行政院衛生署。2013a。民國101年死因結果摘要表-全國主要死亡原因。行政院衛生署。台北市。
行政院衛生署。2013b。糖尿病防治手冊。行政院衛生署。台北市。
行政院衛生署。2009c。衛生署提醒醫療人員及病人含Sitagliptin成分藥品可能引起急性胰臟炎之不良反應。行政院衛生署。台北市。
行政院衛生署。2010d。健康食品調節血糖功能評估方法修訂草案_預告。行政院衛生署。台北市。
行政院農業委員會漁業署。2011。台灣地區99年漁業統計年報。行政院農業委員會漁業署。台北市。
黃蘭菁、李貫廷、李育霖、楊偉勛、黃國晉。2013。2013年美國糖尿病學會臨床治療指引摘要。台北市醫師公會會刊。
沈德昌、顏兆熊。2008。第2型糖尿病藥物治療新知。台灣醫界。51。董宇珊。2012。豬皮明膠水解物作為dipeptidyl peptidase-IV抑制劑及其抗糖尿病功效之研究。中國醫藥大學營養學系碩士論文。台中市。賴明宏。2002。飲食中補充米麩或三價鉻對第2型糖尿病患或STZ誘導的糖尿病大白鼠醣類及脂質代謝之影響。台北醫學院藥學研究所博士論文。台北市。Aart, V.A., Beelen-thomissen, Catharina, M.J., Zelland-Wolbers, Maria, L.A., Gilst, V., Hendrikus, W., Buikema, Hendrik, J., Nelissen, et al. (2009). Egg protein hydrolysates. PCT WO2009/128713A1.
Abbatrcola, A.M., Maggi, S., and Paolisso, G. (2008). New approaches to treating type 2 diabetes mellitus in the elderly. Drug Aging 25 (11): 913-925.
ADA (2013). American diabetes association-standards of medical care in diabetes--2013. Diabetes Care 36 Suppl 1, S11-66.
Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. J Agric Food Chem 27, No. 6.
Adler-Nissen, J. (1982). Limited enzymic degradation of proteins: A new approach in the industrial application of hydrolases. Journal of Chemical Technology and Biotechnology, 32(1), 138-156.
Adler-Nissen, J. (1986). Enzymic hydrolysis of food protein. London: Elsevier Applied Science Publishers. P 16-17.
Akarte, A.S., Srinivasan, B.P., and Gandhi, S. (2012). Vildagliptin selectively ameliorates GLP-1, GLUT4, SREBP-1c mRNA levels and stimulates beta-cell proliferation resulting in improved glucose homeostasis in rats with streptozotocin-induced diabetes. J Diabetes Complications 26, 266-274.
Augustyns, K.J.L., Lambeir, A.M., Borloo, M., Meester, I.D., Vedernikova, I., Vanhoof, G., Hendriks, D., Scharpe, S., and Haemers, A. (1997). Pyrrolidides synthesis and structure-activity relationship as inhibitors of dipeptidyl peptidase IV. Eur J Med Chem 32, 301-309.
Babey, M., Kopp, P., and Robertson, G.L. (2011). Familial forms of diabetes insipidus: clinical and molecular characteristics. Nat Rev Endocrinol 7, 701-714.
Barr, E.L., Cameron, A.J., Balkau, B., Zimmet, P.Z., Welborn, T.A., Tonkin, A.M., and Shaw, J.E. (2010). HOMA insulin sensitivity index and the risk of all-cause mortality and cardiovascular disease events in the general population: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) study. Diabetologia 53, 79-88.
Clemente, A., Vioque, J., Sanchez-Vioque, R., Pedroche, J., Bautista, J., and Millan, F. (1999). Protein quality of chickpea (Cicer arietinum L.) protein hydrolysates. Food chemistry 67 (1999) 269-274.
Cudennec, B., Fouchereau-Peron, M., Ferry, F., Duclos, E., and Ravallec, R. (2012). In vitro and in vivo evidence for a satiating effect of fish protein hydrolysate obtained from blue whiting (Micromesistius poutassou) muscle. Journal of Functional Foods 4, 271-277.
Deacon, C.F., Johnsen, A.H., and Holst, J.J. (1995). Human colon produces fully processed glucagon-like peptide-1 (7-36) amide. FEBS Lett 372 (1995) 269-272.
Do, S.-G., Park, J.-H., Nam, H., Kim, J.-B., Lee, J.-Y., Oh, Y.-S., and Suh, J.-G. (2012). Silk fibroin hydrolysate exerts an anti-diabetic effect by increasing pancreatic β cell mass in C57BL/KsJ-db/db mice. J Vet Sci 13, 339.
Drucker, D.J. (2003). Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care 26.
Duez, H., Cariou, B., and Staels, B. (2012). DPP-4 inhibitors in the treatment of type 2 diabetes. Biochem Pharmacol 83, 823-832.
Elsner, M., Gulbakke, B., Tiedge, M., Munday, R., and Lenzen, S. (2000). Relative importance of transport and alkylation for pancreatic beta-cell toxicity of streptozotocin. Daiabetologia 43: 1528-1533.
FAO (2011a). Food and agriculture organization of the united aations-chanos chanos.
FAO (2011b). Food and agriculture organization of the united aations-hippoglossus stenolepis.
FAO (2011c). Food and agriculture organization of the united aations-oreochromis niloticus.
Flentke, G.R., Munoz, E., Huber, B.T., Plaut, A.G., Kettner, C.A., and Bachovchin, W.W. (1991). Inhibition of dipeptidyl aminopeptidase IV (DP-IV) by Xaa-boroPro dipeptides and use of these inhibitors to examine the role of DP-IV in T-cell function. Proc Natl Acad Sci USA 88, pp. 1556-1559.
Gaudel, C., Nongonierma, A.B., Maher, S., Flynn, S., Krause, M., Murray, B.A., Kelly, P.M., Baird, A.W., Fitzgerald, R.J., and Newsholme, P. (2013). A whey protein hydrolysate promotes insulinotropic activity in a clonal pancreatic beta-cell line and enhances glycemic function in ob/ob mice. J Nutr 143, 1109-1114.
Gautier, J.F., Choukem, S.P., and Girard, J. (2008). Physiology of incretins (GIP and GLP-1) and abnormalities in type 2 diabetes. Diabetes Metab 34, S65-S72.
Gunnarsson, P.T., Winzell, M.S., Deacon, C.F., Larsen, M.O., Jelic, K., Carr, R.D., and Ahren, B. (2006). Glucose-induced incretin hormone release and inactivation are differently modulated by oral fat and protein in mice. Endocrinology 147, 3173-3180.
Hsu, K.-C., Lu, G.-H., and Jao, C.-L. (2009). Antioxidative properties of peptides prepared from tuna cooking juice hydrolysates with orientase (Bacillus subtilis). Food Research International 42, 647-652.
Huang, S.L., Jao, C.L., Ho, K.P., and Hsu, K.C. (2012). Dipeptidyl-peptidase IV inhibitory activity of peptides derived from tuna cooking juice hydrolysates. Peptides 35, 114-121.
Jung, E.Y., Lee, H.S., Lee, H.J., Kim, J.M., Lee, K.W., and Suh, H.J. (2010). Feeding silk protein hydrolysates to C57BL/KsJ-db/db mice improves blood glucose and lipid profiles. Nutrition research 30, 783-790.
Karim, A.A., and Bhat, R. (2009). Fish gelatin: properties, challenges, and prospects as an alternative to mammalian gelatins. Food Hydrocolloids 23, 563-576.
Kazakos, K. (2011). Incretin effect: GLP-1, GIP, DPP4. Diabetes Res Clin Pract 93, S32-S36.
Kim, S.-K., Kim, Y.-T., Byun, H.-G., Nam, K.-S., Joo, D.-S., and Shahidi, F. (2001). Isolation and characterization of antioxidative peptides from gelatin hydrolysate of alaska pollack skin. J Agric Food Chem 49, 1984-1989.
Kim, S.-K., and Mendis, E. (2006). Bioactive compounds from marine processing byproducts – A review. Food Research International 39, 383-393.
Kirino, Y., Sato, Y., Kamimoto, T., Kawazoe, K., Minakuchi, K., and Nakahori, Y. (2009). Interrelationship of dipeptidyl peptidase IV (DPP4) with the development of diabetes, dyslipidaemia and nephropathy: a streptozotocin-induced model using wild-type and DPP4-deficient rats. J Endocrinol 200, 53-61.
Lacroix, I.M.E., and Li-Chan, E.C.Y. (2012). Dipeptidyl peptidase-IV inhibitory activity of dairy protein hydrolysates. International Dairy Journal 25, 97-102.
Lambeir, A.-M., Durinx, C., Scharpe, S., and Meester, I.D. (2003). Dipeptidylpeptidase IV from bench to bedside an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci 40(3):209-294.
LeDoux, S.P., Woodley, S.E., Patton, N.J., and Wilson, G.L. (1986). Mechanisms of nitrosourea-induced beta-cell damage. Alterations in DNA. Diabetes 35, 866-872.
Leger, R., Thibaudeau, K., Robitaille, M., Quraishi, O., van Wyk, P., Bousquet-Gagnon, N., Carette, J., Castaigne, J.P., and Bridon, D.P. (2004). Identification of CJC-1131-albumin bioconjugate as a stable and bioactive GLP-1(7-36) analog. Bioorg Med Chem Lett 14, 4395-4398.
Li-Chan, E.C., Hunag, S.L., Jao, C.L., Ho, K.P., and Hsu, K.C. (2012). Peptides derived from atlantic salmon skin gelatin as dipeptidyl-peptidase IV inhibitors. J Agric Food Chem 60, 973-978.
Manley, C.H., and Ahmedi, S. (1995). The development of process flavors. Trends In Food Science & Technology 6.
Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M., D.Hillaire-Buys, Novelli, M., and Ribes, G. (1998). Experimental NIDDM-development of a new model in adult rats administered Streptozocin and Nicotinamide. Diabetes 47.
Masiello, P., Novelli, M., Fierabracci, V., and Bergamini, E. (1990). Protection by 3-aminobenzamide and nicotinamide against streptozotocin-induced beta-cell toxicity in vivo and in vitro. Res Commun Chem Pathol Pharmacol 69, 17-32.
McIntosh, C.H., Demuth, H.U., Pospisilik, J.A., and Pederson, R. (2005). Dipeptidyl peptidase IV inhibitors: how do they work as new antidiabetic agents? Regul Pept 128, 159-165.
McRae, D. (2010). British columbia seafood industry. British Columbia Canada 1-16.
Meester, I.D., Lambeir, A.-M., Proost, P., and Scharpe, S. (2003). Dipeptidyl peptidase IV substrates-an update on in vitro peptide hydrolysis by human DPPIV. Dipeptidyl Aminopeptidases in Health and Disease 3-17.
Meier, J.J., Gallwitz, B., and Nauck, M.A. (2003). Glucagon-like peptide 1 and gastric inhibitory polypeptide potential applications in type 2 diabetes mellitus. Biodrugs 17 (2): 93-102.
Mest, H.J., and Mentlein, R. (2005). Dipeptidyl peptidase inhibitors as new drugs for the treatment of type 2 diabetes. Diabetologia 48, 616-620.
Mochida, T., Hira, T., and Hara, H. (2010). The corn protein, zein hydrolysate, administered into the ileum attenuates hyperglycemia via its dual action on glucagon-like peptide-1 secretion and dipeptidyl peptidase-IV activity in rats. Endocrinology 151, 3095-3104.
Muyonga, J.H., Cole, C.G.B., and Duodu, K.G. (2004). Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocolloids 18, 581-592.
Nauck, M.A., Homberger, E., Siegel, E.G., Allen, R.C., Eaton, R.P., Ebert, R., and Creutzfeldt, W. (1986). Incretin effects of increasing glucose loads in man calculated from venous insulin and C-peptide responses. J Clin Endocrinol Metab 63, 492-498.
Parmar, H.S., Jain, P., Chauhan, D.S., Bhinchar, M.K., Munjal, V., Yusuf, M., Choube, K., Tawani, A., Tiwari, V., Manivannan, E., et al. (2012). DPP-IV inhibitory potential of naringin: an in silico, in vitro and in vivo study. Diabetes Res Clin Pract 97, 105-111.
Peters, A.L. (2009). Patient and treatment perspectives: Revisiting the link between type 2 diabetes, weight gain, and cardiovascular risk. Cleve Clin J Med 76 Suppl 5, S20-27.
Petersen, B.L., Ward, L.S., Bastian, E.D., Jenkins, A.L., Campbell, J., and Vuksan, V. (2009). A whey protein supplement decreases post-prandial glycemia. Nutrition journal 8, 47.
Pieter, B.J.W. (2006). Protein hydrolysate enriched in peptides inhibiting DPP-IV and their use. PCT WO2006/068480.
Poucher, S.M., Cheetham, S., Francis, J., Zinker, B., Kirby, M., and Vickers, S.P. (2012). Effects of saxagliptin and sitagliptin on glycaemic control and pancreatic beta-cell mass in a streptozotocin-induced mouse model of type 2 diabetes. Diabetes, obesity & metabolism 14, 918-926.
Reimer, R., Christian, D.-N., Mace, K., Gremlich, S., and Neeser, J.-R. (2009). Treatment of diabetes with milk protein hydrolysate. United States Patent US 7585618B2.
Savoie, L. (1984). Effect of protein treatment on the enzymatic hydrolysis of lysinoalanine and other amino acids. Adv Exp Med Biol 177, 413-422.
Spellman, D., McEvoy, E., O’Cuinn, G., and FitzGerald, R.J. (2003). Proteinase and exopeptidase hydrolysis of whey protein: Comparison of the TNBS, OPA and pH stat methods for quantification of degree of hydrolysis. International Dairy Journal 13, 447-453.
Szkudelski, T. (2012). Streptozotocin-nicotinamide-induced diabetes in the rat. Characteristics of the experimental model. Exp Biol Med (Maywood) 237, 481-490.
Tabata, Y., and Ikada, Y. (1998). Protein release from gelatin matrices. Advanced Drug Delivery Reviews 31 (1998) 287-301.
Thiansilakul, Y., Benjakul, S., and Shahidi, F. (2007). Antioxidative activity of protein hydrolysate from round scad muscle using alcalase and flavourzyme. J Food Biochem 31 (2007) 266-287.
Triplitt, C., Wright, A., and Chiquette, E. (2006). Incretin mimetics and dipeptidyl peptidase-IV inhibitors: potential new therapies for type 2 diabetes mellitus. Pharmacotherapy 26, 360-374.
Tulipano, G., Sibilia, V., Caroli, A.M., and Cocchi, D. (2011). Whey proteins as source of dipeptidyl dipeptidase IV (dipeptidyl peptidase-4) inhibitors. Peptides 32, 835-838.
Umezawa, H., Aoyagi, T., Ogaqa, K., Naganawa, H., Hamada, M., and Takeuchi, T. (1984). Diprotins A and B, inhibitors of dipeptidyl aminopeptidase IV, produced by bacteria. The Journal Of Antibiotics XXXVII NO. 4.
Vahl, T., and D''Alessio, D. (2003). Enteroinsular signaling: perspectives on the role of the gastrointestinal hormones glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide in normal and abnormal glucose metabolism. Curr Opin Clin Nutr Metab Care 6, 461-468.
Van der Veken, P., Haemers, A., and Augustyns, K. (2007). Prolyl peptidases related to dipeptidyl peptidase IV: potential of specific inhibitors in drug discovery. Curr Top Med Chem 7, 621-635.
Vincent, S.H., Reed, J.R., Bergman, A.J., Elmore, C.S., Zhu, B., Xu, S., Ebel, D., Larson, P., Zeng, W., Chen, L., et al. (2007). Metabolism and excretion of the dipeptidyl peptidase 4 inhibitor [14C]sitagliptin in humans. Drug Metab Dispos 35, 533-538.
Wang, Y., Landheer, S., van Gilst, W.H., van Amerongen, A., Hammes, H.P., Henning, R.H., Deelman, L.E., and Buikema, H. (2012). Attenuation of renovascular damage in zucker diabetic fatty rat by NWT-03, an egg protein hydrolysate with ACE- and DPP4-inhibitory activity. PLoS One 7, e46781.
Wolf, G., and Ziyadeh, F.N. (1999). Molecular mechanisms of diabetic renal hypertrophy. Kidney Int 56 (1999) pp. 393-405.
Xu, G., Stoffers, D.A., Habener, J.F., and Bonner-Weir, S. (1999). Exendin-4 stimulates both beta-cell replication and neogenesis, resulting in increased beta-cell mass and improved glucose tolerance in diabetic rats. Diabetes 48.
Yan, S., Marguet, D., Dobers, J., Reutter, W., and Fan, H. (2003). Deficiency of CD26 results in a change of cytokine and immunoglobulin secretion after stimulation by pokeweed mitogen. Eur J Immunol 33, 1519-1527.
Yang, J.-I., Ho, H.-Y., Chu, Y.-J., and Chow, C.-J. (2008). Characteristic and antioxidant activity of retorted gelatin hydrolysates from cobia (Rachycentron canadum) skin. Food chemistry 110, 128-136.
Yip, R.G.C., and Wolfe, M.M. (2000). GIP biology and fat metabolism. Life Sci 66, No. 2, pp. 91-103.
Zhang, Z., Zhao, M., Wang, J., Ding, Y., Dai, X., and Li, Y. (2011). Oral administration of skin gelatin isolated from Chum salmon (Oncorhynchus keta) enhances wound healing in diabetic rats. Marine drugs 9, 696-711.