跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.182) 您好!臺灣時間:2025/11/27 14:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭閔元
研究生(外文):Ming-Yuen Hsiao
論文名稱:應用分散式內核貝氏濾波實現室內定位之研究
論文名稱(外文):Indoor Positioning With Distributed Kernel-Based Bayesian Filtering
指導教授:溫志煜
指導教授(外文):Chih-Yu Wen
口試委員:廖俊睿郭耀文
口試委員(外文):Jan-Ray LiaoYaw-Wen Kuo
口試日期:2013-07-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:48
中文關鍵詞:無線感測網路室內定位系統支持向量迴歸內核粒子濾波
外文關鍵詞:Wireless Sensor NetworkIndoor Positioning SystemSupport Vector RegressionKernel-Based Particle Filtering
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
在無線感測網路中,我們套用許多定位演算法在室內定位系統上。然而發現許多演算法的計算複雜度太高,不適合應用在感測器。舉例而言,粒子濾波演算法的先天的限制,造就粒子濾波器只能以少量的取樣點進行定位。伴隨而來的結果則是高定位誤差。因此,需擬定新定位計劃以提高定位準確度。本論文利用支持向量迴歸的觀念抑制估測錯誤,同時增強定位系統的可靠性,而創出內核粒子濾波演算法,此演算法主要遵循三個步驟:(1)初始支持向量迴歸估測、(2)內核重新加權,和(3)估測精緻化。實驗結果顯示此論文主要可利用少量取樣點即可達到優良的室內定位準確度,以及三顆參考點的KBPF演算之效能可匹配四顆參考點的KLF演算法定位效益。
In the wireless sensor network, several localization algorithms have been proposed for indoor positioning systems. However, the computational complexity of these schemes is high, which may not be suitable to be implemented in sensor nodes. For example, the limited sensor capabilities lead to performing the particle filtering with a very small set of samples, which results in high positioning errors. Hence, a novel sampling scheme may be required to improve estimation accuracy for the particle filter method. In this thesis, the concept of support vector regression (SVR) is conducted to suppress the estimation error, which enhances the reliability of the positioning system. Accordingly, we propose a Kernel-Based Particle Filtering (KBPF) algorithm, which consists of the following three steps: (1) Initial SVR Estimation; (2) Kernel-based Re-weighting; and (3) Estimation Refinement. The experimental results show that the proposed scheme can achieve good indoor positioning accuracy with a small number of samples and the performance of the proposed KBPF system using three beacons is comparable with that of the KLF system using four beacons.
致謝 ii
中文摘要 iii
Abstract iv
List of Tables v
List of Figures vi
1. INTRODUCTION 1
2. THE INTEGRATED LOCALIZATION SYSTEM 3
2.1 System Model 4
2.1.1 Wireless Sensor Network 5
2.1.2 Gateway 9
2.1.3 Server 11
2.2 Algorithms 13
2.2.1 Kite Location Fix(KLF) 13
2.2.2 Particle Filter 16
2.2.3 Kernel-Based Particle Filter 19
3. Kernel Functions 23
3.1 Selection of Kernel Functions 24
3.2 Gaussian Kernel-Based Particle Filter 28
3.3 Quadratic Kernel-Based Particle Filter 29
3.4 Norm Kernel-Based Particle Filter 31
4. Experimental Results 33
4.1 Hardware Specifications 33
4.2 Environmental Settings 36
4.3 Results 40
5. CONCLUSION 45
REFERENCES 46
[1] M. Sugano, T. Kawazoe, Y. Ohta, and M. Murata, “Indoor localization system using RSSI measurement of wireless sensor network based on ZigBee standard.”In Proc. IASTED Int. Conf.WSN, Jul. 2006, pp. 1-6.
[2] B. S. Choi, et al., ”A hierarchical algorithm for indoor mobile robot localization using RFID sensor fusion”, IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2226-2235, 2011.
[3] H. Chen , Q. Shi , R. Tan , H. V. Poor and K. Sezaki, ”Mobile element assisted cooperative localization for wireless sensor networks with obstacles”, IEEE Trans. Wireless Commun.,vol. 9, no. 3, pp. 956-963, 2010.
[4] H. Guo , K. S. Low and H. A. Nguyen, “Optimizing the localization of a wireless sensor network in real time based on a low-cost microcontroller”, IEEE Trans. Ind. Electron., vol. 58,no. 3, pp. 741-749, 2011.
[5] A. Dhital et al., “Bayesian filtering for indoor localization and tracking in wireless sensor networks,” EURASIP Journal on Wireless Communications and Networking, 2012, 2012:21.
[6] Jie Wang, et al., “Toward Robust Indoor Localization Based on Bayesian Filter Using Chirp-Spread-Spectrum Ranging,” IEEE Transactions on Industrial Electronics, vol. 59, no. 3, pp. 1622-1629, March 2012.
[7] J. Hightower and G. Borriello, “Particle Filters for Location Estimation in Ubiquitous Computing: A Case Study,” in Proc.of the Sixth International Conference on Ubiquitous Computing, pp. 88-106, Sep. 2004.
[8] Gordon, N.; Salmond, D.; Smith, A. F. M. Novel approach to nonlinear/non-Gaussian Bayesian state estimation IEEE Proc. of Radar and Signal Processing 1993, 140, 107-113.
[9] Yi-Chin Kuo, “An Integrated Mobile Sensor Platform for Collaborative Indoor Self-Positioning Applications. ”
[10] N. Cristianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-based Learning Methods, Cambridge University Press, Cambridge, 2002.
[11] Kazuhiro Hotta, “Adaptive weighting of local classifiers by particle filters for robust tracking,” Pattern Recognition, vol. 42,no.5, pp. 619-628, May 2009.
[12] B. Yin, et al., ”A novel particle filter method for mobile robot localization,” in Proc. of International Conference on Measuring Technology and Mechatronics Automation, pp. 269-272, 2010.
[13] A. Yao, et al., “A compact association of particle filtering and kernel based object tracking,” Pattern Recognition, Volume 45Issue 7, pp. 2584-2597, July 2012.
[14] Chang, Cheng and Sahai, Anant, “Cramer-Rao-type bounds for localization,” EURASIP Journal on Applied Signal Processing, Vol. 2006, Article ID 94287, pp. 1-13, 2006.
[15] Yubin Zhao, Yuan Yang, and Marcel Kyas, “Dynamic Searching Particle Filtering Scheme for Indoor Localization in Wireless Sensor Network,” in Proc. of the 9th Workshop on Positioning Navigation and Communication (WPNC), pp. 65-70, 2012.
[16] J. Luo, et al., “Non-interactive location surveying for sensor networks with mobility-differentiated ToA,” in Proc. IEEE INFOCOM, Barcelona, Spain, Apr. 2006, pp. 1-12.
[17] MySQL, http://www.mysql.com.
[18] Savvides, A.; Han, C.C.; Srivastava, M.B. Dynamic fine-grained localization in ad-hoc networks of sensors. In Proceedings of ACM SIGMOBILE, Rome, Italy, July 16-21, 2001; pp. 166-179.
[19] V. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995.

[20] Kernel basis functions.
http://people.revoledu.com/kardi/tutorial/Regression/KernelRegression/Kernel.htm
[21] Gram Matrix, http://mathworld.wolfram.com/GramMatrix.html.
[22] Mercer's theorem, http://en.wikipedia.org/wiki/Mercer's_theorem.
[23] Sabri Boughorbel, Jean-Philippe Tarel, Nozha Boujema, "Conditionally Positive
Definite Kernels For SVM Based Image Recognition".
[24] Kernel Functions for Machine Learning Applications.
http://crsouza.blogspot.tw/2010/03/kernel-functions-for-machine-learning.html
[25] J. Polastre R. Szewczyk K. Whitehouse-A. Woo D. Gay J. Hill-M. Welsh E. Brewer P.
Levis, S. Madden and D. Culler. ”tinyos: An operating system for wireless sensor networks.”. In Ambient Intelligence Springer-Verlag,2004.
[26] Hanback Electronics. http://www.hanback.cn/.
[27] Kim S.H Yun S.U, Youk Y.S. ”study on applicability of self-organizing maps to sensor
network.”. In Proc. of International Symposium on Advanced Intelligent Systems, 2007.
[28] D. Culler. ”the nesc language: a holistic approach to network embedded systems.”. In
Proc. of the ACM SIGPLAN 2003 Conf. on Programming Language Design and Implementation (PLDI), June 2003.
[29] H. Lim S. Han and J. Lee. ”an efficient localization scheme for a differential driving
mobile robot based on rfid system.”. IEEE Trans. Ind. Electron, vol. 54, no. 6:pp. 3362–3369, 2007.
[30] Yanping Cong Bo Yin, ZhiqiangWei and Tao Xu. ”a novel particle filter method for
mobile robot localization”. in Proc. of 2010 International Conference on Measuring Technology and Mechatronics Automation, pages 269–272, 2010.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top