跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/14 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:謝明宗
研究生(外文):Ming-Tsung Hsieh
論文名稱:干擾觀測器架構應用在半導體製造批次控制
論文名稱(外文):Output Disturbance Observer Structure Applied to Run-to-Run Control for Semiconductor Manufacturing
指導教授:李安謙
指導教授(外文):An-Chen Lee
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:英文
論文頁數:116
中文關鍵詞:干擾觀測器半導體製造批次控制
外文關鍵詞:Output Disturbance Observer StructureRun-to-Run-controlmetrology delayEWMArobustsemiconductor manufacturing
相關次數:
  • 被引用被引用:1
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要目的是提出應用干擾觀測器(Output Disturbance Observer,ODOB)架構設計一套批次(Run-to-Run)控制器。近年來,批次控制在半導體製造的應用相當地廣泛並實現在許多製程上,如蝕刻、微影、化學機械研磨等製程。在這些批次控制器中,EWMA 控制器,Double EWMA控制器和PCC控制器被半導體工業廣為採用。而EWMA控制器,Double EWMA控制器,PCC控制器和ODOB控制器調整參數之間的關係將在本文中分析與討論。只要滿足這些關係,這些控制器將有相同的效能。通常半導體製程的輸入-輸出模型大多假設為一線性靜態的模型。但是,製程的實驗數據經常不夠充足來建立製程的模型,所以在製程上,模型誤差是一直存在的問題。而量測延遲在半導體製程上亦是無法避免的。然而,模型誤差和量測延遲將影響ODOB控制器的穩定度和效能。本文即設計一套強健的批次控制器並分析ODOB控制器的穩定條件,同時考慮量測延遲的問題。為了滿足批次控制的需求,我們提供調整控制器參數的方法來補償製程所產生的干擾,包括偏移、漂移現象,以及製程可能會發生的模型誤差並處理量測延遲的問題。
The purpose of this thesis aims to present the design of the Run-to-Run (RtR) controller by using the Output Disturbance Observer (ODOB) structure. In recent years, RtR control has been widely used and realized in semiconductor manufacturing, such as etch, photolithography and CMP processes. Among the RtR controllers, the EWMA controller, the Double EWMA and the PCC controller are widely adopted in the semiconductor industry. The relations of the tuning parameters among the EWMA controller, the Double EWMA controller, the PCC controller and the Output Disturbance Observer (ODOB) controller are discussed in this thesis. These controllers have the same performance if the tuning parameters satisfy the relations. The process input-output model is usually assumed as a linear static model. But the experimental data in the process are not often sufficient enough to establish the process model, so the model mismatch will always exist in the process. Furthermore, the metrology delay can not be avoided in semiconductor manufacturing. The stability and performance of the ODOB controller are influenced by the model mismatch and metrology delay. In this thesis, one designs a robust ODOB controller and analyzes the robust stable conditions for the ODOB controller and simultaneously considers the metrology delay. To meet the requirements of the RtR control, one also provides the method to tune the optimal parameters to compensate for process disturbances, including the shifts, drifts, and model errors.
摘  要 i
ABSTRACT ii
TABLE OF CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES ix
Chapter 1 General Introduction 1
1.1 Purpose and Motivation 1
1.2 Literature Review 3
1.3 Methodology 5
1.4 Organizations of the thesis 5
Chapter 2 Run-to-Run Control 7
2.1 Semiconductor manufacturing 7
2.2 Process Disturbance 8
2.3 Run-to-Run Controller 9
2.3.1 EWMA Controller 11
2.3.2 PCC Controller 12
2.3.3 Double EWMA Controller 13
Chapter 3 Disturbance Observer Structure 15
3.1 Introduction 15
3.2 Internal Stability Analysis 18
3.3 Run-to-Run DOB structure 19
3.4 Particular Q-filter structure for APC 24
3.4.1 First order Q-filter 24
3.4.2 Second order Q-filter 27
3.4.3 Third order Q-filter 30
3.5 EWMA , Double EWMA and PCC controller represented in the ODOB structure 31
3.5.1 The relation between EWMA controller and ODOB controller 33
3.5.2 The relation between Double-EWMA controller, PCC controller and ODOB controller 34
Chapter 4 The Stability of the ODOB controller 37
4.1 Stability of the ODOB controller without metrology delay 38
4.1.1 Stability of the PCC controller 42
4.1.2 Stability of the Double EWMA controller 47
4.2 Stability of the ODOB controller with metrology delay 49
4.2.1 Delay of one run 50
4.2.2 Delay of two runs 53
4.3 Stability of the ODOB controller without metrology delay (the state-space method) 56
4.4 Stability of the ODOB controller with metrology delay (the state-space method) 58
4.4.1 Delay of one run (the state-space method) 59
4.4.2 Delay of two runs (the state-space method) 60
Chapter 5 Design of the ODOB controller 62
5.1 ODOB controller design for robustness and performance 62
5.2 Optimal parameters of the ODOB controller without metrology delay (Method 1) 65
5.3 Optimal parameters of the ODOB controller without metrology delay (Method 2) 75
5.3.1 Optimal parameter of the first order Q-filter 75
5.3.2 Optimal parameters of the second order Q-filter 78
5.4 Optimal parameters of the ODOB controller with metrology delay 84
5.4.1 Delay of one run 87
5.4.2 Delay of two runs 93
5.5 Optimal parameters of the ODOB controller with and without metrology delay (Method 3) 99
Chapter 6 Conclusion and Future work 107
6.1 Conclusion 107
6.2 Future work 107
Reference 109
Appendix I 112
Appendix II 116
[1] E. Sachs, A. Hu, and A. Ingolfsson, “Run by Run Process Control: Combining SPC and Feedback Control,” IEEE Transactions on Semiconductor Manufacturing, vol. 8, no. 1, pp. 26-43, Feb. 1995.
[2] G. E. Box and M. Jenkins, “Time Series Analysis – Forecasting and Control,” Oakland, CA: Holden-Day, 1976.
[3] S. Adivikolanu and E. Zafiriou, “Extensions and Performance/Robustness Tradeoffs of the EWMA Run-to-Run Controller by Using the Internal Model Control Structure,” IEEE Transactions on Electronics Packaging Manufacturing, vol.23, no.1, pp. 56-68, Jan. 2000.
[4] A. Chen and R.-S. Guo, “Age-Based Double EWMA Controller and Its Application to CMP Processes,” IEEE Transactions on Semiconductor Manufacturing, vol. 14, no. 1, pp. 11-19, Feb. 2001.
[5] J. Wang, Q. He, S. Qin, C. Bode, and M. Purdy, “Recursive Least Squares Estimation for Run-to-Run Control With Metrology Delay and Its Application to STI Etch Process,” IEEE Transactions on Semiconductor Manufacturing, vol. 18, no. 2, pp. 309-319, May. 2005.
[6] S. Adivikolanu and E. Zafiriou, “Internal Model Control Approach to Run-to-Run Control for Semiconductor Manufacturing,” Proceedings of the American Control Conference Albuquerque, New Meixco, June. 1997.
[7] Michael Quirk, Julian Serda, “Semiconductor Manufacturing Technology,” Pearson Education Taiwan Ltd, 2005.
[8] T. Umeno and Y. Hori, “Robust Speed Control of DC Servomotors Using Modern Two Degrees-of-Freedom Controller Design,” IEEE Transactions on Industrial Electronics, vol. 38, No.5, Oct. 1991.
[9] T.Umeno, Tomoaki K., and Y. Hori, “Robust Servosystem Design with Two Degrees of Freedom and its Application to Novel Motion Control of Robot Manipulators,” IEEE Transactions on Industrial Electronics, vol. 40, no.5, Oct. 1993
[10] K. Ohishi et al., “Microprocessor-controlled DC motor for load-in-sensitive position servo system,” IEEE Transactions on Industrial Electronics, vol. IE-34, pp.44-49, 1987.
[11] Y.Choi, W. K.Chung, and Y.Youm, “Disturbance Observer in Frameworks,” Proc. of IEEE IECON Conference, 1996
[12] Richard Paul Good, “The stability and Performance of the EWMA and Double-EWMA Run-to-Run Controllers with Metrology Delay,” the dissertation, The University of Texas at Austin, August 2004.
[13] J. Stefani and S. W. Butler, “Application of predictor corrector control to polysilicon gate etching,” in Proc. Amer. Control Conf., San Francisco, CA, June. 1993, pp. 3003-3007.
[14] E. Del Castillo, “Long run and transient analysis of a double EWMA feedback controller,” IIE Transactions, vol. 31, 1157-1169, 1999.
[15] S. Bulter and J. Stefani, “Supervisory Run-to-Run Control of Polysilicon Gate Etch Using In Situ Ellipsometry,” IEEE Transactions on Semiconductor Manufacturing, vol. 7, no. 2, May 1994.
[16] E.I. Jury, “Theory and Application of the z-transform Method,” Huntington, NY: R.E. Krieger Publishing Co., Inc., 1973.
[17] C. L. Philips and H. T. Nagle, “Digital Control System Analysis and Design,” Prentice Hall Inc., New Jersey, 1995.
[18] J. Moyne, E. del Castillo, and A. M. Hurwitz, “Run-to-Run Control in Semiconductor Manufacturing. Boca Raton,” FL: CRC Press, 2001.
[19] K. Zhou, and J. C. Doyle, “Essential of Robust Control,” Prentice-Hall, Inc. 1998, ISBN: 0-13-525833-2
[20] K. Ogata, “Discrete-time Control Systems,” Prentice-Hall, Inc. 1987, ISBN: 0-13-216227-X
[21] D. S. Boning, W. P. Moyne, T. H. Smith, J. Moyne, R. Telfeyan, A. Hurwitz, S. Shellman, and J. Taylor, “Run by Run control of chemical mechanical polishing,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, part c, vol. 19, no. 4, October 1996.
[22] T. Smith, D. Boning, J. Stefani, and S. Bulter, “Run by Run Advanced Process Control of Metal Sputter Deposition,” IEEE Transactions on Semiconductor Manufacturing, vol. 11, no. 2, May 1998
[23] E. S. Hamby, P. T. Kabamba, and P. P. Khargonekar, “A Probabilistic Approach to Run-to-Run Control,” IEEE Transactions on Semiconductor Manufacturing, vol. 11, no. 4, November 1998.
[24] A. Ingolfsson and E. Sachs, “Stability and Sensitivity of an EWMA controller,” J. Quality Technology., vol. 25, no. 4, pp. 271-287, 1993.
[25] E. D. Castillo and J. Y. Yeh, “An Adaptive Run-to-Run Optimizing controller for linear and nonlinear semiconductor processes,” IEEE Transactions on Semiconductor Manufacturing, vol. 11, no. 2, pp. 285-277, May 1998.
[26] X. A. Wang and R. L. Mahajan, “Artificial Neural Network Model-Based Run-to-Run Process Controller,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part C, vol. 19, no. 1, January 1996.
[27] S. T. Tseng, R. J. Chou, and S. P. Lee, “A study on a multivariate EWMA controller,” IIE Transaction, vol. 34, pp. 541-549, 2002.
[28] R. P. Good and S. J. Qin, “On the Stability of MIMO EWMA Run-to-Run Controllers With Metrology Delay,” IEEE Transactions on Semiconductor Manufacturing, vol. 9, no. 2, pp. 78-86, February 2006.
[29] J. S. Baras and N. S. Patel, “Designing Response Surface Model-Based Run-by-Run Controllers: A Worst Case Approach,” IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part C, vol. 19, no. 2, pp.98-104, April 1996.
[30] E. D. Castillo and R. Rajagopal, “A multivariate double EWMA process adjustment scheme for drifting processes,” IIE Transactions, vol. 34, pp. 1055-1068, March 2002.
[31] J. Wang and S. J. Qin, “EWMA, Kalman filter and recursive least squares relationships and modifications,” The Texas-Wisconsin Modeling and Control Consortium Spring Meeting, Austin Texas, 2003.
[32] J. V. Beck and K. J. Arnold, “Parameter Estimation in Engineering and Science,” New York, Wiley, 1977.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊