跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/26 17:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:何蕙萍
研究生(外文):Hui-Ping Ho
論文名稱:線上房屋決策-模糊多準位多目標規劃方法
論文名稱(外文):House Selection in Internet Environment: A Fuzzy Multi-choice Goal Programming Approach
指導教授:張錦特張錦特引用關係古政元古政元引用關係
指導教授(外文):Ching-Ter ChangCheng-Yuan Ku
學位類別:博士
校院名稱:國立中正大學
系所名稱:資訊管理所暨醫療資訊管理所
學門:教育學門
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:英文
論文頁數:84
中文關鍵詞:模糊多準位多目標規劃線上房屋排序房仲業
外文關鍵詞:real estate agentsFuzzy multi-choice goal programmingInternet house ranking
相關次數:
  • 被引用被引用:2
  • 點閱點閱:679
  • 評分評分:
  • 下載下載:67
  • 收藏至我的研究室書目清單書目收藏:2
隨著網際網路的普及,購屋者的購屋行為也跟著改變。現今購屋者通常都會先利用網路工具的尋找符合需要的房子。雖然房仲網站能依照購屋者輸入的基本條件做房屋過濾,但現有的房仲網還無法處理購屋者的模糊購屋目標與條件。為了增加競爭力,房仲網應該提供更好的媒合機制、個人化的服務以及依購屋者偏好為潛在房屋的排序等功能,以提高購屋者的滿意度和最後購屋成交量。同時,為理解購屋者模糊購屋目標與條件,讓購屋者能設定滿意度指標也是必要的。本研究提出模糊多準位多目標規劃方法,並結合層級分析法作為購屋者線上購屋的決策輔助工具。模糊多準位多目標規劃方法能夠幫助購屋者,在考慮個別目標多準位與目標間模糊關係情況下,找出最適當的房屋。除此之外,購屋者還能為個人購屋條件設定權重,這些權重關係也會轉換至資料庫中作為搜尋準則。本研究提出的方法能依購屋者的購屋偏好衡量潛在房屋,並對這些房屋做排序,以幫助購屋者做出各方條件衡量加總後的最佳房屋決策。
The widespread use of the Internet has significantly changed the behavior of homebuyers. Using information technology, homebuyers can rapidly search for a house meeting their needs. Although online real estate agents can screen out certain houses according to the homebuyer’s requirements, the current online housing system has limited abilities, particularly regarding ranking of houses based on homebuyer’s ambiguous housing goals and fuzzy constraints. To increase competitiveness, online real estate agents should provide an efficient matching mechanism, personalized service and house ranking with the aim of increasing both homebuyers’ satisfaction and the number of successful real estate transactions. In order to comprehend the ambiguous housing goals and constraints generated by conflicting residential preferences, determining a satisfaction lever for each fuzzy goal and constraint is also indispensable. In this study, we present a Fuzzy multi-choice goal programming (FMCGP) method and integrate Analytical hierarchy process (AHP) method as a decision aid assisting homebuyers in selecting the appropriate house on the Internet. FMCGP will aid homebuyers to choose the suitable house based on multiple aspiration levels with vague goals’ relation consideration. In addition, homebuyers can specify their housing constraints with different priorities levels and the thresholds for the fuzzy queries that can be translated into precise queries for a regular relational database. This methodology evaluates the acceptable houses by giving preferential weights to them according to homebuyers’ preferences and returns a personalized online house ranking list so as to provide the utility-maximizing “perfect” house for homebuyers.
Abstract……………………………………………………………………………….I
摘要…………………………………………………………………………… ……II
Table of Contents……………………………………………………………… ……III
List of Tables…….…………….…………………………………………………….V
List of Figures…………………….……………………………………… …….VI
Chapter 1 Introduction...………………………………………………………………1
1.1 Background...……………………………………..…………….…………1
1.2 Research motivation and objectives…….…..….….………………………2
1.3 Organization of the dissertation…………...….….………………………..4
Chapter 2 Literature review ……………………………..……………………………5
2.1 Housing literature and housing criteria classification …………………5
2.2 Analytical hierarchy process …….……….… ….……………………….11
2.3 Goal Programming (GP) and the relative method ………..…………….13
2.4 Multi-choice goal programming (MCGP) approach…………...……….19
Chapter 3 Methodology ………………………………………………..…………….26
3.1 Data representation……………………………………………………….26
3.2 The proposed method…………………………………………………….27
3.3 Solution procedure……………………………………………………….34
Chapter 4 Design and implement of Housing decision support system…………….38
Chapter 5. Sensitivity analysis……………………………………………………….55
Chapter 6. Hypotheses and Lab experiment…………………………………………60
6.1 Hypotheses…………………………………………………………………60
6.2 Experimental design……………………………………………………….61
6.3 Experimental results……………………………………………………….62
Chapter 7. Conclusions………………………………………………………………66
Appendix A. Model formulation…………………………………………………….69
Appendix B. Questionnaire of AHP…………………………………………………72
Appendix C. Questionnaire after making decision with HDSS……………………..73
Reference……………………………………………………………………………..74
1.Aköz, O. and Petrovic, D., 2007, A fuzzy goal programming method with imprecise goal hierarchy, European Journal of Operational Research, 181(3), 1427-1433
2.Arimah B. C., 1992, “An empirical analysis of the demand for housing attributes in a third world city,” Land Economics, 366-379
3.Asberg, P., 1999,” Housing Decisions of Young Swedish Adults,” Journal of Housing Economics 8, 116–143
4.Baen, J. S. and Guttery R. S., 1997, “The coming downsizing of real estate: Implications of technology,” Journal of Real Estate Portfolio Management, 3, 1-18
5.Bond, M. T., Seiler, M. J., Seiler V. L., and Blake, B., 2000, “Uses of websites of effective real estate marketing,” Journal of Real Estate Portfolio Management, 6, 203-210
6.Bosc, P. and Pivert, O., 1995, “SQLf: A relational database language for fuzzy querying,” IEEE Transactions on Fuzzy Systems, 3, 1-17.
7.Buckles, B.P. and Petry, F.E., 1983, “Information-theoretic characterization of fuzzy relational database,” IEEE Transaction on Systems, Man and Cybernetics, 13, 74-77
8.Chang, C.-T., 2007, Multi-choice goal programming, Omega. The International Journal of Management Science, 35, 389-396
9.Chang, C.-T., 2008, Revised multi-choice goal programming, Applied Mathematical Modelling, 32(12), 2587-2595
10.Charnes, A. and Cooper, W. W., 1961, Management Model and Industrial Application of Linear Programming, vol. 1, Wiley, New York, 1961
11.Chau, C.K.; Yung, H.K.; Leung, T.M.; Law, M.Y., 2006, ”Evaluation of relative importance of environmental issues associated with a residential estate in Hong Kong,” Landscape and Urban Planning 77(1-2), 67-79
12.Chen, L.-H. and Tsai, F.-C., 2001, Fuzzy goal programming with different importance and priorities, European Journal of Operational Research, 133(3), 548-556
13.Cheng, C.-B.; Chan, C.-C. H.; Lin, K.-C., 2006, “Intelligent agents for e-marketplace: Negotiation with issue trade-offs by fuzzy inference systems,” Decision Support Systems, 42, 626-638
14.Chiang, D.A.; Louis, R.C.; Hsieh, N.C., 1997, “Fuzzy information in fuzzy relational database,” Fuzzy Sets and System, 92, 1-20
15.Davis, F. D., 1989, Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology, MIS Quarterly, 13(3), 319-340.
16.Earnhart, D., 2001, “Combining revealed and stated preference methods to value environmental amenities at residential locations,” Land Economics, 77, 12-29
17.Fan, Z. P., Ma, J. and Zhang, Q., 2002, “An approach to multiple attribute decision making based on fuzzy preference information on alternatives,” Fuzzy Sets and System, 131, 101-106.
18.Flavell, R. B., 1976, A new goal programming formulation, Omega 4(6), 731-732
19.Ford, J. S., Rutherford, R. C., Yavas, A., 2005, “The effects of the internet on marketing residential real estate,” Journal of Housing Economics, 14, 92-108
20.Freiden, J. B. and Bible, D. S., 1982, “The home purchase process: measurement of evaluative criteria through pairwise measures,” Academy of Marketing Science. Journal, 10, 359-376
21.Ganjavi, O., Aouni, B., Wang, Z., 2002, “Technical note on balanced solutions in goal programming, compromise programming and reference point method,” Journal of the Operational Research Society, 53, 927–929.
22.Ghasemzadeh, F. and Archer, N.P., 2000, Project portfolio selection through decision support, Decision Support Systems, 29(1), 73-88
23.Greening, L. A. and Bernow, S., 2004, “Design of coordinated energy and environmental policies: use of multi-criteria decision-making,” Energy Policy 32, 721-735
24.Hamilton, J. and Selen, W., 2004, “Enabling real estate service chain management through personalized Web interfacing using QFD,” International Journal of Operations & Production Management, 24, 270-288
25.Ignizio, J. P., 1976, Goal programming and extension, Lexington Books, Lexington, MA.
26.Ioannides, Y. M., 2002, “Residential neighborhood effects,” Regional Science and Urban Economics 32, 145-165
27.Iyer, A. V. and Bergen M. E., 1997, Quick Response in Manufacturer-Retailer Channels, Management Science, 43(4), 559-570
28.Juan, Y.-K., Shih, S.-G. and Perng, Y.-H., 2006, “Decision support for housing customization: A hybrid approach using case-based reasoning and genetic algorithm,” Expert Systems With Applications 31(1), 83-93
29.Kaufman, P. C. and Corrigan, A., 1987, Understanding Buying & Selling a House, Longmeadow Press, Stamford, CT, USA
30.Kettani, O., Aouni, B. and Martel, J.-M., 2004, The double role of the weight factor in the goal programming model, Computers & Operations Research, 31 (11), 1833-1845
31.Kim, J. H, Pagliara, F. and Preston, J., 2005a, “The intention to move and residential location choice behaviour,” Urban Studies 42(9), 1621-1636
32.Kim, S.-S., Yang, I.-H., Yeo, M.-S., Kim and K.-W., 2005b, “Development of a housing performance evaluation model for multi-family residential buildings in Korea,” Building and Environment 40, 1103-1116
33.King, T. A., 1976, “The demand for housing: a lancastrian approach,” Southern Economic Journal, 3, 1077-1087
34.Kummerow, M. and Lun, J. C., 2005, “Information and communication technology in the real estate industry: productivity, industry structure and market efficiency,” Telecommunications Policy, 29, 173-190
35.Levy, D. and Lee, C. K.-C., 2004, “The influence of family members on housing purchase and decisions,” Journal of Property Investment & Finance 22, 320-338
36.Lin, C-C, 2004, “A weighted max–min model for fuzzy goal programming,” Fuzzy Sets and Systems, Vol. 142, 407-420
37.Lindberg, E., Garling, T. and Montgomery, H., 1989, “Belief-value structures as determinants of consumer behaviour: a study of housing preferences and choice,” Journal of Consumer Policy 12, 119-137
38.Ma, Z.M. and Yan, L., 2007, “Generalization of strategies for fuzzy query translation in classical relational databases,” Information and Software Technology, 49, 172-180
39.Mohanty and Bhasker, 2005, “Product classification in the Internet business-a fuzzy approach,” Decision Support Systems, 38, 611-619
40.Narasinhan, R., 1980, “Goal programming in a fuzzy environment,” Decision Science, 11, 325-338
41.Natividade-Jesus, E.; Coutinho-Rodrigues, J.; Antunes, C. H., 2007, “A multicriteria decision support system for housing evaluation,” Decision Support Systems 43(3), 779-790
42.Ortúzar, J. d. D. and Rodríguez, G., 2002, “Valuing reductions in environmental pollution in a residential location context,” Transportation Research Part D: Transport and Environment 7, 407-427
43.Rapaport, C., 1997, “Housing demand and community choice: an empirical analysis,” Journal of Urban Economics 42, 243-260
44.Rasmy, M. H.; Lee, S. M.; Abd EI-Wahed, W. F.; Ragab, A. M.; EI-Sherbiny, M. M, 2002, “An expert system for multiobjective decision making: application of fuzzy linguistic preferences and goal programming,” Fuzzy Sets and Systems, 127, 209-220
45.Romero, C., 1991. Handbook of Critical Issues in Goal Programming. Pergamon Press, Oxford.
46.Romero, C., 2001, Extended lexicographic goal programming: a unifying approach, Omega 29(1), 63-71
47.Romero, C., 2004, A general structure of achievement function for a goal programming model, European Journal of Operational Research, 153(3), 675-686
48.Saaty, T. L., 1980, The analytical hierarchy process: planning, priority setting, resource allocation. New York: McGraw-Hill.
49.Shenoi, S. and Melton, A., 1999, “Proximity relations in the fuzzy relational database model,” Fuzzy Sets and Systems, 100, 51-62
50.Stull, W. J., 1970, “Community Environment, Zoning, and the Market Value of Single – Family Home,” Journal of Law and Economic, 18, 535-557
51.Tamiz, M., Jones, D. F., Romero, C., 1998, “Goal programming for decision making: an overview of the current state-of-the-art,” European Journal of Operational Research, 111, 569-581
52.Tiwari, R. N., Dharmar, S. and Rao, J. R., 1987, “Fuzzy goal programming - An additive model,” Fuzzy Sets and Systems, 24, 27-34
53.Uría, M. V. R., Caballero, R., Ruiz, F., and Romero, C., 2002, “Meta-goal programming,” European Journal of Operational Research 136, 422-429
54.VanderHart, P. G., 1998, ” The Housing Decisions of Older Households: A Dynamic Analysis,” Journal of Housing Economics 7, 21–48
55.Vogt, C. A. and Marans, R. W., 2004, “Natural resources and open space in the residential decision process: a study of recent movers to fringe counties in southeast Michigan,” Landscape and Urban Planning 69, 255-269
56.Wang, H.-F., 2004, Multicriteria Decision Analysis-From Certainty to Uncertainty, Tsang-Hai
57.Yazici, A.and Cibiceli, D., 1999, “An access structure for similarity-based fuzzy databases,” Information Sciences, 115, 137-163
58.Zumpano, L. V., Johnson, K. H., Anderson, R. I., 2003, ” Internet use and real estate brokerage market intermediation,” Journal of Housing Economics, 12, 134-150
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top