跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.134) 您好!臺灣時間:2025/11/20 00:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳孟君
研究生(外文):Meng-Chun Chen
論文名稱:魚皮明膠水解物抑制 Dipeptidyl Peptidase IV 之活性及抗糖尿病功效評估
論文名稱(外文):Evaluation of fish skin gelatin hydrolysates inhibit dipeptidyl peptidase IV activity and their antidiabetic effect
指導教授:徐國強徐國強引用關係
學位類別:碩士
校院名稱:中國醫藥大學
系所名稱:營養學系碩士班
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:94
中文關鍵詞:糖尿病魚皮明膠水解物DPP-Ⅳ
外文關鍵詞:diabetesfish skingelatinhydrolysateDPP-IV
相關次數:
  • 被引用被引用:2
  • 點閱點閱:724
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
第2型糖尿病的新穎療法是利用腸泌素 (incretin) 來治療,腸泌素為腸道所分泌的荷爾蒙,主要有glucagon like peptide-1 (GLP-1),可促進餐後胰島素分泌、維持血糖恆定;GLP-1屬於多肽,易被體內雙胜肽水解酶 (dipeptidyl peptidase IV;DPP-IV) 水解而失去活性,DPP-IV主要作用為移去胜肽中N-端之雙肽,且N-端第二個位置為Pro或Ala之胜肽具有較佳抑制DPP-IV活性,因此若能製備出Pro或Ala含量較高之胜肽,可能具有降低DPP-IV對GLP-1的作用,進而改善甚至於治療第2型糖尿病的功效。研究發現明膠 (gelatin) 含有豐富的胺基酸,其中Pro、Ala、Hyp的含量豐富,且魚皮明膠的胺基酸分析發現溫水魚 (warm-water fish) 之imino acids含量較冷水魚 (cold-water fish) 為高。
本實驗以冷水魚:比目魚;溫水魚:吳郭魚、虱目魚魚皮明膠為原料,使用商業蛋白酶flavourzyme (Fla) 進行水解,製備具抑制DPP-IV活性之蛋白質水解物,以動物實驗鑑定其抗糖尿病的功效,期望能開發成保健食品並提升加工副產物之經濟價值。其實驗結果如下:
1. 總胺基酸分析:比目魚、吳郭魚、虱目魚魚皮明膠中Pro、Ala、Hyp之胺基酸的總量為32.18、37.6、38.55 mole/100 mole amino acid residues,以上結果可得知吳郭魚、虱目魚魚皮明膠中Pro、Ala、Hyp之胺基酸的總量比比目魚高。
2. 比目魚、吳郭魚、虱目魚魚皮明膠以Fla酵素基質比 (enzyme/substrate ratio, E/S ratio) 1、3、5%水解4 h,結果發現隨著酵素基質比濃度提高,水解度和DPP-IV抑制活性也有上升的趨勢,水解物濃度調整為5 mg/mL,Fla 5%水解4 h其抑制DPP-IV的能力分別為36.30%,43.17%,42.45%,而當延長水解時間為6, 8 h,結果發現吳郭魚、虱目魚魚皮明膠水解6 h具有最佳抑制DPP-IV的能力,其抑制活性分別達48.08%,45.63%,且吳郭魚、虱目魚其DPP-IV抑制活性在魚種間無顯著差異。
3. 根據此結果,將吳郭魚、虱目魚魚皮明膠以Fla 5%水解6 h經由超過濾的劃分後發現<1 kDa的吳郭魚魚皮明膠水解物抑制DPP-IV的效果最好,當濃度為5 mg/mL,其抑制率高達51.91%,並選用此<1 kDa的吳郭魚魚皮明膠水解物進行動物實驗,而由總胺基酸分析發現其Pro、Ala之胺基酸含量分別為11.22、16.39 mole/100 mole amino acid residues。
4. 動物實驗以管餵中劑量:750 mg/kg BW以上的吳郭魚魚皮明膠水解物即可達到良好的效果,有效降低糖尿病鼠的血漿中DPP-IV活性達31.74%
(p<0.05),並且增加35.4% GLP-1濃度的趨勢,此外實驗結果也觀察到管餵吳郭魚魚皮明膠水解物能增加血漿中胰島素濃度達121% (p<0.05),在口服葡萄糖耐受試驗中可以證實吳郭魚魚皮明膠水解物有效改善血糖的調控( p<0.05 )。
綜合上述結果,可以發現魚皮明膠中Pro、Ala、Hyp之胺基酸的總量會影響DPP-IV抑制活性,而<1 kDa的吳郭魚魚皮明膠水解物具有最佳DPP-IV抑制能力。由動物實驗證實吳郭魚魚皮明膠水解物具有抗糖尿病功效並與開發成為降血糖保健食品的潛力,可望提升加工副產物之經濟價值。

A novel approach for treatment of type 2 diabetes is the use of gut hormone glucagon-like peptide-1 (GLP-1), which possesses multi-functions such as the stimulation of insulin secretin and the blood glucose homeostasis. GLP-1 is a polypeptide that is rapidly inactivated by dipeptidyl peptidase IV (DPP-IV). DPP-IV is a postproline-cleaving enzyme with the specificity for removing X-proline or X-alanine dipeptides from the N-terminus of polypeptides. Therefore, the peptides with Pro or Ala as the penultimate amino acid residue of N-terminus would be efficient DPP-IV inhibitors to elongate the half life of endogenous GLP-1. It is well-known that gelatin is rich in Pro, Ala, Hyp, while that of warm-water fish skin has higher contents of the three amino acid residues than cold-water fish.
The objective of this study is to utilize commercial proteases flavourzyme to hydrolyze gelatin extracted from halibut, tilapia and milkfish skin, and to produce the DPP-IV inhibitory peptides and determine their antidiabetic activity in animal in vivo experiments. The results were shown as follows:
1. The contents of Pro, Ala, Hyp from halibut, tilapia, milkfish skin gelatin were 32.18, 37.6, 38.55 mole/100 mole amino acid residues. The warm-water fish (tilapia and milkfish) skin gelatin showed higher contents of the three amino acid residues than the cold-water fish (halibut).
2. Halibut, tilapia and milkfish skin gelatins were hydrolyzed with Fla at various enzyme/substrate (E/S) ratio (1, 3, 5%) for 4 h. The DHs and DPP-IV inhibitory activity of the gelatin hydrolysates obtained by Fla hydrolysis increased with the increment of E/S ratio. When the hydrolysis process was done with the E/S ratio of 5% for 6 and 8 h, the both warm-water fish skin gelatin hydrolysates showed the greater DPP-IV inhibition rates of 45-48% as compared to the cold-water fish. The hydrolysates from both warm-water fish skin gelatin with E/S of 5% and 6-h hydrolysis were used for ultrafiltration.
3. The peptides within <1 kDa fraction from tilapia skin gelatin hydrolysates had the greatest DPP-IV inhibition rate of 51.91% as compared to those within the other two high-molecular-weight fractions (1-2.5 kDa and >2.5 kDa). The <1 kDa fraction was then used to evaluate its in vivo antidiabetic effect by the animal experiment, and the peptides in this fraction were comprised of Pro and Ala of 11.22, 16.39 mole/100 mole amino acid residues, respectively.
4. The oral administration with medial dose (750 mg/kg BW) of tilapia fish skin gelatin hydrolysate could significantly (p<0.05) decrease the plasma DPP-IV activity for 31.74%, and slightly but insignificantly (p>0.05) increase plasma GLP-1 for 35.4% in diabetic (DM) rats. Also, the hydrolysate effectively increased the plasma insulin concentration for 121% (p<0.05) as compared to DM rats and improve the blood glucose control.
The tilapia fish skin gelatin hydrolysate is useful for the therapy or prevention of type 2 diabetes. Tilapia fish skin gelatin hydrolysate can be develop a new functional food and to increase the economic values of fish processing byproducts.

目錄 i
圖目錄 v
表目錄 vi
中文摘要 I
Abstract III
第一章 前言 1
第二章 文獻探討 2
一、 糖尿病 (Diabetes mellitus) 2
(一) 糖尿病之定義及分類 2
(二) 糖尿病診斷標準 5
(三) 第2型糖尿病的治療 7
(四) 腸泌素對於第2型糖尿病之作用 9
二、 漁業資源 16
(一) 重要水產原料與利用 16
(二) 魚的種類及簡介 17
三、 蛋白質水解物及其生物活性 19
(一) 水解目的 19
(二) 明膠水解物及其生物活性 20
四、 抗糖尿病生物活性胜肽 22
1. 乳製品中抑制DPP-IV的活性胜肽 22
2. 雞蛋水解物抑制DPP-IV的活性胜肽 23
3. 玉米醇溶蛋白水解物抑制DPP-IV的活性胜肽 23
4. 藍鱈魚肌肉蛋白水解液抑制DPP-IV的活性胜肽 23
5. 豬皮明膠水解物抑制DPP-IV的活性胜肽 24
6. 其他活性胜肽與DPP-IV活性之探討 24
五、 藥物誘發高血糖動物實驗模式 27
1. 遺傳性自發高血糖動物: 27
2. 以高劑量nicotinamide (NA)+streptozotocin (STZ) 誘發動物高血糖 27
3. 以低劑量NA+STZ誘發胰島素阻抗型之高血糖 27
4. 以高果糖誘發胰島素阻抗與高血糖之動物實驗模式 27
5. 以高油飼料誘發胰島素阻抗與高血糖動物之實驗模式 27
六、 研究目的 30
第三章 材料與方法 31
一、 實驗材料 31
(一) 實驗動物 31
(二) 魚皮 31
(三) 商業蛋白酶 32
二、 實驗藥品 33
三、 分析實驗套組 34
四、 實驗儀器與設備 34
五、 實驗方法 36
(一) In vitro實驗 36
1. 明膠之萃取 37
2. 總胺基酸測定 37
3. 酵素水解魚皮明膠之製備 38
4. 水解度測定 38
5. 抑制DPP-IV活性in vitro測定 41
6. 超過濾劃分 41
(二) In vivo實驗 42
1. 實驗分組 43
2. NA+STZ誘發糖尿病 44
3. 口服葡萄糖耐受試驗 44
4. 血液、臟器之收集 44
5. 胰島素 (insulin) 濃度測定 44
6. GLP-1濃度測定 45
7. DPP-IV活性測定 46
(三) 統計分析 46
第四章 結果與討論 47
一、 魚皮明膠水解物製備 47
(一) 總胺基酸測定 47
(二) 不同酵素基質比之水解度及抑制DPP-IV活性測定 51
(三) 超過濾劃分物之抑制DPP-IV活性測定及總胺基酸測定 56
二、 五週動物實驗分析 61
(一) 體重變化 61
(二) 攝食量 64
(三) 飲水量 66
(四) 口服葡萄糖耐受試驗 68
(五) 臟器重量 72
(六) 血漿中胰島素濃度 75
(七) 血漿中DPP-Ⅳ活性 78
(八) 血漿中GLP-1濃度 80
第五章 結論 82
第六章 參考文獻 83
第七章 附錄 93


行政院衛生署。2013a。民國101年死因結果摘要表-全國主要死亡原因。行政院衛生署。台北市。
行政院衛生署。2013b。糖尿病防治手冊。行政院衛生署。台北市。
行政院衛生署。2009c。衛生署提醒醫療人員及病人含Sitagliptin成分藥品可能引起急性胰臟炎之不良反應。行政院衛生署。台北市。
行政院衛生署。2010d。健康食品調節血糖功能評估方法修訂草案_預告。行政院衛生署。台北市。
行政院農業委員會漁業署。2011。台灣地區99年漁業統計年報。行政院農業委員會漁業署。台北市。
黃蘭菁、李貫廷、李育霖、楊偉勛、黃國晉。2013。2013年美國糖尿病學會臨床治療指引摘要。台北市醫師公會會刊。
沈德昌、顏兆熊。2008。第2型糖尿病藥物治療新知。台灣醫界。51。
董宇珊。2012。豬皮明膠水解物作為dipeptidyl peptidase-IV抑制劑及其抗糖尿病功效之研究。中國醫藥大學營養學系碩士論文。台中市。
賴明宏。2002。飲食中補充米麩或三價鉻對第2型糖尿病患或STZ誘導的糖尿病大白鼠醣類及脂質代謝之影響。台北醫學院藥學研究所博士論文。台北市。
Aart, V.A., Beelen-thomissen, Catharina, M.J., Zelland-Wolbers, Maria, L.A., Gilst, V., Hendrikus, W., Buikema, Hendrik, J., Nelissen, et al. (2009). Egg protein hydrolysates. PCT WO2009/128713A1.
Abbatrcola, A.M., Maggi, S., and Paolisso, G. (2008). New approaches to treating type 2 diabetes mellitus in the elderly. Drug Aging 25 (11): 913-925.
ADA (2013). American diabetes association-standards of medical care in diabetes--2013. Diabetes Care 36 Suppl 1, S11-66.
Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J Agric Food Chem 27, No. 6.
Adler-Nissen, J. (1982). Limited enzymic degradation of proteins: A new approach in the industrial application of hydrolases. Journal of Chemical Technology and Biotechnology, 32(1), 138-156.
Adler-Nissen, J. (1986). Enzymic hydrolysis of food protein. London: Elsevier Applied Science Publishers. P 16-17.
Akarte, A.S., Srinivasan, B.P., and Gandhi, S. (2012). Vildagliptin selectively ameliorates GLP-1, GLUT4, SREBP-1c mRNA levels and stimulates beta-cell proliferation resulting in improved glucose homeostasis in rats with streptozotocin-induced diabetes. J Diabetes Complications 26, 266-274.
Augustyns, K.J.L., Lambeir, A.M., Borloo, M., Meester, I.D., Vedernikova, I., Vanhoof, G., Hendriks, D., Scharpe, S., and Haemers, A. (1997). Pyrrolidides synthesis and structure-activity relationship as inhibitors of dipeptidyl peptidase IV. Eur J Med Chem 32, 301-309.
Babey, M., Kopp, P., and Robertson, G.L. (2011). Familial forms of diabetes insipidus: clinical and molecular characteristics. Nat Rev Endocrinol 7, 701-714.
Barr, E.L., Cameron, A.J., Balkau, B., Zimmet, P.Z., Welborn, T.A., Tonkin, A.M., and Shaw, J.E. (2010). HOMA insulin sensitivity index and the risk of all-cause mortality and cardiovascular disease events in the general population: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) study. Diabetologia 53, 79-88.
Clemente, A., Vioque, J., Sanchez-Vioque, R., Pedroche, J., Bautista, J., and Millan, F. (1999). Protein quality of chickpea (Cicer arietinum L.) protein hydrolysates. Food chemistry 67 (1999) 269-274.
Cudennec, B., Fouchereau-Peron, M., Ferry, F., Duclos, E., and Ravallec, R. (2012). In vitro and in vivo evidence for a satiating effect of fish protein hydrolysate obtained from blue whiting (Micromesistius poutassou) muscle. Journal of Functional Foods 4, 271-277.
Deacon, C.F., Johnsen, A.H., and Holst, J.J. (1995). Human colon produces fully processed glucagon-like peptide-1 (7-36) amide. FEBS Lett 372 (1995) 269-272.
Do, S.-G., Park, J.-H., Nam, H., Kim, J.-B., Lee, J.-Y., Oh, Y.-S., and Suh, J.-G. (2012). Silk fibroin hydrolysate exerts an anti-diabetic effect by increasing pancreatic β cell mass in C57BL/KsJ-db/db mice. J Vet Sci 13, 339.
Drucker, D.J. (2003). Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care 26.
Duez, H., Cariou, B., and Staels, B. (2012). DPP-4 inhibitors in the treatment of type 2 diabetes. Biochem Pharmacol 83, 823-832.
Elsner, M., Gulbakke, B., Tiedge, M., Munday, R., and Lenzen, S. (2000). Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Daiabetologia 43: 1528-1533.
FAO (2011a). Food and agriculture organization of the united aations-chanos chanos.
FAO (2011b). Food and agriculture organization of the united aations-hippoglossus stenolepis.
FAO (2011c). Food and agriculture organization of the united aations-oreochromis niloticus.
Flentke, G.R., Munoz, E., Huber, B.T., Plaut, A.G., Kettner, C.A., and Bachovchin, W.W. (1991). Inhibition of dipeptidyl aminopeptidase IV (DP-IV) by Xaa-boroPro dipeptides and use of these inhibitors to examine the role of DP-IV in T-cell function. Proc Natl Acad Sci USA 88, pp. 1556-1559.
Gaudel, C., Nongonierma, A.B., Maher, S., Flynn, S., Krause, M., Murray, B.A., Kelly, P.M., Baird, A.W., Fitzgerald, R.J., and Newsholme, P. (2013). A whey protein hydrolysate promotes insulinotropic activity in a clonal pancreatic beta-cell line and enhances glycemic function in ob/ob mice. J Nutr 143, 1109-1114.
Gautier, J.F., Choukem, S.P., and Girard, J. (2008). Physiology of incretins (GIP and GLP-1) and abnormalities in type 2 diabetes. Diabetes Metab 34, S65-S72.
Gunnarsson, P.T., Winzell, M.S., Deacon, C.F., Larsen, M.O., Jelic, K., Carr, R.D., and Ahren, B. (2006). Glucose-induced incretin hormone release and inactivation are differently modulated by oral fat and protein in mice. Endocrinology 147, 3173-3180.
Hsu, K.-C., Lu, G.-H., and Jao, C.-L. (2009). Antioxidative properties of peptides prepared from tuna cooking juice hydrolysates with orientase (Bacillus subtilis). Food Research International 42, 647-652.
Huang, S.L., Jao, C.L., Ho, K.P., and Hsu, K.C. (2012). Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates. Peptides 35, 114-121.
Jung, E.Y., Lee, H.S., Lee, H.J., Kim, J.M., Lee, K.W., and Suh, H.J. (2010). Feeding silk protein hydrolysates to C57BL/KsJ-db/db mice improves blood glucose and lipid profiles. Nutrition research 30, 783-790.
Karim, A.A., and Bhat, R. (2009). Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids 23, 563-576.
Kazakos, K. (2011). Incretin effect: GLP-1, GIP, DPP4. Diabetes Res Clin Pract 93, S32-S36.
Kim, S.-K., Kim, Y.-T., Byun, H.-G., Nam, K.-S., Joo, D.-S., and Shahidi, F. (2001). Isolation and characterization of antioxidative peptides from gelatin hydrolysate of alaska pollack skin. J Agric Food Chem 49, 1984-1989.
Kim, S.-K., and Mendis, E. (2006). Bioactive compounds from marine processing byproducts – A review. Food Research International 39, 383-393.
Kirino, Y., Sato, Y., Kamimoto, T., Kawazoe, K., Minakuchi, K., and Nakahori, Y. (2009). Interrelationship of dipeptidyl peptidase IV (DPP4) with the development of diabetes, dyslipidaemia and nephropathy: a streptozotocin-induced model using wild-type and DPP4-deficient rats. J Endocrinol 200, 53-61.
Lacroix, I.M.E., and Li-Chan, E.C.Y. (2012). Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. International Dairy Journal 25, 97-102.
Lambeir, A.-M., Durinx, C., Scharpe, S., and Meester, I.D. (2003). Dipeptidylpeptidase IV from bench to bedside an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 40(3):209-294.
LeDoux, S.P., Woodley, S.E., Patton, N.J., and Wilson, G.L. (1986). Mechanisms of nitrosourea-induced beta-cell damage. Alterations in DNA. Diabetes 35, 866-872.
Leger, R., Thibaudeau, K., Robitaille, M., Quraishi, O., van Wyk, P., Bousquet-Gagnon, N., Carette, J., Castaigne, J.P., and Bridon, D.P. (2004). Identification of CJC-1131-albumin bioconjugate as a stable and bioactive GLP-1(7-36) analog. Bioorg Med Chem Lett 14, 4395-4398.
Li-Chan, E.C., Hunag, S.L., Jao, C.L., Ho, K.P., and Hsu, K.C. (2012). Peptides derived from atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J Agric Food Chem 60, 973-978.
Manley, C.H., and Ahmedi, S. (1995). The development of process flavors. Trends In Food Science & Technology 6.
Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M., D.Hillaire-Buys, Novelli, M., and Ribes, G. (1998). Experimental NIDDM-development of a new model in adult rats administered Streptozocin and Nicotinamide. Diabetes 47.
Masiello, P., Novelli, M., Fierabracci, V., and Bergamini, E. (1990). Protection by 3-aminobenzamide and nicotinamide against streptozotocin-induced beta-cell toxicity in vivo and in vitro. Res Commun Chem Pathol Pharmacol 69, 17-32.
McIntosh, C.H., Demuth, H.U., Pospisilik, J.A., and Pederson, R. (2005). Dipeptidyl peptidase IV inhibitors: how do they work as new antidiabetic agents? Regul Pept 128, 159-165.
McRae, D. (2010). British columbia seafood industry. British Columbia Canada 1-16.
Meester, I.D., Lambeir, A.-M., Proost, P., and Scharpe, S. (2003). Dipeptidyl peptidase IV substrates-an update on in vitro peptide hydrolysis by human DPPIV. Dipeptidyl Aminopeptidases in Health and Disease 3-17.
Meier, J.J., Gallwitz, B., and Nauck, M.A. (2003). Glucagon-like peptide 1 and gastric inhibitory polypeptide potential applications in type 2 diabetes mellitus. Biodrugs 17 (2): 93-102.
Mest, H.J., and Mentlein, R. (2005). Dipeptidyl peptidase inhibitors as new drugs for the treatment of type 2 diabetes. Diabetologia 48, 616-620.
Mochida, T., Hira, T., and Hara, H. (2010). The corn protein, zein hydrolysate, administered into the ileum attenuates hyperglycemia via its dual action on glucagon-like peptide-1 secretion and dipeptidyl peptidase-IV activity in rats. Endocrinology 151, 3095-3104.
Muyonga, J.H., Cole, C.G.B., and Duodu, K.G. (2004). Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocolloids 18, 581-592.
Nauck, M.A., Homberger, E., Siegel, E.G., Allen, R.C., Eaton, R.P., Ebert, R., and Creutzfeldt, W. (1986). Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 63, 492-498.
Parmar, H.S., Jain, P., Chauhan, D.S., Bhinchar, M.K., Munjal, V., Yusuf, M., Choube, K., Tawani, A., Tiwari, V., Manivannan, E., et al. (2012). DPP-IV inhibitory potential of naringin: an in silico, in vitro and in vivo study. Diabetes Res Clin Pract 97, 105-111.
Peters, A.L. (2009). Patient and treatment perspectives: Revisiting the link between type 2 diabetes, weight gain, and cardiovascular risk. Cleve Clin J Med 76 Suppl 5, S20-27.
Petersen, B.L., Ward, L.S., Bastian, E.D., Jenkins, A.L., Campbell, J., and Vuksan, V. (2009). A whey protein supplement decreases post-prandial glycemia. Nutrition journal 8, 47.
Pieter, B.J.W. (2006). Protein hydrolysate enriched in peptides inhibiting DPP-IV and their use. PCT WO2006/068480.
Poucher, S.M., Cheetham, S., Francis, J., Zinker, B., Kirby, M., and Vickers, S.P. (2012). Effects of saxagliptin and sitagliptin on glycaemic control and pancreatic beta-cell mass in a streptozotocin-induced mouse model of type 2 diabetes. Diabetes, obesity & metabolism 14, 918-926.
Reimer, R., Christian, D.-N., Mace, K., Gremlich, S., and Neeser, J.-R. (2009). Treatment of diabetes with milk protein hydrolysate. United States Patent US 7585618B2.
Savoie, L. (1984). Effect of protein treatment on the enzymatic hydrolysis of lysinoalanine and other amino acids. Adv Exp Med Biol 177, 413-422.
Spellman, D., McEvoy, E., O’Cuinn, G., and FitzGerald, R.J. (2003). Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal 13, 447-453.
Szkudelski, T. (2012). Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med (Maywood) 237, 481-490.
Tabata, Y., and Ikada, Y. (1998). Protein release from gelatin matrices. Advanced Drug Delivery Reviews 31 (1998) 287-301.
Thiansilakul, Y., Benjakul, S., and Shahidi, F. (2007). Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme. J Food Biochem 31 (2007) 266-287.
Triplitt, C., Wright, A., and Chiquette, E. (2006). Incretin mimetics and dipeptidyl peptidase-IV inhibitors: potential new therapies for type 2 diabetes mellitus. Pharmacotherapy 26, 360-374.
Tulipano, G., Sibilia, V., Caroli, A.M., and Cocchi, D. (2011). Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors. Peptides 32, 835-838.
Umezawa, H., Aoyagi, T., Ogaqa, K., Naganawa, H., Hamada, M., and Takeuchi, T. (1984). Diprotins A and B, inhibitors of dipeptidyl aminopeptidase IV, produced by bacteria. The Journal Of Antibiotics XXXVII NO. 4.
Vahl, T., and D''Alessio, D. (2003). Enteroinsular signaling: perspectives on the role of the gastrointestinal hormones glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide in normal and abnormal glucose metabolism. Curr Opin Clin Nutr Metab Care 6, 461-468.
Van der Veken, P., Haemers, A., and Augustyns, K. (2007). Prolyl peptidases related to dipeptidyl peptidase IV: potential of specific inhibitors in drug discovery. Curr Top Med Chem 7, 621-635.
Vincent, S.H., Reed, J.R., Bergman, A.J., Elmore, C.S., Zhu, B., Xu, S., Ebel, D., Larson, P., Zeng, W., Chen, L., et al. (2007). Metabolism and excretion of the dipeptidyl peptidase 4 inhibitor [14C]sitagliptin in humans. Drug Metab Dispos 35, 533-538.
Wang, Y., Landheer, S., van Gilst, W.H., van Amerongen, A., Hammes, H.P., Henning, R.H., Deelman, L.E., and Buikema, H. (2012). Attenuation of renovascular damage in zucker diabetic fatty rat by NWT-03, an egg protein hydrolysate with ACE- and DPP4-inhibitory activity. PLoS One 7, e46781.
Wolf, G., and Ziyadeh, F.N. (1999). Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 56 (1999) pp. 393-405.
Xu, G., Stoffers, D.A., Habener, J.F., and Bonner-Weir, S. (1999). Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48.
Yan, S., Marguet, D., Dobers, J., Reutter, W., and Fan, H. (2003). Deficiency of CD26 results in a change of cytokine and immunoglobulin secretion after stimulation by pokeweed mitogen. Eur J Immunol 33, 1519-1527.
Yang, J.-I., Ho, H.-Y., Chu, Y.-J., and Chow, C.-J. (2008). Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food chemistry 110, 128-136.
Yip, R.G.C., and Wolfe, M.M. (2000). GIP biology and fat metabolism. Life Sci 66, No. 2, pp. 91-103.
Zhang, Z., Zhao, M., Wang, J., Ding, Y., Dai, X., and Li, Y. (2011). Oral administration of skin gelatin isolated from Chum salmon (Oncorhynchus keta) enhances wound healing in diabetic rats. Marine drugs 9, 696-711.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top