跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.96) 您好!臺灣時間:2026/01/23 08:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖貞如
研究生(外文):Jen-Ru Liao
論文名稱:PBI/PBI-BS摻合膜的製備與高溫燃料電池性能研究
論文名稱(外文):Preparation and High Temperature Fuel Cell Performance of PBI/PBI-BS Blend Membranes
指導教授:余子隆
指導教授(外文):Tzyy-Lung Yu
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:104
中文關鍵詞:聚苯並咪唑磺酸化燃料電池
外文關鍵詞:PBIPBI-BSfuel cell
相關次數:
  • 被引用被引用:3
  • 點閱點閱:368
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將高分子聚苯並咪唑(PBI)接枝合成丁基磺酸聚苯並咪唑 (PBI-BS)。掺合PBI與PBI-BS製成摻合膜,分析鑑定掺合膜材物理性質,並製作膜電極組進行高溫質子交換膜燃料電池長時間操作安定性測試。利用FTIR及元素分析儀進行PBI及PBI-BS化學結構鑑定,以SEM (Scanning Electron Microscope)觀察膜材表面及截面型態、EDS (Energy Dispersive Spectrometer)分析膜材內元素成分及TGA (Thermogravimetric analysis)檢測膜材熱穩定性。而膜電極組分別於高溫160℃,定電流(電流密度= 200 mAcm−2)作單電池400小時連續安定性測試和298小時開/關(start/stop)循環測試。400小時長時間測試期間每隔12小時測試極化曲線和AC-impedance做膜電極組的阻抗測定。開/關循環測試是以高溫160℃,定電流(電流密度= 200 mAcm−2) 開(start) 10小時,接著中斷(stop) 14小時,作反覆性測試。長時間測試後的結果我們發現:經過400小時的測試,電位值下降約17 %,且膜材與觸媒的阻抗隨著測試時間而增加,另外於陰極所收集到的生成水其pH值小於7,顯示膜電極組中的磷酸不斷被攜出。在298小時的開/關循環測試後發現,電位值幾乎不變,而膜材的阻抗呈穩定狀態,觸媒阻抗則有些微上升,且於陰極所收集到的生成水其pH值小於7,顯示膜電極組中的磷酸會因為溶於陰極的生成水中而被攜帶出來。
In this thesis, we synthesized polybenzimidazole (PBI) and its derivative butyl sulfonated poly(polybenzimidazole) (PBI-BS). PBI/PBI-BS blend membranes were prepared with a PBI/PBI-BS wt ratio of 8/2. The chemical structure and physical properties of the membrane were investigated, using FTIR, SEM, EDS, and TGA. 400 h continuous stability life test and 298 h start/stop cycle test (10 h/start – 14 h/stop) on the MEA prepared from phosphoric acid-doped PBI/PBI-BS were conducted at 160℃with a current density= 200 mAcm−2. i-V polarization curve and AC-impedance test of MEA were performed every 12 h in the long time life test and each cycle in the start/stop cycle test. The data of 400 h life test showed decay of cell voltage V around 17% and the increments of resistance of membrane and electrolyte with increasing test time. The low pH value of the water collected from cathode outlet migration of H3PO4 from MEA. The 298 h start/stop cycle test showed no significant change of cell voltage V and membrane resistance, but increment of charge transfer of catalyst layer. The low pH value of water was also collected from cathode outlet during the start/stop cycle test. This result also indicates migration of H3PO4 during start/stop cycle test.
目錄

摘要 I
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 前言 1
1-2 燃料電池簡介 2
1-2.1 燃料電池分類與優缺點 2
1-2.2 發電原理及構造 4
1-3 質子交換膜簡介 6
1-4 聚苯並咪唑(POLYBENZIMIDAZOLE,PBI)簡介 8
1-4.1 PBI的合成 9
1-4.2 PBI薄膜的製備 12
1-4.3 PBI在燃料電池上的應用 13
1-4.4 PBI的磺酸化方法 15
1-4.5 烷基磺酸PBI在燃料電池上的應用 17
1-4.6 PBI與磺酸化高分子摻合膜在燃料電池上的應用 18
1-5 PBI膜材的老化測試 19
1-6 研究目的 21
第二章 實驗 22
2-1 實驗流程 22
2-2 藥品 23
2-3 儀器設備 25
2-4 實驗步驟 26
2-4.1 PBI合成化學反應方程式及步驟 26
2-4.2 PBI-BS合成步驟 27
2-4.3 PBI和PBI-BS的結構鑑定和性質分析 28
2-4.3.1霍式紅外光譜儀(FTIR)結構鑑定 28
2-4.3.2元素分析儀(EA)性質分析 28
2-4.3.3 PBI固有黏度測定 28
2-4.4 PBI, PBI-BS與PBI/PBI-BS膜材的製備 29
2-4.4.1 PBI膜材的製備 29
2-4.4.2 PBI-BS膜材的製備 29
2-4.4.3 PBI/PBI-BS膜材的製備 29
2-4.5 PBI, PBI-BS, PBI/PBI-BS膜材性質分析 30
2-4.5.1 SEM觀察薄膜表面型態 30
2-4.5.2 EDS元素分析 30
2-4.5.3 TGA熱穩定性分析 30
2-4.5.4 含酸率測量 30
2-4.6 高溫質子交換膜燃料電池膜電極組(MEA)製備 31
2-4.6.1 PBI/PBI-BS膜材前處理 31
2-4.6.2 電極製備 31
2-4.6.3 膜電極組(MEA)製備 32
2-5 PBI/PBI-BS質子交換膜燃料電池高溫長時間使用壽命測試 33
2-5.1 PBI/PBI-BS膜電極組長時間操作電池失誤診斷分析 33
2-5.2實驗系統與量測儀器 34
2-5.3長時間操作測試步驟 38
2-6 PBI/PBI-BS膜電極組START/STOP循環測試實驗 39
2-6.1 PBI/PBI-BS膜電極組start/stop循環測試電池失誤診斷分析 39
2-6.2 Start/Stop循環測試步驟 40
第三章 結果與討論 41
3-1 PBI 性質結構鑑定 41
3-1.1 PBI的霍式紅外光譜儀(FTIR)分析 41
3-1.2 PBI的固有黏度測定 42
3-2 PBI-BS的結構鑑定 43
3-2.1 PBI-BS的FTIR光譜 43
3-2.2 PBI-BS元素分析(EA)鑑定 44
3-3 PBI,PBI-BS及PBI/PBI-BS膜材性質分析 45
3-3.1 SEM結構分析 45
3-3.2 EDS元素分析 49
3-3.3 TGA熱穩定性分析 53
3-3.4 膜材含酸率測定 55
3-4 PBI/PBI-BS質子交換膜燃料電池高溫長時間操作測試 56
3-4.1 PBI/PBI-BS摻合膜48小時連續操作測試—自製電極 56
3-4.2 PBI/PBI-BS摻合膜400小時連續長時間操作測試—商購電極 61
3-4.3 PBI/PBI-BS摻合膜start/stop循環測試—商購電極 72
第四章 結論 84
第五章 未來工作與建議 85
第六章 參考文獻 86
附 錄 ㄧ 96
附 錄 二 103
































圖目錄

圖1.1 質子交換膜燃料電池構造示意圖[Rikukawa,2000] 4
圖1.2 直接甲醇燃料電池構造示意圖[Lu,2004] 5
圖1.3 全氟磺酸化聚電解質薄膜(Nafion)化學結構 6
[Grot,1978;Rikukawa,2000] 6
圖1.4 PBI化學結構 8
圖2.1 實驗架構 22
圖2.2 PBI合成反應式 26
圖2.3 PBI-BS合成反應式 27
圖2.4 觸媒層塗佈示意圖 32
圖2.5 MEA壓合示意圖 32
圖2.6 MEA長時間測試流程圖 33
圖2.7 雙極板陽極兩蛇蛇型流道(左圖),陰極三蛇蛇型流道(右圖) (PEMEAS) 34
圖2.8 高溫電池結構圖:電池外觀(包含保溫包);電池實體外觀(PEMEAS) 34
圖2.9 單電池組合結構示意圖 35
圖2.10 高溫單電池性能測試實驗裝置圖 36
圖2.11 模擬電路圖 37
圖2.12 MEA start/stop循環測試流程圖 39
圖3.1 PBI的FTIR光譜 41
圖3.2 PBI-BS的FTIR光譜 43
圖3.3 PBI膜材表面(左圖)與截面(右圖)SEM圖 (未浸漬磷酸) 46
圖3.4 PBI-BS膜材表面(左圖)與截面(右圖)SEM圖 (未浸漬磷酸) 47
圖3.5 PBI/PBI-BS膜材表面(左圖)與截面(右圖)SEM圖 (未浸漬磷酸) 48
圖3.6 PBI/PBI-BS膜(正面)的EDX圖(左圖)和mapping圖(右圖) (未浸漬磷酸) 49
圖3.7 PBI/PBI-BS膜(截面)的EDX圖(左圖)和mapping圖(右圖) (未浸漬磷酸) 50
圖3.8 PBI/PBI-BS膜(正面)的EDX圖(左圖)和mapping圖(右圖) (未浸漬磷酸) 51
圖3.9 PBI/PBI-BS膜(截面)的EDX圖(左圖)和mapping圖(右圖) (未浸漬磷酸) 52
圖3.10 PBI, PBI-BS, PBI/PBI-BS之TGA圖:(—) PBI;(---) PBI-BS;(— —) PBI/PBI-BS (未浸漬磷酸) 54
圖3.11 PBI, PBI-BS, PBI/PBI-BS之TGA圖:(—) PBI;(---) PBI-BS;(— —) PBI/PBI-BS (浸漬磷酸) 54
圖3.12 PBI/PBI-BS膜(90 μm)PEMFC膜電極組於160℃下定電流 57
(i= 200 mA/cm2)之電池電位對操作時間曲線圖(自製電極) 57
圖3.13 PBI/PBI-BS膜(90 μm)電極組分別於不同時間下的單電池 58
i-V曲線圖:(+) 0 h;(◇) 12 h;(□) 24 h;(○) 36 h;(△) 48 h 58
圖3.14 PBI/PBI-BS膜(90 μm)電極組分別於不同時間下的單電池 58
i-P曲線圖:(+) 0 h;(◇) 12 h;(□) 24 h;(○) 36 h;(△) 48 h 58
圖3.15 不同操作時間所量測的能奎斯特圖曲線圖:(+) 0 h;(◇) 12 h;(□) 24 h;(○) 36 h;(△) 48 h (active area 50 cm2) 59
圖3.16 膜電極組等效電路圖 59
圖3.17 PBI/PBI-BS膜(90 μm)PEMFC膜電極組於160 ℃下定電流 63
(i = 200 mA/cm2)之電池電位對操作時間曲線圖 (E-TEK電極) 63
圖3.18 定電流(i = 200 mA/cm2)連續長時間操作下,各操作時間的開路電位曲線圖(O2/H2流量為600 ml/min,常壓,160 ℃) 63
圖3.19 PBI /PBI-BS膜(90 μm)電極組在不同時間下的單電池i-V曲線圖(O2/H2流量為600 ml/min,常壓,160 ℃):(+) 0 h;(◇) 24 h;(□) 60 h;(△) 108 h;(○) 180 h;(▽) 288 h;(×) 324 h;(☆) 400 h 64
圖3.20 PBI /PBI-BS膜(90 μm)電極組在不同時間下的單電池i-P曲線圖(O2/H2流量為600 ml/min,常壓,160 ℃),(+) 0 h;(◇) 24 h;(□) 60 h;(△) 108 h;(○) 180 h;(▽) 288 h;(×) 324 h;(☆) 400 h 64
圖3.21 不同操作時間下所量測的能奎斯特圖曲線圖:(+) 0 h;(◇) 24; 65
(□) 60 h;(△) 108 h;(○) 180 h;(▽) 288 h;(×) 324 h;(☆) 400 h 65
(active area 50 cm2) 65
圖3.22 膜材阻抗(Rs)與時間關係圖 66
圖3.23 觸媒阻抗(Rc)與時間關係圖 66
圖3.24陰極反應生成水的pH值與時間關係圖 67
圖3.25 PBI/PBI-BS膜電極組(MEA)不同倍率下的截面SEM圖:長時間測試前(before)(左圖)與400小時測試後(after)(右圖) 68
圖3.26 膜電極組400小時測試前(before)的截面SEM&EDS 69
((a)截面SEM:(---)C;(---)P; (b) C元素的EDS; (c) P元素的EDS) 69
圖3.27 膜電極組長時間400小時測試後(after)的截面SEM&EDS 70
((a)截面SEM:(---)C;(---)P; (b) C元素的EDS; (c) P元素的EDS) 70
圖3.28 MEA截面SEM及磷元素EDS (after 400 h test) 71
圖3.29 MEA截面磷元素含量比(after 400 h test) 71
圖3.30 PBI/PBI-BS膜電極組(MEA) 的截面SEM圖:長時間測試前(before)(左圖)與400小時測試後(after)(右圖) 71
圖3.31 PBI/PBI-BS(膜厚85 μm)PEMFC膜電極組於160℃下定電流 74
(i= 200 mA/cm2)電池電位對時間曲線圖(start/stop) (E-TEK電極) 74
圖3.32 PBI/PBI-BS(膜厚85 μm)PEMFC膜電極組於160 ℃下定電流 74
(i = 200 mA/cm2)電池電位對時間曲線圖(僅start時) (E-TEK電極) 74
圖3.33 定電流(i = 200 mA/cm2)長時間操作,開路電位對時間曲線圖(O2/H2流量為600 ml/min,常壓,160 ℃) 75
圖3.34 PBI /PBI-BS膜(85 μm)電極組在不同時間下的單電池i-V曲線圖(O2/H2流量為600 ml/min,常壓,160 ℃)下:(◇) 0 h; (◆) 10 h; 75
(□) 34 h; (○) 82 h; (▽) 178 h; (▼) 226 h; (★) 298 h 75
圖3.35 PBI /PBI-BS膜(85 μm)電極組在不同時間下的單電池i-P曲線圖(O2/H2流量為600 ml/min,常壓,160 ℃)下:(◇) 0 h; (◆) 10 h; 76
(□) 34 h; (○) 82 h; (▽) 178 h; (▼) 226 h; (★) 298 h 76
圖3.36 不同操作時間下的能奎斯特圖曲線圖:(◇) 0 h; (◆) 10 h; 76
(□) 34 h; (○) 82 h; (▽) 178 h; (▼) 226 h; (★) 298 h 76
圖3.37 膜材阻抗(Rs)與時間關係圖 77
圖3.38 觸媒阻抗(Rc)與時間關係圖 78
圖3.39陰極反應生成水的pH值與時間關係圖 79
圖3.40 PBI/PBI-BS膜電極組(MEA)不同倍率下的截面SEM圖:長時間測試前(before)(左圖)與298小時循環測試後(after)(右圖) 80
圖3.41 膜電極組長時間298小時循環測試前(before)的截面SEM&EDS((a)截面SEM:(---)C;(---)P; (b) C元素的EDS; (c) P元素的EDS) 81
圖3.42 膜電極組長時間298小時循環測試後(after)的截面SEM&EDS 82
((a)截面SEM:(---)C;(---)P; (b) C元素的EDS; (c) P元素的EDS) 82
圖3.43 MEA截面SEM及磷元素EDS (after 298 h test) 83
圖3.44 MEA截面磷元素含量比(after 298 h test) 83
圖3.45 PBI/PBI-BS膜電極組(MEA) 的截面SEM圖:長時間測試前(before)(左圖)與298小時start/stop循環測試後(after)(右圖) 83



表目錄

表1.1 燃料電池的分類[黃朝榮,2003] 2
表1.2 PBI合成相關文獻 10
表1.3 PBI製膜參考文獻摘要 12
表1.4 PBI膜材應用於燃料電池相關文獻摘要 14
表1.5 PBI各種磺酸化方法的比較 15
表1.6 烷基磺酸PBI合成相關文獻摘要 17
表1.7 PBI膜電極組老化測試相關文獻 20
表2.1 PBI之固有黏度之數值Choe [1996] 28
表3.1 PBI之IR peaks分析[Asensio,2002] 42
表3.2 固有黏度溶液流動時間數據表 42
表3.3 不同支鏈的磺酸根吸收位置[Gieselman,1992] 43
表3.4 PBI-BS元素分析結果及磺酸化比例計算 44
表3.5 PBI/PBI-BS正面EDX的元素分析(未浸漬磷酸) 49
表3.6 PBI/PBI-BS截面EDX的元素分析 (未浸漬磷酸) 50
表3.7 PBI/PBI-BS正面EDX的元素分析(浸漬磷酸) 51
表3.8 PBI/PBI-BS截面EDX的元素分析(浸漬磷酸) 52
表3.9 膜材內各成分重量 53
表3.10 膜材含酸率 55
表3.11 自製電極觸媒層配方表 57
表3.12連續(48 h)操作下,各操作時間的開路電位 59
表3.13 連續(48 h)操作下,各操作時間MEA阻抗Rs,Rc,Cd值 60
(active area 50 cm2) 60
表3.14 連續(48 h)操作下,反應生成水的pH值 60
表3.15 長時間連續(400 h)操作下,各操作時間MEA阻抗Rs,Rc,Cd值(active area 50 cm2) 65
表3.16 400小時長時間連續操作下,反應生成水的pH值 67
表3.17 start/stop循環操作下,各操作時間MEA的阻抗Rs, Rc, Cd值 77
(active area= 50 cm2) 77
表3.18 298小時start/stop循環操作下,反應生成水的pH值 78
1. Asensio J.A., Borrós S., Gómez-Romero P.,
“Proton-Conducting Polymers Based on Benzimidazoles and
Sulfonated Benzimidazoles”,
Journal of Polymer Science, Part A: Polymer Chemistry 40
(21) 3703-3710 (2002)
2. Asensio J.A., Gómez-Romero P.,
“Recent developments on proton conducting Poly(2,5-
benzimidazole)
(ABPBI) membranes for high temperature polymer electrolyte
membrane fuel cells”,
Fuel Cells 5 (3) 336-343 (2005)
3. Bae J.M., Honma I., Murata M., Yamamoto T., Rikukawa M.,
Ogata N.,
“ Properties of selected sulfonated polymers as proton-conducting
electrolytes for polymer electrolyte fuel cells ”,
Solid State Ionics 147 189-194 (2002)
4. Bouchet R., Siebert E.,
“Proton conduction in acid doped polybenzimidazole”,
Solid State Ionics 118 287–299 (1999)
5. Brinker K.C. and Robinson I.M.,
“Polybenzimidazoles”,
United State Patent 2 895-948 (1959)
6. Choe E.W., Choe D.D.,in polymeric Materials Encyclopedia, Vol 7,
Salamone J.C., Editor, 5619, CRC press, Boca Raton, FL (1996)
7. Collier A., Wang H., Zi Yuan X., Zhang J., Wilkinson D.P.,
“Degradation of polymer electrolyte membranes”,
International Journal of Hydrogen Energy 31 1838 – 1854 (2006)
8. Chuang S.W., Hsu S.L.C., Liu Y.H.,
“Synthesis and properties of fluorine-containing Polybenzimidazole
/silica nanocomposite membranes for proton exchange membrane fuel
cells”,
Journal of Membrane Science 305 353–363 (2007)
9. Curtin D.E., Lousenberg R.D., Henry T.J., Tangeman P.C.,
“Advanced materials for improved PEMFC performance and life”,
Journal of Power Sources 131 41–48 (2004)
10. Dudgeon C.D. and Vogl O.,
“Bisorthoesters as polymer intermediates, II. A facile method for the
preparation of polybenzimidazoles”,
Journal of Polymer Science Polym. Chem. Ed., 16, 1831-1852 (1978)
11. Gomez-Romero P., Asensio J., Borros S.,
“Sulfonated poly (2,5-benzimidazole) (SABPBI) impregnated with
phosphoric acid as proton conducting membranes for polymer
electrolyte fuel cells”,
Electrochimica Acta 49 4461–4466 (2004)
12. Glipa X., Bonnet B., Mula B., Jones D.J., Rozière J.,
“Investigation of the conduction properties of phosphoric and
sulfuric acid doped polybenzimidazole”,
Journal of Materials Chemistry 9 (12) 3045-3049 (1999)
13. Glipa X., Haddad M.E., Jones D.J., and Roziere J.,
“Synthesis and characterization of sulfonated polybenzimidazole: a
highly conducting proton exchange polymer ”,
Solid State Ionics 97 323-331 (1997)
14. Gieselman M.B., Reynolds J.R.,
“Water-soluble polybenzimidazole-based polyelectrolytes ”,
Macromolecules 25 (18) 4832-4834 (1992)
15. Grot W.,
“Use of perfluorosulfonic acid products as separator in electrolytic
cells”,
Chem. Ing. Tech. 50 299-301 (1978)
16. Hasiotis C., Li Q., Deimede V., Kallitsis J.K., Kontoyannis C.G.,
Bjerrum, N.J.,
“Development and Characterization of Acid-Doped
Polybenzimidazole /Sulfonated Polysulfone Blend Polymer
Electrolytes for Fuel Cells”,
Journal of the Electrochemical Society 148 (5) A513-A519 (2001)
17. He R., Li Q., Xiao G., Bjerrum N.J.,
“Proton conductivity of phosphoric acid doped polybenzimidazole
and its composites with inorganic proton conductors”,
Journal of Membrane Science 226 169–184 (2003)
18. He R., Li Q., Bach A., Jensen J.O., Bjerrum N.J.,
“Physicochemical properties of phosphoric acid doped
polybenzimidazole membranes for fuel cells ”,
Journal of Membrane Science 277 38–45 (2006)
19. Hedberg F.L. and Marvel C.S.,
“New single-step process for polybenzimidazole synthesis”,
Journal of Polymer Science : Part A-1 Polym., Chem. Ed., 12
1823-1828 (1974)
20. Hobson L.J., Nakano Y., Ozu H., and Hayase S.,
“Targeting improved DMFC performance”,
Journal of Power Source 104 79-84 (2002)
21. Hu J., Zhang H., Zhai Y., Liu G., Yi B.,
“500 h Continuous aging life test on PBI/H3PO4 high-temperature
PEMFC”,
International Journal of Hydrogen Energy 31 1855–1862 (2006)
22. Hu J., Zhang H., Zhai Y., Liu G., Hu J., Yi B.,
“Performance degradation studies on PBI/H3PO4 high temperature
PEMFC and one-dimensional numerical analysis”,
Electrochimica Acta 52 394–401 (2006)
23. Iwakura Y., Uno K. and Imai Y.,
“Polybenylenebenzimidazoles”,
Journal of Polymer Science A 2 2605-2615 (1964-a)
24. Iwakura Y., Uno K., and Imai Y.,
“Polybenzimidazoles. II. Polyalkylenebenzimidazoles ”,
Macromolecular Chemistry 77 33-40 (1964-b)
25. Jacques R., Jones D., Haddad M., Glipa X.,
“Synthesis and characterisation of sulfonated polybenzimidazole:a
high conducting proton exchange polymer”,
Solid State Ionics 97 323-331(1997)
26. Jorissen L., Gogel V., Kerresl J., Garche J.,
“New membranes for direct methanol fuel cells”,
Journal of Power Sources 105 267-273 (2002)
27. Kannan R., Islam Md. N., Rathod D., Vijay M., Kharul U.K.,
Ghosh P. C.,
“A 27-3 fractional factorial optimization of polybenzimidazole based
membrane electrode assemblies for H2/O2 fuel cells”,
Journal of Applied Electrochemistry 38 (5) 583-590 (2008)
28. Kim J.H., Kim H.J., Lim T.H., Lee H.I.,
“Dependence of the performance of a high-temperature polymer
electrolyte fuel cell on phosphoric acid-doped polybenzimidazole
ionomer content in cathode catalyst layer ”,
Journal of Power Sources 170 275–280 (2007)
29. Kim T.H., Lim T.W., Lee J.C.,
“High-temperature fuel cell membranes based on mechanically stable
para-ordered polybenzimidazole prepared by direct casting”,
Journal of Power Sources 172 172–179 (2007)
30. Kongstein O.E., Berning T., Børresen B., Seland F., Tunold R.,
“Polymer electrolyte fuel cells based on phosphoric acid doped
polybenzimidazole (PBI) membranes”,
Energy 32 (4) 418–422 (2007)
31. Krishnan P., Park J.S., Kim C.S.,
“Performance of a poly(2,5-benzimidazole) membrane based high
temperature PEM fuel cell in the presence of carbon monoxide”,
Journal of Power Sources 159 817–823 (2006)
32. Li Q., He R., Jensen J.O., and Bjerrum N.J.,
“PBI-based polymer membranes for high temperature fuel cells -
Preparation, characterization and fuel cell demonstration”,
Fuel Cells 4 (3) 147-159 (2004)
33. Li Q., Hjuler H.A., and Bierrum N.J.,
“Phosphoric acid doped polybenzimidazole membranes:
physiochemical characterization and fuel cell applications”,
Journal of Applied Electrochemistry 31 773-779 (2001)
34. Lin H.L., Yu T.L., Chang W.K., Cheng C.P., Hu C.R., Jung G.B.,
“Preparation of a low proton resistance PBI/PTFE composite membrane”,
Journal of Power Sources, 164, 481-487 (2007).
35. Lin H.L., Che Y.C., Li C.C., Cheng C.P., Yu T.L.,
“Preparation of PBI/PTFE Composite Membranes from PBI in
N,N''-Dimethyl acetamide Solutions with Various Concentrations of
LiCl”,
Journal of Power Sources, 181, 228-236 (2008).
36. Liu G., Zhang H., Hu J., Zhai Y., Xu D., Shao Z.G.,
“ Studies of performance degradation of a high temperature PEMFC
based on H3PO4-doped PBI”,
Journal of Power Sources 162 547–552 (2006)
37. Liu G.,
“Pt4ZrO2/C cathode catalyst for improved durability in high
temperature PEMFC based on H3PO4 doped PBI”,
Electrochemistry Communications 9 135–141 (2007)
38. Lobato J., Canizares P., Rodrigo M.A.,
“Improved polybenzimidazole films for H3PO4-doped PBI-based
high temperature PEMFC ”,
Journal of Membrane Science 306 47–55 (2007)
39. Lu G.Q., Wang C.Y., Yen T.J., and Zhang X.,
“Development of a silicon-based micro direct methanol fuel cell”,
Electrochemical Acta 49 821-828 (2004)
40. Ma Y.L.,Wainright J.S. , Litt M.H., Savinell R.F.,
“Conductivity of PBI membranes for high-temperature polymer
electrolyte fuel cells”,
Journal of Electrochemical Society 151 A8 (2004)
41. Mittal V.O., Kunz H.R., Fenton J.M.,
“Membrane Degradation Mechanisms in PEMFCs”,
Journal of The Electrochemical Society 154 (7) B652-B656 (2007)
42. Pan C., Li Q., Jensen J.O., He R., Cleemann L.N., Nilsson M.S.,
Bjerrum N.J., Zeng Q.,
“Preparation and operation of gas diffusion electrodes for High –
temperature proton exchange membrane fuel cells”,
Journal of Power Sources 172 278–286 (2007)
43. Pu H.,
“Methanol permeation and proton conductivity of acid doped
poly(N-ethylbenzimidazole) and poly(N-methylbenzimidazole)”,
Journal of Membrane Science 241 169-175 (2004)
44. Perry K., Eisman G., Benicewicz B.,
“Electrochemical hydrogen pumping using a high-temperature
polybenzimidazole(PBI) membrane”,
Journal of Power Sources 177 478–484 (2008)
45. Qi Z., Buelte S.,
“Effect of open circuit voltage on performance and degradation of
High temperature PBI–H3PO4 fuel cells”,
Journal of Power Sources 161 1126–1132 (2006)
46. Rikukawa M., Sanui K.,
“Proton-conducting polymer electrolyte membranes based on
hydrocarbon polymers ”,
Progress in Polymer Science 25 1463-1502 (2000)
47. Sannigrahi A., Arunbabu D., Sankar R.M., Jana T.,
“Tuning the molecular properties of polybenzimidazole by
copolymerization ”,
Journal of Physical Chemistry B 111 (42) 12124-12132
48. Staiti P., Minutoli M.,
“Influence of composition and acid treatment on proton conduction
of composite polybenzimidazole membranes”,
Journal of Power Sources 94 9-13 (2001)
49. Staiti P.,
“Proton conductive membranes based on silicotungstic acid/silica
and polybenzimidazole”,
Materials Letters 47 241–246 (2001)
50. Staiti P., Minutoli M., Hocevar S.,
“Membranes based on phosphotungstic acid and polybenzimidazole
for fuel cell application”,
Journal of Power Sources 90 231–235 (2000)
51. Staiti P., Lufrano F., Aricò A.S., Passalacqua E., Antonucci V.,
“Sulfonated polybenzimidazole membranes preparation
and physico-chemical characterization”,
Journal of Membrane Science 188 71–78 (2001)
52. Ueda M., Sato M., and Mochizuki A.,
“Poly(benzimidazole) synthesis by direct reaction of diacids and
tetramine”,
Macromolecules 18 2723-2726 (1985)
53. Vogel H. and Marvel C.S.,
“Polybenzimidazoles, new thermally stable polymers ”,
Journal of polymer science 50 511-539 (1961)
54. Vogel H.A. and Marvel C.S.,
“Polybenzimidazole. II”,
Journal of polymer science A. 1 531 (1963)
55. Wainright J.T.S., Wang J.T., Savinell R.F., and Litt M.H.,
“Acid-doped polybenzimidazoles: a new polymer electrolyte “,
Journal of The Electrochemical Society 142 121 (1995)
56. Wang J.T., Savinell R.F., Wainright J., Litt M.H., and Yu H.,
“A H2/O2 fuel cell using acid doped polybenzimidazole as polymer
electrolyte”,
Electrochimica Acta 41 193-197 (1996-a)
57. Wang J.T., Wainright J.S., Savinell R.F., and Litt M.H.,
“A direct methanol fuel cell using acid-doped polybenzimidazole as
polymer electrolyte ”,
Journal of Applied Electrochemistry 26 (7) 751-756 (1996-b)
58. Xu W., Lu,T., Liu C., Xing W.,
“Low methanol permeable composite Nafion/silica/PWA membranes
for low temperature direct methanol fuel cells”,
Electrochimica Acta 50 3280–3285 (2005)
59. Xiao L., Zhang H., Scanlon E., Ramanathan L. S., Choe E. W.,
Rogers, D., Apple, T., Benicewicz, B.C.,
“High-Temperature Polybenzimidazole Fuel Cell Membranes via a
Sol-Gel Process ”,
Chemistry of Materials 17 (21) 5328-5333 (2005)
60. Zhai Y., Zhang H., Liu G., Hu J., Yi B.,
“Degradation Study on MEA in H3PO4/PBI High-Temperature
PEMFC Life Test”,
Journal of The Electrochemical Society 154 (1) B72-B76 (2007)
61. Zhai Y., Zhang H., Zhang Y., Xing D.,
“A novel H3PO4/Nafion–PBI composite membrane for enhanced
durability of high temperature PEM fuel cells”,
Journal of Power Sources 169 259–264 (2007)
62. 邱志豪,聚苯咪唑合成及薄膜性質,碩士論文,元智大學化工系
(2004)
63. 黃朝榮,元智大學化工系,燃料電池,上課講義,2003
64. 胡志仁,聚苯咪唑與丁基磺酸聚苯咪唑摻合薄膜,碩士論文,元
智大學化材系(2007)
65. 林哲宇,PBI/PBI-BS/Zr(HPO4)2摻合膜的製備及性能研究,碩士
論文,元智大學化材系(2008)
66. 許照,基本電學,徐氏基金會,台北 (1988)
67. 鐘國濱,余子隆,張幼珍,林昇佃,翁芳柏,蘇艾,詹世弘, “燃料電池中
質子交換膜的開發”, 工業材料 (工研院) 196(4) 145-150 (2003).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊