跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.131) 您好!臺灣時間:2026/01/16 02:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張秉宸
研究生(外文):Ping-Chen Chang
論文名稱:應用類神經網路與支援向量機建構多變量管制圖非隨機樣式之辨識系統
論文名稱(外文):Multivariate Control Chart Pattern Recognition using Artificial Neural Network and Support Vector Machine
指導教授:鄭春生鄭春生引用關係
指導教授(外文):Chuen-Sheng Cheng
學位類別:碩士
校院名稱:元智大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:76
中文關鍵詞:非隨機樣式多變量製程管制類神經網路支援向量機區別分析
外文關鍵詞:non-random patternsmultivariate process controlartificial neural networksupport vector machinediscriminant analysis
相關次數:
  • 被引用被引用:5
  • 點閱點閱:491
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:1
單變量蕭華特管制法 (univariate Shewhart control chart) 常被用來診斷製程中是否存在可歸屬原因所造成之變異。若製程存在可歸屬原因,則管制圖上之管制統計量會超出管制界限或呈現特定之非隨機樣式。管制圖中常見之非隨機樣式包括:趨勢樣式、偏移樣式、混合樣式與週期性樣式等。但在一些製程管制中,我們必須使用多變量管制圖 (multivariate control chart) 來同時監控數個彼此間具有相關性之品質特性。因此,辨認多變量管制圖中之非隨機樣式也是多變量製程管制中的一個重要研究議題。如果能夠正確辨識出非隨機樣式,將可縮小判斷製程可歸屬原因之範圍,對於規劃改善對策有所助益。

本研究之主要目的是使用類神經網路與支援向量機,建構一個能偵測與辨識多變量管制圖中之非隨機樣式的辨識系統,作為實施矯正措施及改善產品品質的重要依據。本研究首先探討多變量管制圖之特性,藉以了解多變量管制圖之統計量與不同相關性係數之對應關係。其次,研究中以類神經網路與支援向量機為基礎,建構出之多變量非隨機樣式辨識系統。研究結果顯示類神經網路與支援向量機之辨識績效並無明顯差異,但皆較傳統多變量區別分析為佳。

本研究亦提出兩種不同方式之辨識程序,用以改善非隨機樣式分類之效益。程序一是以一個階段之系統架構,同時將正常數據與非隨機樣式進行分類。程序二則為一個兩階段之系統架構。第一階段用以判斷製程中是否出現非隨機樣式,第二階段是將非隨機樣式進行分類。實驗結果顯示,本研究所提出之程序二可以對非隨機樣式有更佳之辨識能力。

最後,在敏感度分析中,針對類神經網路與支援向量機之系統參數與訓練樣本進行測試。由實驗結果發現,分類器對於參數的調整或訓練樣本結構之改變,都能夠呈現穩健的辨識績效。
In the past, univariate Shewhart control charts have been widely used to determine whether assignable causes of process variation are presented. Control chart pattern recognition is an important aspect in the application of control charts. The presence of non-random patterns indicates that a process is affected by assignable causes, and corrective actions should be taken. A particular non-random pattern is often associated with a set of assignable causes. Identification of non-random patterns can greatly narrow the set of possible causes that must be investigated, and thus the diagnostic search could be reduced in length.

A recent research indicated that non-random patterns may also occur in multivariate control charts. Therefore, the pattern recognition of multivariate control chart is also an important research issue in multivariate process control. The purpose of this research was to investigate the feasibility of applying statistical learning algorithms for multivariate control chart pattern recognition. In this research, we considered two recognizers based on artificial neural network (ANN) and support vector machine (SVM). Furthermore, we used discriminant analysis as a baseline for comparison. The results showed that the performances of ANN and SVM were similar in classifying patterns of multivariate control charts. Both ANN and SVM can perform significantly better than discriminant analysis.

In addition, two procedures were developed and compared in this research. The first procedure was used to recognize and classify both random data and non-random patterns. The second procedure was a two-stage approach. At the first stage, the ANN-based and SVM-based classifiers can be used to detect whether non-random patterns of process are presented. The second stage was to classify the types of non-random patterns. Results from our experiment showed that the second procedure performed better than the first procedure.

Finally, this research investigated the effects of changing the parameters of ANN and SVM. The results exhibited that ANN-based and SVM-based classifiers are quite robust against changing of parameters.
中文摘要..................................................i
英文摘要................................................iii
誌謝......................................................v
目錄.....................................................vi
表目錄.................................................viii
圖目錄...................................................xi

第一章 緒論.............................................1
1.1 研究背景與動機...................................1
1.2 研究目的.........................................2
1.3 研究範圍.........................................5
1.4 研究方法與步驟...................................5

第二章 文獻探討.........................................7
2.1 管制圖之非隨機樣式...............................7
2.2 類神經網路偵測管制圖非隨機性樣式之應用..........12
2.3 支援向量機偵測管制圖非隨機性樣式之應用..........13

第三章 研究方法........................................15
3.1 多變量統計製程管制法............................15
3.2 以類神經網路為基礎之分類器......................26
3.3 以支援向量機為基礎之分類器......................28
3.4 區別分析........................................33
第四章 非隨機樣式之辨識系統............................35
4.1 非隨機樣式數據之模擬............................35
4.2 類神經網路之架構................................38
4.3 支援向量機之架構................................41

第五章 效益評估........................................43
5.1 效益評估指標....................................43
5.2 偵測效益之評估結果..............................44
5.2.1 辨識程序一之測試結果...............................44
5.2.2 辨識程序二之測試結果...............................54
5.2.3 個別變量為不同樣式之測試...........................63
5.3 敏感度分析......................................67
5.3.1 類神經網路之系統參數敏感度分析.....................67
5.3.2 支援向量機之系統參數敏感度分析.....................68
5.3.3 訓練樣本之敏感度分析...............................69

第六章 結論與未來研究..................................72
6.1 結論............................................72
6.2 未來研究........................................73

參考文獻.................................................74
1.Cheng, C. S., “A neural network approach for the analysis of control chart patterns,” International Journal of Production Research, 35, 3, 667-697 (1997).
2.Chih, W. H., and Rollier D. A., “Diagnostic characteristics for bivariate pattern recognition scheme in SPC,” International Journal of Quality & Reliability Management, 11, 53-66 (1992).
3.Chih, W. H., and Rollier D. A., “A methodology of pattern recognition schemes for two variables in SPC,” International Journal of Quality & Reliability Management, 12, 86-107 (1995).
4.Chinnam, R. B., “Support vector machines for recognizing shifts in correlated and other manufacturing processes,” International Journal of Production Research, 40, 4449-4466 (2002).
5.Fausett, L., Fundamentals of Neural Networks, Prentice-Hill, Inc., New Jersey (1994).
6.Fletcher, R., Practical methods of optimization, Wiley, New York (2000).
7.Guh, R. S., and Tannock, J. D. T., “A neural network approach to characterize pattern parameters in process control charts,” Journal of Intelligent Manufacturing, 10, 449-462 (1999a).
8.Guh, R. S., and Tannock, J. D. T., “Recognition of control chart concurrent patterns using a neural network approach,” International Journal of Production Research, 37, 1743-1765 (1999b).
9.Guh, R. S., and Hsieh, Y. C., “A neural network based model for abnormal pattern recognition of control charts,” Computers & Industrial Engineering, 36, 97-108 (1999).
10.Hassan, A., Baksh, M., Shaharoun, A. M., and Jamaluddin, H., “Improved SPC chart pattern recognition using statistical features,” International Journal of Production Research, 41, 1587-1603 (2003).
11.Hotelling, H., “Multivariate quality control-illustrated by the air testing of sample bombsights,” in Techniques of Statistical Analysis, eds. C. Eisenhart, M. W, Hastay and W. A. Wallis, New York : McGraw –Hill, 111-184, (1947).
12.Hsu, C. W., and Lin, C. J., “A comparison of methods for multiclass support vector machines,” IEEE Transactions on Neural Networks, 13, 415-425 (2002).
13.Hush, D. R., and Horne, B. G., “Progress in supervised neural networks,” IEEE Signal Processing Magazine, January, 8-39 (1993).
14.Hush, D. R., Salas, J. M., and Horne, B. G., “Error surfaces for multi-layer perceptrons,” IEEE Transactions on System, Man and Cybernetics, 22, 1152-1161 (1992).
15.Jang, K. Y., Yang, K., and Kang, C., “Application of artificial neural network to identify non-random variation pattern on the run chart in automotive assembly process,” International Journal of Production Research, 41, 6, 1239-1254 (2003).
16.Johnson, R. A., and Wichern, D. W., Applied Multivariate Statistical Analysis, Prentice Hall, NJ (2002).
17.Kumar, S., Neural Network: A Classroom Approach, McGraw Hill, New York (2005).
18. Mason, R. L., Chou, Y. M., Sullivan, J. H., Stoumbos, Z. G., and Young, J. C., “Systematic patterns in charts,” Journal of Quality Technology, 35, 1, 47-58 (2003).
19.Minitab. Minitab 14.0 User’s Guide. Minitab Inc (2004).
20.Montgomery, D. C., Introduction to Statistical Quality Control, Wiley, New York (2005).
21.Nelson, L. S., “The Shewhart control chart-tests for special cause,” Journal of Quality Technology, 16, 4, 237-239 (1984).
22.NeuralWare Professional II/Plus. Neural Computing: A Technology Handbook for Professional II/Plus and NeuralWorks Explorer. Pittsburgh: NeuralWare, Inc (1997).
23.Pacella, M., Semeraro, Q., and Anglani, A., “Adaptive resonance theory-based neural algorithms for manufacturing process quality control,” International Journal of Production Research, 42, 4581-4607 (2004).
24.Perry, M. B., Spoerre, J. K., and Velasco, T., “Control chart pattern recognition using back propagation artificial neural networks,” International Journal of Production Research, 39, 15, 3399-3418 (2001).
25.Pham, D. T., and Chan, A. B., “Control chart pattern recognition using a new type of self-organization neural network,” Proceedings of the IMechE, Part I, Journal of Systems and Control Engineering, 212, 115-127 (1998).
26.Pham, D. T., and Chan, A. B., “Unsupervised adaptive resonance theory neural networks for control chart pattern recognition,” Proceedings of the Institution of Mechanical Engineers, Part B, 215, 59-67 (2001).
27.Pham, D. T., and Wani, M. A., “Feature-based control chart pattern recognition,” International Journal of Production Research, 35, 1875-1890 (1997).
28.Ribeiro, B., “Support vector machines for quality monitoring in a plastic injection molding process,” IEEE Transactions on Systems, Man, and Cybernetics- Part C: Applications and Reviews, 35, 401-410 (2005).
29.Rodriguez, J. J., Alonso, C. J., and Maestro, J. A., “Support vector machines of interval-based features for time series classification,” Knowledge-Based Systems, 18, 171-178 (2005).
30.Runger, G. C., Alt, F. B., and Montgomery, D. C., “Contributors to a multivariate statistical process control signal,” Communications in Statistics- Theory and Methods, 25, 2203-2213 (1996).
31.Statistica. Statistica Data Miner. OK: Stat Soft, Inc (2005).
32.Tan, P. N., Steinbach, M., and Kumar, V., Introduction to Data Mining, Addison-Wesley, Boston (2006).
33.Vapnik, V. N., Statistical Learning Theory, Wiley, New York (1998).
34.Vapnik, V. N., The Nature of Statistical Learning Theory, Springer, New York (2000).
35.Western Electric Company, Statistical Quality Control Handbook, Indiana: Western Electric Co. Inc, Indianapolis (1958).
36.Zorriassatine, F., and Tannock, J. D. T., “A review of neural networks for statistical process control,” Journal of Intelligent Manufacturing, 9, 209-224 (1998).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊