跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.14) 您好!臺灣時間:2025/12/27 10:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李明聰
研究生(外文):Ming Cong Li
論文名稱:以溶膠-凝膠法製備奈米介孔氧化鎢
論文名稱(外文):Synthesis of Mesoporous Tungsten Oxide by Sol-gel Method
指導教授:張莉毓
指導教授(外文):Lay Gaik Teoh
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:71
中文關鍵詞:氧化鎢溶膠-凝膠法三嵌段兩性共聚物
外文關鍵詞:tungsten oxidesol-gel methodblock copolymer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:310
  • 評分評分:
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
奈米材料有許多不同於一般尺度材料之特性,而介孔材料相較於一般奈米材料具有尺寸大小均勻、比表面積大特性,而使得感測器的靈敏度大為提升,因此近年來已成為重要的研究課題。本研究利用三嵌段兩性共聚物作為天然模板,WCl6 為原料,利用溶膠-凝膠法製備高比表面積奈米介孔氧化鎢,探討以三嵌段兩性共聚物濃度、煆燒溫度與加水反應等合成條件對奈米介孔氧化鎢之影響。並以熱重分析、X-ray繞射分析、穿透式電子顯微鏡及氮氣吸脫附曲線分析材料微結構及比表面積。
實驗結果顯示,本實驗所合成之介孔氧化鎢,係使用三嵌段兩性共聚物F108經300 ~ 400 ℃煆燒後,獲得扭曲之 monoclinic 結構,而於煆燒溫度 300 °C 時,介孔氧化鎢有高的比表面積 129.5 m2/g,而且其熱穩定度能維持到 350 °C。三嵌段兩性共聚物添加量對試樣介孔結構影響尤其顯著,當從0.1改變至1 g時,經煆燒溫度300℃,其比表面積從67.5增加至124.7 m2/g。粉末之結晶性亦會隨煆燒溫度增加而提高,煆燒溫度300 ~ 400 ℃,其晶粒大小為 6 ~ 12 nm。
此外,反應系統中水濃度的含量亦會影響粉末之結晶性,經由XRD分析可知,未取代原本酒精溶液(0 % 水)其結晶性較為有取代原本酒精溶液(25 %、50 % 水)差,且取代量愈多其結晶性愈佳,而由BET分析顯示其比表面積隨著水取代量愈多則愈小,以煆燒溫度300 ℃ 為例,水取代量從0 % ~ 50 % 時,其比表面積從124.7縮小至48.12 m2/g,平均孔徑從7.79 增加到 14.098 nm。
Nanomaterials have unique properties in comparison with powder materials. Mesostructured materials with tailored pore structures and high surface areas in order to improve sensitivity have gathered increasing attention in recent years. In this study, mesoporous WO3 was prepared by sol-gel process and the synthesis was accomplished by using block copolymer as the template, and tungsten chloride as the inorganic precursor. We investigated the effects of synthesis variables on the structure of mesoporous WO3, such as the concentration of triblock copolymer, hydrolysis reaction, and the calcination temperatures. Thermo-gravimetric analysis, X-ray diffraction, transmission electron microscopy and N2 adsorption-desorption isotherms were used to characterize the microstructure of the samples.
Mesoporous WO3 have been synthesized by using triblock copolymer F108 as a template and monoclinic structure were obtained after calcined at 300~400°C. The mesoporous WO3 is shown to have a high specific surface area of 129.5 m2/g as calcined at 300°C, and mesoporous structure was stable up to 350 °C. The addition of block copolymer can affect the structure of mesoporous. The addition of block copolymer increased from 0.1 to 1.0 g, and the specific surface area increased from 67.5 to 124.7 m2/g after calcined at 300°C. The microstructure of mesoporous WO3 is determined by the calcination temperature. From 300 to 400 ℃, the grain size increased from 6 to 12 nm, it can be seen that by increasing the calcined temperature a larger crystallite size is favored.
Additionally, the crystallinity of mesoporous WO3 is controlled by the water content of the reaction system. From XRD results, the mesoporous WO3 with the better crystallinity are obtained with the increasing of the water content. Replaced with water from 0 to 50 %, the BET surface area decreased from 124.7 to 48.12 m2/g, but the average pore size increased from 7.79 to 14.098 nm after calcined at 300 ℃.
摘要.............................................I
Abstract.......................................III
誌謝............................................V
目錄............................................VI
表目錄..........................................VIII
圖目錄...........................................IX
第1章 緒論........................................1
1.1 前言..........................................1
1.2 介孔材料的簡介.................................3
1.3 研究動機與目的.................................3
第2章 理論基礎.....................................6
2.1 界面活性劑性質簡介.............................6
2.1.1 分子結構.................................6
2.2 微胞的形成.....................................8
2.3 界面活性劑分子聚集體之結構......................11
2.4 介孔材料之合成與分析...........................14
2.4.1 介孔材料的合成...........................14
2.4.2 介孔材料之孔洞及比表面積分析...............17
2.5 WO3 之基本性質................................19
2.5.1 晶體結構.................................19
2.5.2 半導體特性...............................19
2.6 WO3之製備方法 .................................22
2.7 溶膠-凝膠法...................................22
第3章 實驗方法與步驟...............................24
3.1 化學藥品.....................................24
3.2 氧化鎢合成步驟................................24
3.3 材料分析.....................................24
第4章 結果與討論..................................29
4.1 三嵌段兩性共聚物添加量對合成奈米介孔氧化鎢粉末之影響 (Pluronic EO133PO50EO133;F108).................29
4.1.1 熱重分析................................29
4.1.2 FTIR 分析...............................31
4.1.3 XRD 分析................................31
4.1.4 TEM分析.................................38
4.1.5 氮氣吸脫附曲線分析.......................43
4.2 煆燒溫度對奈米介孔氧化鎢粉末之影響..............48
4.2.1 XRD 分析...............................48
4.2.2 TEM 分析...............................48
4.2.3 小角度X-ray 散射分析....................49
4.2.4 介孔對晶粒成長機制探討...................49
4.2.5 氮氣吸脫附曲線分析.......................49
4.3 加水反應對奈米介孔氧化鎢粉末之影響..............52
4.3.1 FTIR分析...............................52
4.3.2 XRD 分析...............................54
4.3.3 TEM 分析...............................58
4.3.4 氮氣吸脫附曲線分析.......................58
第5章 結論.......................................66
參考文獻.........................................67
作者簡介.........................................71
1. U. Ciesla and F. Schuth (1999). Microporous Mesoporous Mater. Science, 31 : 149.
2. IUPAC Mannal of Symbols and Terminoligy (1972). Appendix 2, Pt. 1, Collid and Surface Chemistry. Pure Appl. Chem., 31: 578.
3. C. T. Kresge and M. E. Leonowicz (1992). Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 359: 710.
4. J. S. Beck, J. C. Vartuli, and W. J. Roth (1992). A new family of mesoporous molecular sieves prepared with liquid crystal template. J. Am. Chem. Soc. 114: 10834.
5. C. G. Wu, and T. Bein (1994). Conducting Polyaniline Filaments in a Mesoporous Channel Host. Science 264 : 1757.
6. P. Yang, D. Zhao, D. I. Margolese, B. F. Chmelka, and G. D. Stucky (1998). Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature, 396 : 152.
7. M. Signoretto, M. Scarpa, F. Pinna, G. Strukul, P. Canton, and A. Benedetti (1998). WO3/ZrO2 catalysts by sol-gel processing. Journal of Non-Crystalline Solids, 225 : 178-183.
8. C. G. Granqvist (2005). Electrochromic devices. Journal of the European Ceramic Society, 25 : 2907-2912.
9. L. G. Teoh, J. Shieh, W. H. Lai, I. M. Hung, and M. H. Hon (2005). Structure and optical properties of mesoporous tungsten oxide. Journal of Alloys and Compounds, 396 : 251-254.
10. S. H. Wang, T. C. Chou, and C. C. Liu (2005). Nano-crystalline tungsten oxide NO2 sensor. Sensors and Actuators B, 94 : 343-351.
11. O. Bohnke, M. Rezrazi, B. Vuillemin, C. Bohnke, P. A. Gillet, and C. Rousselot (1992).In situ optical and electrochemical characterization of electrochromic phenomena into tungsten trioxide thin films. Solar Energy Materials and Solar Cells, 25 : 361-374.
12. A. Rougier, F. Portemer, A. Que´de´, and M. El Marssi (1999). Characterization of pulsed laser deposited WO3 thin films for electrochromic devices. Applied Surface Science, 153 : 1-9.
13. M. Tong, G. Dai, Y. Wu, X. He, and D. Gao (2001). WO3 thin film prepared by PECVD technique and its gas sensing properties to NO2. Journal of Materials Science, 36 : 2535-2538.
14. M. Di Giulio, D. Manno, G. Micocci, A. Serra, and A. Tepore (1998). Sputter deposition of tungsten trioxide for gas sensing applications. Journal of Materials Science, Materials in Electronics 9 : 317-322.
15. P. Judeinstein and J. Livage (1991). Sol-gel synthesis of WO3 thin films. Journal of Materials Chemistry, 1 : 621-627.
16. O. Lev, Z. Wu, S. Bharathi, V. Glezer, A. Modestov, J. Gun, L. Rabinovich, and S. Sampath (1997). Sol-Gel Materials in Electrochemistry. Chemistry of Materials, 9 : 2354-2375.
17. 賈魯強、黎璧賢 (2001) 漫談顆粒體物理。物理雙月刊,23(4): 503-510。
18. 高嘉珮 (2000) 中孔洞矽氧分子篩合成條件之控制及動力學研究。國立台灣大學化學研究所碩士論文,5 頁。
19. Y. C. Lin and S. H. Chen (1996). Ion correlations and counter-ion condensation in ionic micellar solutions. Condens.Matter , 8 : 12169.
20. J. N. Israelachvili, S. Marcelja and R. G. Horn (1980). Physical principles of membrane organization. Q. Rev. Biophys , 13 : 121.
21. D. J. Mitchell and B. W. Ninham (1981). Micelles, vesicles and microemulsionsq. J. Chem. Soc., Faraday, Trans., 77 : 1264.
22. D. F. Evans and H. Wennerstrom (1994). The Colloidal Domain: Where Physics, Chemistry, Biology, and Technology Meet, VCH Pubisher, 14 New York.
23. R. J. Stokes and D. F. Evans (1997). Fundamentals of Interfacial Engineering, VHC Publisher, 215, New York, Wiley.
24. 鄭雅如 (1997) 中孔徑分子篩MCM41 的合成與形態學之研究。國立台灣大學化學研究所碩士論文,12 頁。
25. J. Y. Ying, C. P. Mehnert and M.S.Wong (1999). Synthesis and Applications of Supramolecular-Templated Mesoporous Materials, Angew Chem. Int. Ed., 38 : 56.
26. 王奕凱、邱宗明、李秉傑合譯 (1993) 非均勻系催化原理與應用。國立編譯館,渤海堂文化公司。
27. 李青雲 (2001) 探討中孔徑氧化矽材料結構中之奈米錫-氧的鍵結形式。國立中央大學化學所碩士論文。
28. C. N. R. Rao and B. Raveau (1995). Transition Metal Oxides. VCH Publishers, Inc. 38.
29. P. M. Woodward, and A. W. Sleight (1997). Ferroelectric tungsten trioxide. J. Solid State Chem. 131 : 9-17.
30. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann (1975). Introduction to Ceramics, 2nd edition. Wiley-Interscience Publication, 841-912(chap. 17) New York.
31. C.D. Feng, Y. Shimizu, and M.Egashira (1994). ffect of gas diffusion process on sensing properties of SnO2 thin film in a SiO2/SnO2 layer-built structure fabricated by sol-gel process. J.Electrochem. Soc. 141 : 220-225.
32. Y. Takahashi, and Y. Wada (1990). Dip-coating of Sb-doped SnO2 films by ethanolamine-alkoxide method. J. Electrochem. Soc. 137 : 267-272.
33. C. J. Brinker, and G. W. Scherer (1990). Sol-Gel Science, The Physics and Chemistry of Sol-Gel Processing. Academic Press, San Diego. 1-18 (chap. 1).
34. A.Gautheron, M.Labeau, G. Delabougiser, and U. Schmatz (1993). Undoped and Pd-doped SnO2 thin films for gas sensors. Sensors and Actuators B. 15-16 : 357-362.
35. H. Dislich (1988). Thin Film from the Sol-Gel Process, Sol-Gel Technology for Thin Films, Fibers, Performs, Electrons and Specialty Shapes, Edited by Lisa C. Klein, Noyes Publications. 50-56.
36. H. Dislich, and P. Hinz (1982). History and principles of the sol-gel process and some new multicomponent oxide coatings. J. Non-Cryst. Solids, 48 : 11-16.
37. S. J. Gregg, and K. S. W. Sing (1982). Surface Area and Porosity, 2nd Ed.. Academic Press, New York.
38. S. A. Davis, S. L. Burkett, N. H. Mendelson, and S. Mann (1997). Bacterial templating of ordered macrostructures in silica and silica-surfactant mesophases. Nature 385: 20.
39. L. J. Bellamy (1995). The Infrared Spectra of Complex Molecules, vol. 1,3rd Ed.. Chapman Hall, New York.
40. G. J. Li and S. Kawi (1998). characterization and sensing. application of novel semiconductor oxides. Talanta 45 : 759.
41. I. M. F. Daniel, B. Desbat, J. C. Lassegues, B. Gerand, and M. Figlaz (1987). Infrared and Raman study of WO3 tungsten trioxides and WO3, xH2O tungsten trioxide tydrates. J. Solid State Chem. 67 : 235.
42. L. H. M.Krings and W. Talen (1998). Wet chemical preparation and characterization of electrochromic WO3. Solar Energy Materials and Solar Cells 54 : 7.
43. 張莉毓 (2005) 奈米介孔氧化鎢在NOx 氣體感測器和光致色變之應用。國立成功大學材料科學及工程學系博士論文,62 頁。
44. B. D. Cullity (1978). Elements of X-ray Diffraction. Addison-Wesley; Reading, MA.
45. L. E. Depero, S. Groppelli, G. Sberveglieri and E. Tondello (1996). J. Solid State Chem. 121: 79.
46. N. Yamazoe, N. Miura, (1992). Some basic aspects of semiconductor gas sensors, Edited by S. Yamauchi, Chemical Sensor Technology, 4, Kodansha, Tokyo.
47. W. Cheng, E. Baudrin, B. Dunn and J. I. Zink (2001). Synthesis and electrochromic properties of mesoporous tungsten oxide. J. Mater. Chem.,11: 92-97.
48. L. G. Teoh, J. Shieh, W. H. Lai and M. H. Hon (2004). Effects of mesoporous structure on grain growth of nanostructured tungsten oxide. J. Mater. Res.19 : 2687-2693.
49. W. H. Lai, L. G. Teoh, Y. H. Su, J. Shieh and M. H. Hon (2007). Hydrolysis reaction on the characterization of wormhole-like mesoporous tungsten oxide. J. Alloy Compd., 438 : 247-252.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top