Tables and contents……..........................................................59
Figures and captions................................................................67

Anda-Montañez, J. A. D., Amador-Buenrostro, A., Martínez-Aguilar, S. and Muhlia-Almazán, A. (2004). Spatial analysis of yellowfin tuna (Thunnus albacares) catch rate and its relation to El Ni ño and La Niña events in the eastern tropical Pacific. Deep-Sea Research II, 51, 575–586.
Anderson, D. M., Brock, J. C. and Prell, W. L. (1992). Physical upwelling processes, upper ocean environment and the sediment record of the southwest monsoon. Geological Society, London, Special Publications, 64, 121-129.
Andrade, H. A. and Garcia, A. E. (1999). Skipjack tuna in relation to sea surface temperature off the southern Brazilian coast. Fisheries Oceanography, 8(4), 245–254.
Andrade, H. A. (2003). The relationship between the skipjack tuna (Katsuwonus pelamis) fishery and seasonal temperature variability in the south-western Atlantic. Fisheries Oceanography, 12(1), 10–18.
Andrews, J. C. (1977). Eddy structure and the West Australian current. Deep Sea Research, 24, 1133–1148.
Behera, S. K. and Yamagata, T. (2003). Impact of the Indian Ocean Dipole on the Southern Oscillation. Journal of the Meteorological Society of Japan, 81, 169–177.
Behrenfeld, M J. and Falkowski, P. G. (1997) Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnology and Oceanography, 42, 1–20.
Belkin, I. M., Cornillon, P. C. and Sherman, K. (2009). Fronts in large marine ecosystems. Progress Oceanography, 81, 223–236.
Blackburn M (1965). Oceanography and the ecology of tunas. Oceanography and Marine Biology, 3, 299–322.
Block, B. A., Keen, J. E., Castillo, B., Dewar, H., Freund, E. V., Marcinek, D. J., Brill, R. W. and Farwell, C. (1997). Environmental preferences of yellowfin tuna (Thunnus albacares) at the northern extent of its range. Marine Biology, 130, 119–132.
Brill, W., Bigelow, K. A., Musyl, M. K., Fritsches, K. A. and Warrant, E. J. (2005). Bigeye tuna (Thunnus obesus) behaviour and physiology and their relevance to stock assessments and fishery biology. Collective Volume of Scientific Papers ICCAT, 57(2), 142–161.
Cazelles, B. and Stone, L. (2003). Detection of imperfect population synchrony in an uncertain world. Journal of Animal Ecology, 72, 953-968.
Chang, S. K. (2004). Catch rate analysis of the Indian Ocean swordfish from Taiwanese longline fishery using generalized linear model. Journal of Taiwan Fisheries Research, 31(2), 115–126.
Chang, S. K., Liu, K. Y. and Song, Y. H. (2010). Distant water fisheries development and vessel monitoring system implementation in Taiwan-History and driving forces. Marine Policy, 34(3), 541–548.
Chen, I. C., Lee, P. F. and Tzeng, W. N. (2005). Distribution of albacore (Thunnus alalunga) in the Indian Ocean and its relation to environmental factors. Fisheries Oceanography, 14(1), 71–48.
Cheung, W. W. L., Lam, V. W. Y., Sarmineto, J. L., Kearney, K., Watson, R., Zeller, D. and Pauly, D. (2009). Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change. Global Change Biology, doi: 10.1111/j.1365-2486.2009.01995.x
Cheung, W. W. L., Dunne, J., Sarmiento, J. L., Pauly, D. (2011). Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES Journal of Marine Science, 68(6), 1008–1018.
Conan, S. M. H. and Brummer, G. J. A. (2000). Fluxes of planktic foraminifera in response to monsoonal upwelling on the Somalia Basin margin. Deep-Sea Research II, 47, 2207–2227.
Corbineau, A., Rouyer, T., Cazelles, B., Fromentin, J. M., Fonteneau, A. and Menard, F. (2008). Time series analysis of tuna and swordfish catches and climate variability in the Indian Ocean (1968-2003). Aquatic Living Resources, 21, pp. 277–285.
Colbert, D. (2000). Cities, Seas, and Storms: Managing Change in Pacific Island Economies. Vol II Managing Pacific Towns, Washington, D.C.
Dennett, M. R., Caron, D. A., Murzov, S. A., Polikarpov, I. G., Gavrilova, N. A., Georgieva, L. A. and Kuzmenko, L.V. (1999). Abundance and biomass of nano- and microplankton during the 1995 northeast monsoon and spring intermonsoon in the Arabian Sea. Deep Sea Research Part II, 46, 1691–1717.
Die, D., Kel, L. and Pallares, P. (2002). Time trends in abundance and catchability of yellowfin tuna and their relationship to the north Atlantic oscillation. Collective Volume of Scientific Papers ICCAT, 54(4), 1049–1063.
Durbin, J. and Koopman, S. J. (2001). Time Series Analysis by State Space Methods. Oxford: Oxford University Press.
Feng M, Meyers G (2003) Interannual variability in the tropical Indian Ocean: a two-year time scale of IOD. Deep-Sea Res II, 50, 2263–2284.
Fukumori, I., Raghunath, R., Fu, L. and Chao, Y. (1999). Assimilation of TOPEX/POSIEDON altimeter data into a global ocean circulation model: How good are the results? Journal of Geophysical Research, 104(C11), 25647–25665.
Grinsted, A., Moore, J. C. and Jeverejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics, 11, 561–566.
Hollowed, A. B., Barange, M., Ito, S., I., Kim, S., Loend, H. and Peck, M. A. (2011) Effects of climate change on fish and fisheries: forecasting impacts, assessing ecosystem responses, and evaluating management strategies. ICES Journal of Marine Science, 68(6), 984–985.
Hsieh, C. H., Chen, C. H., Chiu, T. S., Lee, K. T., Shieh, F. J., Pan, J. Y. and Lee, M. A. (2009). Time series analyses reveal transient relationships between abundance of larval anchovy and environmental variables in the coastal waters southwest of Taiwan. Fisheries Oceanography, 18(2), 102–117.
Hsu, C. C., Lee H. H., Yeh Y. M. and Liu H. C. (2001). On targeting problem, partitioning fishing effort and estimating abundance index of bigeye tuna for Taiwanese longline fishery in the Indian Ocean. IOTC Proceedings, 4, 279–292.
Huang, H. Y. (1995). National report on Taiwanese longline fisheries in the Induan Ocean in 1994. FAO IPTP Collective Volume, 9, 47–48.
IPCC (2007). Summary for policymakers. In Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel of Climate Change, pp. 1–18. Ed. by Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M et al. Cambridge University Press, Cambridge, UK. 1008 pp.
IOTC (2004). Status of IOTC databases for tropical tunas. IOTC Secretariat, 1, 1–25.
IOTC (2005). Report of the Seventh Session of the IOTC Working Party on Tropical Tunas. IOTC 7th Working Party for Tropical Tuna, 1–48.
IOTC (2009). Report of the Twelfth Session of the Scientific Committee of the IOTC. IOTC-2009-SC-R[E], 1–190.
Johnson, R. A. and Wichern D. W. (1998). Applied Multivariate Statistical Analysis. Prentice Hall, Englewood Cliffs, NJ, 607pp.
Kimura, S., Kasai, A., Nakata, H., Sugimoto, T., Simpson, J. H. and Cheok, J. V. S (1997). Biological productivity of meso-scale eddies caused by frontal disturbances in the Kuroshio. ICES Journal of Marine. Science, 54, 179–192.
Kumari, B., Raman, M., Narain, A. and Sivaprakasam, T. E. (1993). Location of tuna resources in Indian waters using NOAA AVHRR data. International Journal of Remote Sensing, 14, 3305–3309.
Lan, K. W., Lee, M. A., Lu, H. J. Shieh, W. J., Lin, W. K., and Kao, S. C. (2011a). Ocean variations associated with fishing conditions of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic Ocean. ICES Journal of Marine Science, 68(6), 1063–1071.
Lan, K. W., Nishida, T., Lee, M. A. Lu, H. J., Huang, H. W., Chang, S. K. and Lan, Y. C. (2011b). Influence of the marine environment variability on the yellowfin tuna (Thunnus albacares) catch rate by the Taiwanese longline fishery in the Arabian Sea, with special reference to the high catch in 2004. Journal of Marine Science and Technology (accepted).
Lan, K. W., Kawamura, H., Lee, M. A., Lu, H. J., Shimada, T., Hosoda, K. and Sakaida, F. (2012). Relationship between albacore (Thunnus alalunga) fishing grounds in the Indian Ocean and the thermal environment revealed by cloud-free microwave sea surface temperature. Fisheries Research, 113, 1–7.
Lee, M. A., Hsiao, C. H., and Liao, C. H. (2002). The squid fishery oceanography in the NE waters of Taiwan - the fishing activity in relation to the oceanic features. The Proceedings of International Conferences on the tropical & subtropical Fisheries. National Taiwan Ocean University, Taiwan, 20pp.
Lee, M. A., Chang, Y., Sakaida, F. and Kawamura, H. (2005a). Validation of satellite-derived sea surface temperatures for waters around Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 16(5), 1189–1204.
Lee, P. F., Chen, I. C. and Tseng, W. N. (1999). Distribution patterns of three dominant tuna species in the Indian Ocean. 19th Intern. ERSI Users Conf., San Diego, CA, 10pp.
Lee, P. F., Chen, I. C. and Tseng, W. N. (2005c) spatial and Temporal Distribution Patterns of Bigeye Tuna (Thunnus obesus) in the Indian Ocean. Zoological Studies, 44(2), 206–270.
Lee, Y. C., Nishida, T. and Mohri, M. (2005b). Separation of the Taiwanese regular and deep tuna longliners in the Indian Ocean using bigeye tuna catch ratios. Fisheries Science, 71, 1256–1263.
Lehodey, P., Bertignac, M., Hampton, J., Lewis, A. and Picaut, J. (1997). El Nino Southern Oscillation and tuna in the western Pacific. Nature, 389, 715–718.
Lehodey, P., Andre, J.-M., Bertignac, M. et al. (1998). Predicting skipjack tuna forage distributions in the equatorial Pacific using a coupled dynamical bio-geochemical model. Fisheries Oceanography, 7, 317–325.
Lehodey, P., Senina, I., Sibert, J., and Hampton, J. (2008). SEAPODYM. V2: A Spatial ecosystem and Population dynamics model with parameter optimization providing a new tool for tuna management. CLS, Toulouse, France, PFRP,Univ. of Hawaii, SPC,Noumea, New Caledonia, 16 pp.
Lisan, Y. (2003). Variability of the depth of the 20°C isothermalong 6°N in the Bay of Bengal: its response to remote and local forcing and its relation to satellite SSH variability. Deep-Sea Research II, 50, 2285–2304.
Li, S. T. (2000). Multi-resolution spatio-temporal data mining for study of air pollutant regionalization. Thirty-three Annual Hawaii International Conference, HICSS-33.
Lu, H. J., Lee, K. T. and Liao, C. H. (1998). On the relationship between El Nino/Southern oscillation and South Pacific albacore. Fisheries Research, 39, 1–7.
Lu, H. J., Lee, K. T., Lin, H. L. and Liao, C. H. (2001). Spatio-temporal distribution of yellowfin tuna Thunnus albacares and bigeye tuna Thunnus obesus in the Tropical Pacific Ocean in relation to large-scale temperature fluctuation during ENSO episodes. Fisheries Science, 67, 1046–1052.
Luis, A. J. and Pandey, P. C. (2004). Relationship between surface atmospheric convergence over the Indian Ocean and Indian rainfall. Geophysical Research Letters, 31, L06208.
Luis, A. J. and Pandey, P. C. (2005). Characteristics of atmospheric divergence and convergence in the Indian Ocean inferred from scatterometer winds. Remote Sensing of Environment, 97, 231–237.
Malakoff, D. (2004). New Tools Reveal Treasures at Ocean Hot Spots. Science, 304(5674), 1104–1105.
Madhupratap, M., Kumar, S. P., Bhattathiri, P. M. A., Raghukumar, S., Nair, K. K. C. and Ramaiah, N. (1996). Mechanism of the biological response to winter cooling in the northeastern Arabian Sea. Letters to Nature, 384, 549–552.
Marsac, F. (2001). Climate and oceanographic indices appraising the environmental fluctuations in the Indian Ocean. IOTC Proceedings, 4, 293–301.
Marsac F (2008) Outlook of ocean climate variability in the West tropical Indian Ocean, 1997–2008. IOTC Proceedings, 11, 9pp.
Menard, F., Marsac, F., Bellier, E. and Cazelles, B. (2007). Climatic Oscillations and tuna catch rates in the Indian Ocean: a wavelet approach of time series analysis. Fisheries Oceanography, 16, 95–104.
Meyers, G.., Mcintosh, P., Pigpt, L. and Pook, M. (2007). The years of El Niño, La Niña, and interactions with the tropical Indian Ocean. Journal of Climate, 20, 2872–2880.
Miyake, M. P. Miyabe, N. and Nakano, H. (2004). Historical trends of tuna catches in the world. FAO Fisheries Technical Papers, 467, 1–74.
Mohri, M. and Nishida, T. (2000). Consideration on distribution of adult yellowfin tuna (Thunnus albacares) in the Indian Ocean based on Japanese tuna longline fisheries and survey information. Journal of National Fisheries University, 49 (1), 1–11.
Morlet, J., Arens, G.., Fourgeau, I. and Giard, D. (1982). Wave propagation and sampling theory. Geophysics, 47, 203–236.
Mueter, F. J., Broms, C., Drinkwater, K. E., Friedland, K. D., Hare, J. A., Hunt, G. L., Melle, W. and Taylor, M. (2009) Ecosystem responses to recent oceanographic variability in high-latitude Northern Hemisphere ecosystems. Progress in Oceanography, 81, 317–325.
Nakagome (1978). The study of relation between tuna and oceanography. Japanese Society of Fisheries Oceanography, 231–234.
Nishida, T. and Chen, D. G.. (2004). Incorporating spatial autocorrelation into the general linear model with an application to the yellowfin tuna (Thunnus albacares) longline CPUE data. Fisheries Research, 70, 265–274.
Nishida, T., Matsuura, H., Shiba, Y., Tanaka, M., Mohri, M. and Chang, S. K. (2005a). Did ecological anomalies cause 1993 and 2003-2004 high catches of yellowfin tuna (Thunnus albacares) in the western Indian Ocean? IOTC 7th Working Party Tropical Tuna, 27, 24–41.
Nishida, T., Mohri, M., Itoh, K. and Nakagome, J. (2005b). Study of bathymetry effects on the nominal hooking rates of yellowfin tuna (Thunnus albacares) and bigeye tuna (Thunnus obesus) exploited by the Japanese tuna longline fisheries in the Indian Ocean. IOTC Proceedings, 4, 191–206.
Okamoto, H., Chang, S. K., Yeh, Y. Y. and Hsu, C. C. (2004). Standardized Taiwanese longline CPUE for bigeye tuna in the Indian Ocean up to 2002 applying targeting index in the model. IOTC Proceedings, 7, 1–19.
Olson, D. B., Hitchcock, G.. L. and Mariano, A. J. et al. (1994). Life on the edge: marine life and fronts. Oceanography, 7(2), 52–60.
Ortega-García, S. and Lluch-Cota, S. E. (1996). Distribución de la abundancia de atún y su relación con la concentración de pigmentos fotosintéticos derivados de satélite en aguas al sur de México. Investigaciones Geográficas Boletín. Num. Especial 4. Instit. Geog. UNAM, Mexico.
O’Reilly, J. E., Maritorena, S., Mitchell, B. G.., Siegcl, D. A., Carder., K. L., Garver, S. A., Kahru, M. and McClain, C. (1998). Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research, 103(C11), 24937–24953.
Paul, B (1976). Marine plankton ecology. North-Hoodlan Publishing Company, 335.
Polovina, J. J., Howel, E., Kobayashi, D. R. and Seki, M. P. (2001). The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources. Progress in Oceanography, 49, 469–483.
Ridderinkhof, H. and de Ruijter, W. P. M. (2003). Moored current observations in the Mozambique Channel. Deep Sea Research Part II, 50, 1933–1955.
Rivera, N. A., Ray, S., Jensen, J. L., Chan, A. K. and Ayers, W. B. (2004). Detection of cyclic patterns using Wavelets: An example study in the Ormskirk Sandston, Irish Sea. Mathematical Geology, 36(5), 529-543.
Robinson, M. K., Bauer, R. A. and Schroeder, E. H. (1976). Atlas of the North Pacific Ocean monthly mean temperatures and mean salinities of the surface layer. Naval Oceanographic Office, Dept. Navy, Washington, D.C., 19 pp.
Royer, F., Fromentin, J. M., Farrugio, H. and Gaspar, P. (2005). Determing Bluefin tuna habitat through frontal features in the Mediterranean Sea. Collective Volume of Scientific Paper International Cmmission for The Conservation of Atlantic Tunas Cmmission Internationale Pour La Conservation Des Thonides De L’atlantique Comision International Para La Conservation Del Atun Atlantico, 58(4), 1275-1284.
Sarma, V. (2006). The influence of Indian Ocean Dipole (IOD) on biogeochemistry of carbon in the Arabian Sea during 1997–1998. Journal of Earth System Science, 115(4), 433–45.
Saji, N. H., Goswami, B. N., Vinayachandran, P. N. and Yamagata, T. (1999). A dipole mode in the tropical Indian Ocean. Nature, 401, 360–363.
Schick, R. S., Goldstein, J. and Lutcavage, M. E. (2004). Bluefin tuna (Thunnus thynnus) distribution in relation to sea surface temperature fronts in the Gulf of Maine (1994–96). Fisheries Oceanography, 13(4), 225–238.
Stequert, B. J. P. and Dean, J. M. (1996). Age and growth of yellowfin tuna, Thunnus albacares, from the western Indian Ocean, based on otolith microstructure. Fishery Bulletin, 94, 124–134.
Stenseth, N. C., Ottersen G, Hurrel J. W. and Belgrano, A. (2004). Marine Ecosystems and Climate Variation. New York: Oxford University Press, 266 pp.
Steinacher, M., Joos, F., Frolicher, T. L., Bopp, L., Cadule, P., Doney, S. C., Gehlen, M., et al. (2010) Projected 21th century decrease in marine productivity: a multi-model analysis. Biogeosciences, 7, 979–1005.
Stretta, J. M. (1991). Forecasting models for tuna fishery with aeroespatial remote sensing. International Journal of Remote Sensing, 12(4), 771–779.
Su, N. J., Sun, C. L., E.Punt, A. and Yeh, S. Z. (2008). Environmental and spatial effects on the distribution of blue marlin (Makaira nigricans) as inferred from data for longline fisheries in the Pacific Ocean. Fisheries Oceanography, 17(6), 432–445.
Suzuki, Z., Tomlinson, P. K. and Honma, M. (1978). Population structure of Pacific yellowfin tuna. Inter-American Tropical Tuna Commission Bulletin, 17(5), 273–441.
Tang, D. L., Kawamura, H. and Luis A. J. (2002). Short-term variability of phytoplankton blooms associated with a cold eddy in the northwestern Arabian Sea. Remote Sensing of Environment, 81, 28–89.
Tian, Y., Kidokoro, H., Watanabe, T. and Iguchi, N. (2008). The late 1980s regime shift in the ecosystem of Tsushima Warm Current in the Japan/East Sea: evidence from historical data and possible mechanisms. Progress in Oceanography, 77, 127–145.
Thompson, W. L. and Lee, D. C. (2002). A two-stage information-theoretic approach to modeling landscape-level attributes and maximum recruitment of Chinook salmon in the Columbia River Basin. Natural Recource Modeling, 15, 227–257.
Torrence, C. and Compo, G. P. (1998). A practical guide to wavelet analysis. Bulletin of the Americcm Meteorological Society, 79, 61–78.
Torres-Orozco E, Muhlia-Melo A, Trasvina A. and Ortega-Garcia, S. (2006). Variation in yellowfin tuna (Thunnus albacares) catches related to El-Niño-Southern Oscillation events at the enterance to the Gulf of California. Fishery Bulletin, 104, 197–203.
Tomczak, M. and Godfrey, J. S. (1994). Regional oceanography: An introduction. Pergamon, United Kingdom, 422 pp.
Tseng, C. T., Sun, C. L., Yeh, S. Z., Chen, S. C. and Su, W. C. (2010). Spatio-temporal distributions of tuna species and potential habitats in the Western and Central Pacific Ocean derived from multi-satellite data. International Journal of Remote Sensing, 31, 4543–4558.
Ueyanagi, S. (1969). Observations on the distribution of tuna larvae in the Indo-Pacific Ocean with emphasis on the delineation of the spawning areas of albacore, Thunnus alalunga. Bulletin Far Seas Fisheries Research Laboratory, (2), 177–256.
Wyrtki, K. (1973). Physical oceanography of the Indian Ocean. In “The Biology of the Indian Ocean.” (B. Zeitschel, and Gerlach, S. A. eds.) Spring-Verlag, New York, pp. 18–36.
Yeh, Y. M. and Chang S. T. (2009). CPUE Standardizations for Yellowfin Tuna Caught by Taiwanese Longline Fishery in the Indian Ocean Using Generalized Liner Model and Generalized Linear Mixed Model. IOTC Working Party on Tropical Tuna, Kenya, 11pp.
Yamagata, T., Behera, S. K., Rao, S. A., Guan, Z., Ashok, K. and Saji, H.N. (2003). Comments on "Dipoles, Temperature Gradient, and Tropical Climate Anomalies. Bulletin of the American Meteorological Society, 84:1418–1422.
Zainuddin, M., Kiyofuji, H., Saitoh, K. and Saitoh, S. (2006). Using multi-sensor satellite remote sensing and catch data to detect ocean hot spots for albacore (Thunnus alalunga) in the northwestern North Pacific. Deep-Sea Research II, 53, 419–431.
Zainuddin, M., Saitoh, K. and Saitoh S. I. (2008). Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data. Fisheries Oceanography, 17(2), 61–73.
Zagaglia, C. R., Lorenzzetti, J. A. and Stech, J. L, (2004). Remote sensing data and longline catches of yellowfin tuna (Thunnus albacares) in the equatorial Atlantic. Remote Sensing of Environment, 93, 267–281.
Zhang, C. I., Hollowed, A. B., Lee, J. B. and Kim, D. H. (2011). An IFRAME approach for assessing impacts of climate change on fisheries. ICES Journal of Marine Science, 68, 1318–1328..

沈世傑 (1993)。台灣魚類誌。國立台灣大學動物學系。

黃冠穎 (2005)。台灣地區降雨時序資料之小波分析。成功大學資源工程學系碩士論文,115pp。

黃昭欽 (2006)。遠洋鮪漁業現況。臺灣區鮪魚公會,12pp。

藍國瑋 (2007)。阿拉伯海黃鰭鮪漁況與環境變動特性之研究。國立台灣海洋大學環境生物與漁業科學學系碩士論文, 85pp。

謝佳樺 (2009)。利用遙測及漁獲資料偵測中西太平洋正鰹分佈熱區。國立台灣海洋大學環境生物與漁業科學學系碩士論文, 86pp。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top