跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/08 08:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林筱青
研究生(外文):Lin, Shiau-Ching
論文名稱:黑蒜發酵條件及其抗氧化、抑菌及抗發炎之研究
論文名稱(外文):Studies on the Antioxidation Activity, Antibacterial, and Anti-inflammation of Black Garlic from Different Fermented Conditions
指導教授:韓建國韓建國引用關係黃元勵
指導教授(外文):Han, Chien-KuoHuang, Yuan-Li
口試委員:韓建國黃元勵柯燕珍
口試委員(外文):Han, Chien-KuoHuang, Yuan-LiKo, Yen-Chen
口試日期:2017-01-11
學位類別:碩士
校院名稱:亞洲大學
系所名稱:保健營養生技學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2017
畢業學年度:105
語文別:中文
論文頁數:83
中文關鍵詞:黑蒜發酵抗氧化抑菌抗發炎
外文關鍵詞:black garlicfermentationantioxidantantibacterialanti-inflammation
相關次數:
  • 被引用被引用:3
  • 點閱點閱:2460
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
大蒜為世界各地常用之香辛調味料,且臺灣的大蒜品質優良,但近年來常受到進口產品競爭、環境氣候變遷或產量失衡等影響,造成大蒜供需失調、價格波動劇烈及影響蒜農產業的發展。開發具吸引力的加工產品如黑蒜保健產品,不失是解決上述問題的良方。雖然近年來有一些黑蒜加工產品上市,但其製程都需長時間,且鮮少有完整的研究數據探討黑蒜發酵製程與產品品質之相關性。故本研究以臺灣蒜頭最大產區-雲林縣莿桐鄉的大蒜為原料,在相對溼度70%下以溫度40℃和70℃分別進行發酵24天,並探討發酵期間蒜頭的理化性質及感官評估之變化,同時研究發酵過程其乙醇及水萃取物之抗氧化能力、抑菌能力及抗發炎活性之更迭。研究結果顯示,大蒜一般成分分析中以總醣所占比例最高,其含量為76.69%,其次為粗蛋白18.42%。理化性質的變化以70℃發酵之產品較為明顯,在水含量、水活性、pH值、L值及b值皆隨著發酵天數的增加而下降,他們在第24天時有最低之測定值;反之褐變強度則隨著發酵時間的增加而遞增。然而40℃發酵產品只有輕度的褐變,所以在理化性質的變化不若70℃發酵產品顯著,故40℃發酵黑蒜產品的亮度及黃色度分析值較大。另外在抗氧化能力方面,清除DPPH自由基的能力,70℃產品優於40℃發酵之黑蒜,其中乙醇萃取物優於水萃取物,發酵後之乙醇萃取物各實驗組自由基清除率約為71.67-77.72%;反之,亞鐵離子螯合能力則以40℃發酵產品高於70℃,在發酵第24天之乙醇萃取物有最高之測定值,其值為90.10%;還原力以70℃發酵之水萃取物在第24天有最高之測定值,其值為2.24;總酚及類黃酮含量,在70℃發酵期間隨著發酵天數的增加其含量隨之上升,以發酵第24天水萃取物有最高之測定值,其分析值分別為33.07及5.41 (mg/ml)。然而抑菌能力則以新鮮大蒜的具有較強之抑菌活性,其中以水萃取對於Bacillus cereus ATCC 14579有最大之抑菌圈,其值為3.30 mm;40℃發酵之萃取物隨著發酵天數增加,其抑菌能力遞減,在70℃發酵部分在第8天就無法測得抑菌活性。在抗發炎試驗中,新鮮大蒜及黑蒜之萃取物對小鼠巨噬細胞RAW264.7皆不會降低細胞之存活率;在抑制一氧化氮(Nitric oxide;NO)生成部分以40℃發酵黑蒜能有效抑制NO的產生,且抑制能力顯著大於70℃及新鮮大蒜,在發酵第8天之乙醇萃取有最好之抑制能力,抑制率為36.65%;在抑制一氧化氮合成酶(inducible NOS;iNOS)的表現方面,不論40℃及70℃發酵之黑蒜皆能有效抑制iNOS表現量,且乙醇萃取物的抑制效果大於水萃取物,而在40℃發酵第8天有最好之抑制iNOS表現量,其值降低40.67%;發酵後各實驗組皆能有效抑制腫瘤壞死因子-α(tumor necrosis factor α;TNF-α)的生成。總之,黑蒜發酵過程中其理化性質與抗氧化能力的變化是息息相關的,而根據各項抗氧化能力指標中,黑蒜70℃發酵之乙醇萃取物在第16-24天其測定值已達平穩;而抗發炎能力分析中,發酵後皆能有效抑制一氧化氮及一氧化氮合成酶的生成,故在相對溼度70%及溫度70℃條件下經16-24天發酵即可成不錯的黑蒜產品,其對抗氧化及抗發炎能力皆明顯增加,比未發酵大蒜更具有保健功效。
Garlic is commonly used as spicy seasoning in the world, Taiwan has high quality garlic, but in recent years, Taiwan suffers the impacts including the competition of imports, environment climate change or yield imbalance, resulting in the maladjustment between garlic supply and demand, price fluctuations and influences the development of garlic agriculture. The good way to solve these problems is exploiting attractive processing products such as black garlic health care products. Although some garlic processing products have been released on the market in recent years, but it takes a long time to ferment and it is rare in completed researches on studying in the correlation between the black garlic fermentation process and the product quality. Therefore, in this study, we use the garlic from Citong Township, Yun Lin County which is the largest production area of Taiwan as raw materials, carry on 24 days fermentation under the relative humidity of 70% and temperature of 40℃ and 70℃, respectively, investigating the changes of their physicochemical properties and sensory evaluation and also studying the variations of antioxidant ability, antibacterial activity and anti-inflammatory activity of their ethanol and water extracts during fermentation. The results demonstrated that total carbohydrate had the highest content ratio in garlic general components analysis which was 76.69%, followed by crude protein 18.42%. The fermentation products which temperature were 70℃ had largest changes in physicochemical properties, including the water content, water activity, pH value, L value and b value, were decreased with the increase in the number of fermentation days, they had the lowest measured value at 24 days. On the contrary, the browning intensity increased with the increase of fermentation time. However, the fermentation products of 40℃ had only slight browning, so the changes in physicochemical properties were not as obvious as the fermentation products of 70℃, thus, they had larger analysis value in brightness and yellowness. In the aspect of antioxidant capacity, 70℃ fermentation of black garlics products were statistically significant better than 40℃ in the ability to remove DPPH free radicals, and their ethanol extracts were better than water extracts which had 71.67-77.72% of scavenging percentage. On the other hand, ferrous ions chelating ability of 40℃ fermentation products were higher than 70℃, the ethanol extracts on the 24th day of fermentation had the highest measured value of 90.10%. The water extracts at 70℃ on 24th day had the highest reducing power which had the value of 2.24. The content of total polyphenols and flavonoids in 70℃ fermentation products increased with the rise in the number of fermentation days, especially in 24th day, had the highest value of 33.07 and 5.41 (mg / ml), respectively. Nevertheless, fresh garlic had the strongest antibacterial activity; particularly their water extract had the largest inhibition zone for Bacillus cereus ATCC 14579 with the value of 3.30 mm. Moreover, the antibacterial activity of the extract at 40℃ decreased progressively with the increase in the number of fermentation days. In 70℃ fermentation, the antibacterial activity could not be detected on the 8th day. The anti-inflammatory test illustrated that extracts of fresh or black garlics were not declined the survival rate of mouse macrophage RAW264.7 cells. Furthermore, the black garlics in fermentation temperature of 40℃ could effectively inhibit the productions of nitric oxide (NO), and the inhibition ability were significantly higher than 70℃ and fresh garlic, the ethanol extracts on 8th day had the best inhibition ability with the inhibition rateis 63.35%. We further investigated the expression of nitric oxide synthase (iNOS), the results showed that the black garlics in fermentation temperature of 40℃ and 70℃, both had the capacity on inhibiting the expression of iNOS, and the ethanol extracts were more effective than the water extracts. However, the fermentation temperature of 40℃ on 8th day had the best capacity on inhibiting the expression of iNOS with decreasing the value to 40.67%.Besides that, TNF-α production was inhibited by all experimental groups after fermentation. In conclusion, the antioxidant ability of black garlic is closely related to their physicochemical properties during fermentation, according to the indexes of antioxidant ability, the ethanol extracts of black garlics fermenting at 70 ℃ have stable level on the 16th to 24th day; while in the anti-inflammatory ability analysis, the fermented black garlics could effectively inhibit the productions of nitric oxide and nitric oxide synthase. Hence, carrying on fermentation for 16-24 days under relative humidity of 70% and temperature of 70℃, a batch of good quality black garlic can be obtained, their antioxidant and anti-inflammatory properties are better than fresh garlic and they possess health benefits.
目錄Ⅲ
表目錄Ⅴ
圖目錄Ⅵ
摘要Ⅶ
AbstractⅨ
縮寫表XI
第一章 前言1
第二章 文獻探討3
第一節大蒜3
一、大蒜簡介3
二、大蒜的機能性成分6
三、大蒜的保健功效8
四、大蒜的加工應用10
第二節黑蒜12
一、黑蒜簡介12
二、黑蒜加工條件13
三、黑蒜的化學成分14
第三章 材料與方法16
第一節實驗架構16
第二節材料17
第三節化學試劑17
第四節儀器設備19
第五節實驗方法20
一、一般成分分析21
二、色澤分析21
三、水活性測定21
四、pH值測定21
五、褐變強度分析22
六、萃取方法22
七、清除DPPH 自由基能力之測定22
八、亞鐵離子螯合能力之測定22
九、還原力之測定23
十、總酚含量分析23
十一、類黃酮含量分析23
十二、微生物之培養23
十三、抑菌圈及最小抑菌濃度24
十四、細胞之培養24
十五、細胞存活率試驗24
十六、降發炎物質NO試驗25
十七、RNA萃取25
十八、反轉錄製備成cDNA26
十九、即時定量聚合酵素連鎖反應(Q-PCR)26
二十、感官評估26
二十一、統計分析27
第四章 結果與討論28
第一節大蒜的一般成分分析28
第二節黑蒜發酵24天期間理化性質之分析28
第三節黑蒜發酵24天期間感官評估之分析31
第四節 黑蒜發酵24天期間抗氧化能力之分析31
第五節黑蒜發酵24天期間抗氧化能力相關性之分析34
第六節黑蒜發酵24天期間抑菌能力之分析34
第七節黑蒜發酵24天期間抗發炎能力之分析36
第五章 結論38
參考文獻40
附表48
附圖54




表目錄
表一、大蒜的一般成分分析48
表二、黑蒜發酵24天期間色澤之變化49
表三、黑蒜發酵24天期間感官評估之變化50
表四、黑蒜發酵24天期間相關性之分析51
表五、黑蒜發酵24天期間抑菌性之變化52
表六、黑蒜發酵24天期間最小抑菌濃度之變化53



圖目錄
圖一、台灣地區常見大蒜品種之照片54
圖二、黑蒜發酵24天期間之照片56
圖三、黑蒜發酵24天期間水含量之變化58
圖四、黑蒜發酵24天期間水活性之變化60
圖五、黑蒜發酵24天期間pH值之變化62
圖六、黑蒜發酵24天期間褐變強度之變化64
圖七、黑蒜發酵24天期間清除DPPH自由基能力之變化66
圖八、黑蒜發酵24天期間亞鐵離子螯合能力之變化68
圖九、黑蒜發酵24天期間還原力之變化70
圖十、黑蒜發酵24天期間總酚之變化72
圖十一、黑蒜發酵24天期間類黃酮之變化74
圖十二、黑蒜發酵24天期間巨噬細胞RAW264.7細胞存活率之變化76
圖十三、黑蒜發酵24期間抑制巨噬細胞RAW264.7一氧化氮(NO)表現之變化78
圖十四、黑蒜發酵24天期間抑制巨噬細胞RAW264.7 iNOS生成之變化80
圖十五、黑蒜發酵24天期間抑制巨噬細胞RAW264.7 TNF-α生成之變化82



1.丁克祥、鐘水先、姚樹人。1987。微量指血超氧化物歧化酶快速測定法的研究。老年學雜誌。7(2):42-42。
2.于紅霞、赫連玉良。1995。大蒜及其製劑抗癌抗病機裡的研究進展。衛生研究。6:363-367。
3.卞倩倩、李繼蘭、盧斐。2012。我國黑蒜出口情形及國際市場分析。中華全國供銷合作總社濟南果品研究社。3:47-48。
4.王文亮、王世清、李曉玲、弓志青、陳相艷。2013。洋蔥的活性成分藥理功效及產品開發综述。中國食物與營養。19(11):37-39。
5.王佑民。2013。銀耳添加對漢堡包理化性質之研究。亞洲大學保健營養生技學系。碩士論文。
6.王育紅、湯高奇、鄭其良、錢志偉、賈彥傑、石明生。2015。黑蒜的加工、組分及生物活性研究進展。中國農學通報31(35):91-96
7.王岩。2009。穩定我國大蒜生產效益的主要途徑。農產品加工。學刊。4:73-76。
8.王偉。2004。最新食品衛生國家標準實施手冊。吉林省:吉林科學技術出版社。
9.王瑞筠。2004。大蒜有機硫化物對脂多醣體誘發RAW264.7巨噬細胞發炎反應及基因表現之影響。中山醫學大學營養科學研究所。碩士論文。
10.王衛東、王瀅、王超、孫月娥、高明俠。2013。美拉德反應對大蒜營養成分和抗氧化性的影響。食品科技。4:42-44。
11.安東、李新勝、馬超、周萍、葛邦國、王朝川、孟曉峰。2014。黑蒜成分及功能的研究進展。中國果菜。34:10。
12.安東。2011。黑蒜加工工藝的研究。山東農業大學食品科學所。碩士論文。
13.行政院農業委員會。統計與出版品。大蒜產銷現階段問題及因應輔導措施。http://www.coa.gov.tw/view.php?catid=5067 (2016年6月8日上網)
14.吳大康、陰曉偉。1997。大蒜素穩定性的研究。食品科學。18.5: 34-36。
15.宋偉偉。1993。糖基化蛋白和氧自由基在糖尿病和糖尿病併發症中的作用中華內分泌代謝雜誌。9(3):170。
16.宋衛國、李聚寶、劉開啟。2004。大蒜化學成分及其抗菌活性機理研究進展。園藝學報。31(2):263-268。
17.李秀雲。2012。山藥冰淇淋產品的研發及其理化特性。國立中興大學食品科學系。碩士論文。
18.李建穎。2005。醃製技術與實例。北京:化學工業出版社。
19.李國圃。1987。蔥蒜類蔬菜栽培-大蒜。中國蔬菜栽培學。中國農科學院蔬菜研究所主編。農業出版社。北京。376-383。
20.沈軍。1991。世界掀起大蒜熱。中國食品報。4(8)。
21.周光華,1999,蔬菜優質高產栽培的栽培的理論基礎。山東科學出版社。420-423。
22.房建昌。2005。食品安全市場准入制度實施手冊。北京:中科多媒體電子出版社。
23.林巧玟、顏永福。1995。大蒜大蒜栽培管理與採收後貯藏技術。台南區農業專訊。14。
24.林羿均,林筱青,韓建國,黃元勵 。2015。不同醃漬條件對大蒜抗氧化能力之影響 。台灣食品科技學會第45次年會。
25.林滄澤。2000。大蒜栽培生產技術。台南區農業改良場技術專刊。
26.林筱青、范于烜、黃元勵、韓建國。2014。不同發酵天數及不同萃取條件對大蒜抗氧化能力之影響。台灣食品科技學會第44次(第22屆第2次)年會。
27.林筱青、范于烜、黃元勵、韓建國。2015。不同發酵天數及不同前處理對黑蒜理化性質與抗菌活性之影響。第八屆亞洲大學暨中國醫藥大學生物科技研討會。
28.林經偉、陳水心、彭瑞菊、張淳淳。2012。大蒜栽培管理技術。台南區農業改良場技術專刊。行政院農業委員會台南區農業改良所編印。
29.林經偉、陳水心。2011。大蒜栽培之土壤肥料管理技術。農業新知與技術。臺南區農業專訊。77(9)。
30.林學正、蕭吉雄、張有明。1983。大蒜。蔬菜作物種源庫指引(第1輯)。臺灣省農業試驗所編印。
31.邵國強。2004。大蒜與保健。化學教育。25(10): 3-6。
32.金紹黑。2004。大蒜的保健作用與開發利用。中國果菜。(6):37。
33.姜宏哲、吳天飛。1986。茶葉及蔬果中鍺的定量研究。教育科學研究期刊。747-756。
34.姜針針。2012。黑蒜的市場調查及行銷策劃。黑龍江科技資訊。25:73-74。
35.柳愛蓮、劉綉華。2007。天然產物抗DPPH自由基活性研究。周口師範學院學報。24(5)。
36.段詠新、傅庭治。1997。硒在大蒜體內的生物富集及其抗氧化作用。園藝學報。 24(4):343-347。
37.孫秀青、陳銀霞。2009。大蒜的抗菌效果研究。鶴壁職業技術學院。7。
38.徐文靜、杜茜、趙洪銀、董英山、周義發、李啟雲。2008。大蒜提取液抑菌活性及其稳定性分析。中國生物防治。24:76-80。
39.時威、張岩、白陽、劉穎。2013。大蒜素的抑菌作用及其穩定性研究。食品與發酵科技201年。47(3) :76-78。
40.袁靜萍、蘇琦。2002。大蒜烯丙基硫化物的抗癌機制。國外醫學:生理、病理科學與臨床分冊。22(6):556-558。
41.常海軍、余群力、員建民、韓玲、甘柏中。2005。香菇大蒜複合醬油工藝研究。甘肅農業大學食品科學與工程學院。(4):60-62。
42.康雅。2010。大蒜的營養成分及其保健功能。中國食物與營養。9。
43.張明照。1999。檸檬葉之抗氧化性。屏東科技大學食品科學系。碩士論文。
44.張俊生。2006。大蒜的生理功能。中國食物與營養。5:45。
45.張洪溯。1992。蒜製品的食療價值及製備原理。中國調味品。(4):22-23。
46.張為憲。2014。高等食品化學。p.24-27。台北。臺灣。
47.張超良。1990。藥用蔬菜。廣西:廣西科學技術出版社。
48.張筱珮。2003。大蒜萃取物對小鼠巨噬細胞株一氧化氮、細胞激素和前列腺素生成的影響。台北醫學大學保健營養研究所。碩士論文。
49.梅四衛、朱涵珍。2009。大蒜研究進展。中國農業通報。28(8):154-158。
50.許承家。2009。基隆山藥乾燥條件的探討及其製作冬粉之研究。亞洲大學保健營養生技學系。碩士論文。
51.郭志偉。2009,淺談大蒜的保健作用。中國食物與營養。6:63-64。
52.郭亞平。2013。大蒜水溶液抑菌活性的熱穩定研究。環球中醫藥。6(SI)。
53.陳為銘。2008。蔥屬蔬菜用於冷藏吳郭魚保鮮之研究。亞洲大學保健營養生技學系。碩士論文。
54.陸怡靜。2008。韭菜、寬葉韭抑菌性及抗氧化性之研究。亞洲大學保健營養生技學系。碩士論文。
55.陸幗一。2000。大蒜高產栽培。金盾出本社。北京。
56.喻榮輝。1996。屈松柏大蒜防治心腦血管疾病的實驗研究概況。湖北中醫雜誌。18(2):52-54。
57.程文超、張弘。2003。食品保健全書。北京:中國畫報出版。
58.馮樹丹,彌曉菊,馬躍。1998。大蒜經濟價值及脫臭機理。北方園藝。(3):37-38。
59.黃木蘭。2001。1%大蒜浸出液治療慢性結腸炎 68 例。福建中醫藥。32(5):47。
60.黃仲華。1997。中國調味食品技術手冊。北京:中國標準出版社。
61.黃雨三。2005。保健食品檢驗與評價技術規範實施手冊。北京:清華同方電子出版社。
62.楊艷梅、高彥輝。2000。大蒜抗癌作用研究進展。國外醫學:中醫中藥分冊。2:67-71。
63.詹凱婷。2009。蒲公英萃取物對於小鼠巨噬細胞株RAW 264.7之抗發炎之研究。弘光科技大學生物科技研究所。碩士論文。
64.賈衛斌、任培桃、胡波、王玉華、張志誠。1999。大蒜素應用研究。31。
65.裴厚寶。2011。大蒜中營養成分分析及其保健功效淺析。山東農業大學。
66.趙麗華,王小鶴。2006。我國大蒜產品加工技術研究進展。內蒙古農業大學學報。27(4)。
67.蔡旻都、陳皓君。2006。CHEMIDTRY (THE CHINESE CHEM. SOC., TAIPEI)。64(3) :353-315
68.衛生福利部食品藥物管理署。台灣地區食品營養成分資料庫。https://consumer.fda.gov.tw/Food/detail/TFNDD.aspx?f=0&pid=476 (2016年6月8日上網)
69.鄭雨玹。2014。金針菇可食部位及其菇腳之生理活性探討。亞洲大學保健營養生技學系。碩士論文。
70.鄭國華。2005。大蒜素硒預防胃癌及大蒜油白藜蘆醇誘導胃癌細胞凋亡機理。山東大學。
71.盧正偉。2006。CCND1、CDK5R2、PTP4A1、CDK4及THY1基因在肝細胞癌之異常表現探討。亞洲大學生物科技與生物資訊學系。碩士論文。
72.蕭政弘。2015。大蒜品種及生育期施用營養元素對蒜胺酸含量之影響。國立中興大學園藝系。博士論文。
73.賴忠維。2009。三裂葉蟛蜞菊抑菌、抗氧化、抗發炎及抗癌之研究。亞洲大學保健營養生技學系。碩士論文。
74.謝穎。1999。水果蔬菜保鮮技術。延邊人民出版社。
75.韓建國,陳為銘。2007。蔥屬蔬菜用於冷藏吳郭魚保鮮之研究。台灣食品科學技術學會第三十七屆年會報告。
76.韓建國,鄧正賢,陸怡靜。2007。韭菜及寬葉韭抑菌作用之研究。台灣食品科學技術學會第三十七屆年會報告。
77.蘇美瓊、李元瑞、楊柏崇、吳彩娥、許克勇。2005。大蒜提取物微膠囊技術研究。西北農林科技大學學報(自然科學版)。33(8)。
78.Abramovitz, D., Gavri, S., Harats, D., Levkovitz, H., Mirelman, D., Miron, T., Eilat-Ader, S., Rabinkov, A., Wilchek, M., Eldar, M. and Vered, Z. 1999. Allicin-induced decrease in formation of fatty streaks ( atherosclerosis) in mice fed a cholesterol-rich diet. Coronary Artery Dis. 10:515-520.
79.Andualem, B. 2013. Combined antibacterial activity of stingless bee (Apismellipodae) honey and garlic (Allium sativum) extracts against standard and clinical pathogenic bacteria. Asian Pac J Trop Biomed. 9(3):725-731.
80.Angeles, M., T.M., Jesús, P.A., Rafael, M..R., Tania, M.A. 2016. Evolution of some physicochemical and antioxidant properties of black garlic whole bulbs and peeled cloves. Food Chemistry. 199:135-139.
81.Ankri, S. & Mirelman, D. 1999. Antimicrobial roperties of allicin from garlic. Microbes and Infection. 2:125-129.
82.AOAC. 1990. Official methods of analysis (15 th ed). Method no. 926.08, 976.05, 920.39, 6 923.03. Washington, DC:Association of Official Analytical Chemists.
83.Bae G. S., Kim M. S., Jung W. S., Seo S. W., Yun S. W., Kim S. G., Park R. K., Kim E. C., Song H. J., Park S. J. 2010. Inhibition of lipopolysaccharideinduced inflammatory responses by piperine. Eur J Pharmacol. 642:154-62.
84.Bae, S.E., Cho, S.Y., Won, Y.D. , Lee, S.H., Park, H.J. 2014. Changes in S-allyl cysteine contents and physicochemical properties of black garlic during heat treatment. Food Science and Technology. 55:397-402.
85.Balasubramani P., Palaniswamy P.T., Visvanathan R., Thirupathi V., Subbarayan A., Prakash Maran J. 2015. Microencapsulation of garlic oleoresin using maltodextrin as wall material by spray drying technology. International Journal of Biological Macromolecules. 72:210-217.
86.Benzing-Purdie, L.M., Ripmeester, J.A., Ratcliffe, C.I. 1985. Effects of temperature on Maillard reaction products. Journal of Agricultural and Food Chemistry. 33:31-33.
87.Biljana, B., Neda, M.D., Isidora, S., Anackov, G., Ruzica, I. 2008. Phenolics as antioxidants in garlic (Allium sativum L., Alliaceae). Food Chemistry. 111:925-929.
88.Butt M. S., Sultan M. T., Butt M. S., Iqbal J. 2009. Garlic: nature's protection against physiological threats. Crit Rev Food Sci Nutr. 49:538-51.
89.Charron C. S., Milner J. A., Novotny J. A. 2016. Garlic. Encyclopedia of Food and Health. 184-19.
90.Choi, D.J., Lee, S.J., Kang, M.J., Cho, H.S., Sung, N.J., Shin, J.H. 2008. Physicochemical characteristics of black garlic (Allium sativum L.). Journal of the Korean Society of Food Science and Nutrition. 37 (4):465-471.
91.Choi, I.S., Cha, H.S., Lee, Y.S. 2014. Physicochemical and Antioxidant Properties of Black Garlic. Molecules. 19:16811-16823.
92.Choi, J. H., Kim, W. J., Sung,H. S., Hong, S.K. 1981. Qualitychanges in redginseng extract during high temperature storage. Journal of Korean Agricultural Chemical Society. 24:166-174.
93.Christel, Q.D., Bernard, G., Jacques, V., Thierry, D., Claude, B., Michel, L., Micheline, C., Jean- Claude, C., François, B., Francis, T. 2000. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour. J Ethnopharmacol. 72:35-42.
94.Chu, Q.J., Lee, D.TW., Tsao, S.W.,Wang, X.H., Wong, Y.C. 2007. S-allylcysteine, a water-soluble garlic derivative, suppresses the growth of a human androgen independent prostate cancer xenograft, CWR22R, under in vivo conditions. BJU International. 99: 925-932.
95.Davidson, P.M. & Parish, M.E. 1989. Methods for testing the efficacy of food antimicrobials. Food Technology. 43: 148-155.
96.Decker, E.A. & Welch, B. 1990. Role ferritin as a lipid oxidation catalyst inmuscle food. Journal of Agricultural and Food Chemistry. 38(3):674-677.
97.Eichner, K. 1981. Antioxidant effect of Maillard reaction intermediates. Progress in Food and Nutrition Science. 5: 441-451.
98.Emiko, S. 2006. Increased Anti-oxidative Potency of Garlic by Spontaneous Short-term Fermentation. 61:157-160.
99.Gioxari A., Kogiannou D. A. A., Kalogeropoulos N., Kaliora A. C. 2016. Phenolic Compounds: Bioavailability and Health Effects. Harokopio University.
100.Gorinstein, S., Jastrzebski, Z., Namiesnik, J., Leontowicz, H., Leontnwicz, M. and Trakhtenberg, S. 2007. The atherosclerotic heart disease and protecting properties of garlic:contemporary data. Mol. Nutr. Food Res. 51:1365-1381.
101.Gorinstein, S., Leontowicz, H., Leontowicz, M., Namiesnik, J., Najman, K., Drzewiecki, J., Cvikrova, M., Martincova, O., Katrich, E., Trakhtenberg, S. 2008. Comparison of the main bioactive componunds and antioxidant activities in garlic and white and red onions after treatment protocols. J. Agric. Food Chem. 56:4418-4426.
102.Hofmann, T. 1998. Studies on melanoidin-type colorants generated from the Maillard reaction of protein-bound lysine and furan-2-carboxaldehyde–chemical characterisation of a red coloured domaine. Zeitschrift für Lebensmitteluntersuchung und-Forschung A. 206.4: 251-258.
103.Huang, Z. Y., Ciou, Y. C., Chen, C. S., Huang, W. Y., Chen, J. X., Huang, Y. L., Han, C. K. 2013. Antioxidative and Antimicrobial Activities of Garlic and Black Garlic Extracted by Ethanol. International conference and exhibition on nutraceuticals and functional foods, Taipei, Taiwan.
104.Imai J., Ide N., Nagae S., Moriguchi T., Matsuura H., Itakura Y. 1994. Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Planta Med. 60:417-20.
105.Ioannou, I., Hafsa, I., Hamdi, S., Charbonnel, C., Ghoul, M. 2012. Review of the effects of food processing and formulation on flavonol and anthocyanins behavior. J. Food Eng. 111: 208-217.
106.Jeong Y. Y., Ryu J. H., Shin J.H., Kang M. J., Kang J. R., Han J., Kang D. 2016. Comparison of anti-oxidant and anti-inflammatory effects between fresh and aged black garlic extracts. Molecules. 21:430.
107.Jeong, J.W., Lee, H.H., Han, M.H., Kim, G.Y., Hong, S.H., Park, C., Choi, Y.H. 2014. Ethanol extract of Poria cocos reduces the production of inflammatory mediators by suppressing the NF-kappaB signaling pathway in lipopolysaccharide-stimulated RAW 264.7 macrophages. BMC Complementary and Alternative Medicine. 14:101
108.Jia, Z., Tang, M., Wu, J. 1999. The determination of flavonoid content in mulberry and their 167 scavenging effects on superoxide radicals. Food Chem. 64: 555-559.
109.Jung Y. M., Lee S. H., Lee D. S., You M. J., Chung I. K., Cheon W. H., Kwon Y. S., Lee Y. J., Ku S.K. 2011. Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects. Nutr Res. 31:387-96.
110.Kaanane, A., & Labuza, T. P. 1989. The Maillardreactionin foods. Progress in Clinical & Biological Research.304:301-327.
111.Kang, S. M., Kim, K. N., Lee, Ahn, G., Cha, S. H., Kim, A. D., Yang, X. D., Kang M. C., Jeon Y. J. 2011. Anti-inflammatory activity of polysaccharide purified from AMG-assistant extract of Ecklonia cava in LPS-stimulated RAW264.7 macrophages. Carbohydrate Polymers. 85:80-85.
112.Kim M. H., Kim M. J., Lee J. H., Han J. I., Kim J. H., Sok D. E., Kim M. R. 2011. Hepatoprotective effect of aged black garlic on chronic alcohol-induced liver injury in rats. J Med Food. 14:732-8.
113.Kim M. J., Yoo Y. C., Kim H. J., Shin S. K., Sohn E. J., Min A. Y., Sung N. Y., Kim M. R. 2014. Aged black garlic exerts anti-inflammatory effects by decreasing no and proinflammatory cytokine production with less cytotoxicity in LPS-stimulated RAW 264.7 macrophages and LPS-induced septicemia mice. J Med Food. 17:1057-63.
114.Kim S. H., Jung E. Y., Kang D. H., Chang U. J., Hong Y. H., Suh H. J. 2012. Physical stability, antioxidative properties, and photoprotective effects of a functionalized formulation containing black garlic extract. J Photochem Photobiol B. 117:104-10.
115.Kim, H.K., Jo, K.S., Kwon, D.Y., Park, M.H. 1992. Effects of drying temperature and sulfiting on the qualities of dried garlic slices. Journal of Korean Agricultural Chemical Society. 35: 6-9.
116.Kim, J.S., Kang, O.J., Gweon, O.C. 2013. Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. Journal of functional foods. 5:80-86.
117.Kim, S. D., Do, J. H., Oh, H. I. 1981. Antioxidant activity of Panax ginseng browning products. Journal of Korean Agricultural Chemical Society. 24:161-166.
118.Kimura S., Tung Y. C., Pan M. H., Su N. W., Lai Y. J., Cheng K. C. 2016. Black garlic: A critical review of its production, bioactivity, and application. Journal of food and drug analysis. 414.
119.Kodera, Y., Suzuki, A., Imada, O., Kasuga, S., Sumioka, I., Kanezawa, A. 2002. Physical, chemical and biological properties of S-allylcysteine, an amino acid derived from garlic. Journal of Agricultural and Food Chemistry. 30:622-632.
120.Kumar, S., Sahoo, R., Ahuja, P.S. 2006. Isozyme of autoclavable superoxide dismutase (SOD), a process for the identification and extraction of the SOD and use of the said SOD in cosmetic, food, and pharmaceutical compositions. US patent: 7037697 B2.
121.Labuza, T. P., & Saltmarch, M. 1981. The nonenzymatic browning reaction as affected by water in foods. Water activity: Influences on food quality. 605-65).
122.Lee E. N., Choi Y. W., Kim H.K., Park J. K., Kim H. J., Kim M. J., Lee H. W., Kim K. H., Bae S. S., Kim B. S., Yoon S. 2011. Chloroform extract of aged black garlic attenuates TNF-a-induced ROS generation, VCAM-1 expression, NF-kB activation and adhesiveness for monocytes in human umbilical vein endothelial cells. Phytother Res. 25:92-100.
123.Lee Y. M., Gweon O. C., Seo Y. J., Im J., Kang M. J., Kim M. J., Kim J. I. 2009. Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes mellitus. Nutr Res Pract. 3:156-61.
124.Lee, J. W., Lee, S. K., Do, J. H., & Shim, K. H. 1998. Characteristics of the water soluble browning reaction of Korean red ginseng as affected by heating treatment. Journal of Ginseng Research. 22:193-199.
125.Legault, R.R., Hendel, C.E., Talburt, W.F. 1954. Retention of quality in dehydrated vegetables through in package desiccation. Food Technology. 8: 143-149.
126.Manzocco, L., Calligaris, S., Mastrocola, D., Nicoli, M. C., Lerici, C. R. 2000. Review of non-enzymatic browning and antioxidant capacity in processed foods. Trends in Food Science & Technology, 11:340-346.
127.Michalski, W. P. 1996. Chromatographic and electrophoretic methods for analysis of superoxide dismutases. Journal of Chromatography B. 684:59-75.
128.Milner, J. A. 2003. Incorporating basic nutrition science into health interventions for cancer prevention. The Journal of nutrition. 133.11: 3820-3826.
129.Montano, A., Casado, F.J., de Castro, A., Sánchez, A.H., Rejano, L. 2004. Vitamin content and amino acid composition of pickled garlic processed with and without fermentation. Journal of Agricultural and Food Chemistry. 52: 7324-7330.
130.Nijveldt, R. J., van Nood, E., van Hoorn, D. E., Boelens, P. G., van Norren, K., van Leeuwen, P. A. 2001. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 74:418-425.
131.Nuttakaan Leelarungrayub, M.S., Viboon Rattanapanone, P.D., Nantaya Chanarat, P.D., Janusz, M., Gebicki, P.D. 2006. Quantitative evaluation of the antioxidant properties of garlic and shallot preparations. Nutrition. 22:266–274.
132.Oh, B. K., Mum, J., Seo, H. W., Ryu, S. Y., Kim, S. Y., Lee, B. H., Oh, K. S. 2011. Euonymus alatus extract attenuates LPS-induced NF-KB activation via IKKβ inhibition in RAW264.7 cells. Journal of Ethnopharmacology. 134:288-293.
133.Oommen, S., Anto, R. J., Srinivas, G., Karunagaran, D. 2004. Allicin (from garlic) induces caspase-mediated apoptosis in cancer cells. Eur. J Pharmacol. 485:97-103.
134.Oyaizu, M. 1986. Antioxidaive activity of browning products of glucosamine fractionated by organic colvent and thin-layer chromatography. Nippon Shokuhin Kogyo Gakkaishi. 35: 771-775.
135.Rapusas, R. S., & Driscoll, R. H. 1995. Kinetics of non-enzymatic browning in onion slices during isothermal heating. Journal of Food Engineering. 24:417-429.
136.RodrigoA., SarayQ. F., RocíoI. L. R., EnriqueO. F. G., JuanP. R. G., LucreciaC. Q., DanielO. S. 2015. Immunomodulation and Anti-Inflammatory Effects of Garlic Compounds. JournalofImmunologyResearch. 1-13.
137.Samaniego-Esguerra, C. M., Boag, I. F., & Robertson, G. L. 1991. Kinetics of quality deterioration in dried onions and green beans as a function of temperature and water activity. Lebensmittel-Wissenshaft und Technologie. 24:53-58.
138.Sato E., Kohno M., Hamano H., Niwano Y. 2006. Increased antioxidative potency of garlic by spontaneous short-term fermentation. Plant Foods Hum Nutr. 61:157-60.
139.Sharma, N.C., Sahi, S.V., Jain, J. C. 2005. Sesbania drummondii cell cultures: ICP-MS determination of the accumulation of Pb and Cu. Microchemical Journal. 81(1):163-169.
140.Shimada, K., Fujikawa, K., Yahara, K., Nakamura T. 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. Journal of Agricultural and Food Chemistry. 40(6):945-948.
141.Shin J. H., Lee C. W., Oh S. J., Yun J., Kang M. R., Han S. B., Park H., Jung J. C., Chung Y. H., Kang J.S. 2014. Hepatoprotective effect of aged black garlic extract in rodents. Toxicol Res. 30:49-54.
142.Shin J. H., Ryu J. H. , Kang M. J., Hwang C. R., Hana J., Kang D. 2013. Short-term heating reduces the anti-inflammatory effects of fresh raw garlic extracts on the LPS-induced production of NO and pro-inflammatory cytokines by downregulating allicin activity in RAW 264.7 macrophages. Food and Chemical Toxicology. 58:545-551.
143.Stratil, P., Klejdus, B., Kubán, V. 2006. Determination of total content of phenolic compounds and their antioxidant activity in vegetables e evaluation of spectrophotometric methods. Journal of Agricultural and Food Chemistry. 54:607-616.
144.Toledano-Medina M. A., Perez-Aparicio J., Moreno-Rojas R., Merinas-Amo T. 2016. Evolution of some physicochemical and antioxidant properties of black garlic whole bulbs and peeled cloves. J Food Chem. 199:135-9.
145.Tressl, R. 1998. New melanoidin-like Maillard polymers from 2-deoxypentoses. Journal of agricultural and food chemistry. 46(1): 104-110.
146.Wang, D., Feng , Y., Liu, J., Yan, J., Wang, M., Sasaki, J., Lu, C. 2010. Black Garlic (Allium sativum) Extracts Enhance the Immune System. Medicinal and Aromatic Plant Science and Biotechnology Global Science Books. 4 (1):37-40.
147.Xu, G., Ye, X., Chen, J., Liu, D. 2007. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract. J. Agric. Food Chem. 55:330-335.
148.Xu, Y.S., Feng, J.G., Zhang, D., Zhang, B., Luo, M., Su, D., Lin, N.M. 2013. S-allylcysteine, a garlic derivative, suppresses proliferation and induces apoptosis in human ovarian cancer cells in vitro. ActaPharmacol Sin. In press.
149.Yu, T.,Lee, Y. J., Jang H. J., Kim, A. R., Hong, S.,Kim,T.W.,Kim, M. Y., Lee, J., Lee, Y. G., Cho J. Y. 2011. Anti-inflammatory activity of Sorbus commixta water extract and its molecular inhibition mechanism. Journal of Ethnopharmacology. 134:493-500.
150.Yuan H., Sun L., Chen M., Wang J. 2016. The comparison of the contents of sugar, Amadori, and Heyns compounds in fresh and black garlic. J Food Sci. 81:C1662-8.
151.Zhang X., Li N., Lu X., Liu P., Qiao X. 2015. Effects of temperature on the quality of black garlic. J Sci Food Agric. 96:2366-72.
152.Zhang, G.H., Ge, H.B., Li, Q.Y., Zhang, X.Y. 2004. Role of SOD in protection strawberry leaves from photo-inhibition damage. Chinese Journal of Fruit Science. 21:328-330.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top