1. 朱敬平,李篤中, 污泥處置(IV):策略與永續利用, 國立臺灣大學「台大工程」學刊第八十四期,第 91–101頁,2002。2. Khanbilvardi, R., Afshari, S. Sludge ash as fine aggregate for concrete mix. Journal of environmental engineering, 121, 633-638, 1995.
3. Wang, K.S., Chiou, I.J., Chen, C.H., Wang, D. Lightweight properties and pore structure of foamed material made from sewage sludge ash. Construction and Building Materials, 19, 627-633, 2005.
4. 謝國正, 石門水庫淤泥燒製輕質骨材性質,礦冶,50/2,第126-133頁,2006。5. 林維明,吳介源, 應用結構輕質骨材混凝土的經濟性評估,土木技術第三卷第四期,第152-165頁, 2000。6. Riley, C. M. Relation of chemical properties to the bloating of clays. Journal of The American Ceramic Society, 34, 121-128, 1951.
7. de’Gennaro, R., Cappeletti, P., Cerri, G., de’Gennaro, M., Dondi, M., Langella, A. Zeolitic tuffs as raw materials for lightweight aggregates. Applied Clay Science, 25, 71-81, 2004.
8. González-Corrochano, B., Alonso-Azcárate, J., Rodas, M., Luque, F.J., Barrenechea, J.F. Microstructure and mineralogy of lightweight aggregates produced from washing aggregate sludge, fly ash and used motor oil, Cement & Concrete Composites, 32, 694-707, 2010.
9. Ramamurthy, K., Harikrishnan, K.I. Influence of binders on properties of sintered fly ash aggregate. Cement & Concrete Composites, 28, 33-38, 2006.
10. 蔡尚晏,水庫淤泥添加玻璃粉燒製輕質骨材之研究,碩士論文,國立成功大學資源工程研究所,2008。11. 傅建璋,升溫速率對石門水庫淤泥製備輕質骨材之影響,碩士論文,國立成功大學資源工程研究所,2009。12. Tay, J.H., Yip, W.K., Show, K.Y. Clay-blended sludge as lightweight aggregate concrete material. Journal of Environmental Engineering, 117(6), 834-844, 1991.
13. 林月婷,下水污泥焚化灰燒製輕質骨材與應用於混凝土材料之性質研究,碩士論文,國立中央大學環境工程研究所,2003。14. Wang, X., Jin, Y., Wang, Z., Mahar, R.B., Nie, Y. A research on sintering characteristics and mechanisms of dried sewage sludge. Journal of Hazardous Materials, 160, 489-494, 2008.
15. Chiou, I.J., Wang, K.S., Chen, C.H., Lin, Y.T. Lightweight aggregate made from sewage sludge and incinerated ash. Waste Management, 26, 1453-1461, 2006.
16. Cheeseman, C.R., Virdi, G.S. Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resources, Conservation and Recycling, 45, 18-30, 2005.
17. Ochoa, de Alda, J.A.G., Feasibility of recycling pulp and paper mill sludge in the paper and board industries. Resources, Conservation and Recycling, 52, 965-972, 2008.
18. Furlani, E., Tonello, G., Maschio, S., Aneggi, E., Minichelli, D., Bruckner, S., Lucchini, E., Sintering and characterization of ceramics containing paper sludge, glass cullet and different types of clayey materials. Ceramics international, 37, 1293-1299, 2011.
19. Torres, P., Fernandes, H.R., Agathopoulos, S., Tulyaganov, D.U., Ferreira, J.M.F. Incorporation of granite cutting sludge in industrial porcelain tile formulations. Journal of European Ceramic Society, 24, 3177-3185, 2004.
20. Srivastava, V.C., Mall, I.D., Mishra, I.M. Equilibrium modeling of ternary adsorption of metal ions onto rice husk ash. Journal of Chemical and Engineering Data, 54, 705-711, 2009.
21. Naiya, T.K., Bhattacharya, A.K., Mandal, S., Das, S.K. The sorption of lead(Ⅱ) ions on rice husk ash. Journal of Hazardous Materials, 163, 1254-1264, 2009.
22. Feng, Q., Lin, Q., Gong, F., Sugita, S., Shoya, M. Adsorption of lead and mercury by rice husk ash. Journal of Colloid and Interface Science, 278, 1-8, 2004.
23. Mane, V.S., Mall, I.D., Srivastava, V. C. Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash. Journal of Environmental Management, 84, 390-400, 2007.
24. Lakshmi, U.R., Srivastava, V.C., Mall, I.D., Lataye, D.H. Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for Indigo Carmine dye. Journal of Environmental Management, 90, 710-720, 2009.
25. Sharma, P., Kaur, R., Baskar, C., Chung, W.J., Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination, 259, 249-257, 2010.
26. Jang, H.T., Park, Y.K., Ko, Y.S., Lee, J.Y., Margandan, B. Highly siliceous MCM-48 from rice husk ash for CO2 adsorption. International Journal of Greenhouse Gas Control, 3, 545-549, 2009.
27. Margandan, B., Lee, J.Y., Ramani, A., Jang, H.T. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting. Journal of Hazardous Materials, 175, 928-938, 2010.
28. Lee, C.L., Lee, K.T., Mohamed, A.R. Rice husk ash sorbent doped with copper for simultaneous removal of SO2 and NO: Optimization study. Journal of Hazardous Materials, 183, 738-745, 2010.
29. Xue, Y., Hou, H., Zhu, S. Competitive adsorption of copper(Ⅱ), cadmium(Ⅱ), lead(Ⅱ) and zinc(Ⅱ) onto basic oxygen furnace slag. Journal of Hazardous Materials, 162, 391-401, 2009.
30. Agyei, N.M., Strydom, C.A., Potgieter, J.H. An investigation of phosphate ion adsorption from aqueous solution by fly ash and slag. Cement and Concrete Research, 30, 823-826, 2000.
31. Xue, Y., Hou, H., Zhu, S. Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: Isotherm and kinetic study. Chemical Engineering Journal, 147, 272-279, 2009.
32. Bonenfant, D., Kharoune, L., Sauvé,S., Hausler, R., Niauette, P., Mimeault, M., Kharoune, M. Molecular analysis of carbon dioxide adsorption processes on steel slag oxides. International Journal of Greenhouse Gas Conctrol, 3, 20-28, 2009.
33. Liu, C.F., Shih, S.M. Kinetics of the reaction of iron blast furnace slag/hydrated lime sorbents with SO2 at low temperatures: effects of sorbent preparation conditions. Chemical Engineering Science, 59, 1001-1008, 2004.
34. Gascó, G., Blanco, C.G., Guerrero, F., Mendez Lázaro, A.M. The influence of organic matter on sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 74, 413-420, 2005.
35. Senesi, N. Binding mechanisms of pesticides to soil humic substances. Science of the Total Environment, 123/124, 63-76,1992.
36. Gascó, G., Cueto, M.J., Méndez, A. The effect of acid treatment on the pyrolysis behavior of sewage sludges. Journal of Analytical and Applied Pyrolysis, 80, 496-501, 2007.
37. Martin, M.J., Artola, A., Balaguer, M.D., Rigola, M. Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chemical Engineering Journal, 94, 231-239, 2003.
38. Jindarom, C., Meeyoo, V., Kitiyanan, B., Rirksomboon, T., Rangsunvigit, P. Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge. Chemical Engineering Journal, 133, 239-246, 2007.
39. Jindarom, C., Meeyoo, V., Kitiyanan, B., Rirksomboon, T., Rangsunvigit, P., Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge. Chemical Engineering Journal, 133, 239-246, 2007.
40. Rozada, F., Calvo, L.F., García, A.I., Martín-Villacorta, J., Otero, M. Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresource Technology, 87, 221-230, 2003.
41. Rio, S., Le Coq, L., Faur, C., Lecomte, D., Le Cloirec, P., Preparation of adsorbents from sewage sludge by steam actvation for industrial emission treatment. Process Safety and Environmental Protection, 84(B4), 258-264, 2006.
42. Bouzid, J., Elouear, Z., Ksibi, M., Feki, M., Montiel, A. A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes. Journal of Hazardous Materials, 152, 838-845, 2008.
43. Pan, S.C., Lin, C.C., Tseng, D.H. Reusing sewage sludge ash as adsorbent for copper removal from wastewater. Resources, Conservation and Recycling, 39, 79-90, 2003.
44. Li, W.H., Yue, Q.Y., Gao, B.Y., Ma, Z.H., Li, Y.J., Zhao, H.X. Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions. Chemical Engineering Journal, 171, 320-327, 2011.
45. Tsai, C.C., Wang, K.S., Chiou, I.J. Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge. Journal of Hazardous Materials, B134, 87-93, 2006.
46. Ducman,V., Mirtič,B. The applicability of different waste materials for the production of lightweight aggregates. Waste Management, 29, 2361-2368, 2009.
47. Huang, Q.W., Zhu, L.H., Wang, P.L., Cheng, Y.B. Formation behaviors of Sr0.4Ba0.6Nb2O6 powders synthesized from the molten salt of KCl. Journal of Materials Science Letters, 22, 949-951, 2003.
48. Soykan, H.Ş. Low-temperature fabrication of steatite ceramics with boron oxide addition. Ceramics International, 33, 911-914, 2007.
49. Hong, S.H., Messing, G. L. Mullite Transformation Kinetics in P2O5-, TiO2-, and B2O3-Doped Aluminosilicate Gels. Journal of the American Ceramic Society, 80 (6), 1551-1559, 1997.
50. Christogerou, A., Kavas, T., Pontikes, Y., Rathossi, C., Angelopoulos, G.N. Evolution of microstructure, mineralogy and properties during firing of clay-based ceramics with borates. Ceramics International, 36, 567–575, 2010.
51. Uslu, T., Arol, A.I. Use of boron waste as an additive in red bricks. Waste Management, 24, 217-220, 2004.
52. McCulloch, L. Crystalline Boric Oxide. Journal of the American Chemical Society, 59(12), 2650–2652, 1937.
53. http://en.wikipedia. org/ wiki/sodium_ carbonate (2011).
54. Yang, J., Xiao, B., Boccaccini, A.R. Preparation of low melting temperature glass-ceramics from municipal waste incineration fly ash. Fuel, 88 1275-1280, 2009.
55. Hsiung, J.S., Huang, Y.C., Li, K.C.,Yang, S. Study on the influence of additives in an industrial calcium fluoride and waterworks sludge co-melting system. Journal of Environmental Management, 84, 384-389, 2007.
56. Ruixiang, Z. Process optimization in batch crystallization of sodium fluosilicate. Crystal Research and Technology, 40, 243-247, 2005.
57. Hu, S.H., Wu, J.Y., Hsiao, T.C., Tsai, M.S. Characteristic improvement of metal-contaminated sludge using mineralization. Environmental Progress & Sustainable Energy, 29, 68-77, 2010.
58. Liu, X.M., Yang, G., Fu, S.Y. Mass synthesis of nanocrystalline spinel ferrites by a polymer-pyrolysis route, Materials Science and Engineering: C, 27, 750-755, 2007.
59. Sun, Z., Liu, L., Jia, D.Z., Pan, W. Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials. Sensors and Actuators B: Chemical, 125, 144-148, 2007.
60. Zhu, H., Yang, D., Zhu, L. Hydrothermal growth and characterization of magnetite (Fe3O4) thin films. Surface and Coatings Technology, 201, 5870-5874, 2007.
61. Barale, M., Lefévre, G., Carrette, F., Catalette, H., Fédoroff, M., Cote, G. Effect of the adsorption of lithium and borate species on the zeta potential of particles of cobalt ferrite, nickel ferrite, and magnetite. Journal of Colloid and Interface Science, 328, 34-40, 2008.
62. Mastral, A.M., Gallen, M.S., García, T., Navarro, M.V. Improvement of liquids from coal-tire co-thermolysis. Characterization of the obtained oils. Fuel Processing Technology, 64, 135-140, 2000.
63. Chang, Y.M. On pyrolysis of waste tire: degradation rate and product yields. Resources, Conservation and Recycling, 17, 125-139, 1996.
64. Ouadi, M., Brammer, J.G., Yang, Y., Hornung, A., Kay, M. The intermediate pyrolysis of de-inking sludge to produce a sustainable liquid fuel. Journal of Analytical and Applied Pyrolysis, 102, 24-32, 2013.
65. Samanya, J., Hornung, A., Apfelbacher, A., Vale, P. Characteristics of the upper phase of bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw. Journal of Analytical and Applied Pyrolysis, 94, 120-125, 2012.
66. Xu, R., Ferrante, L., Hall, K., Briens, C., Berruti, F. Thermal self-sustainability of biochar production by pyrolysis. Journal of Analytical and Applied Pyrolysis, 91, 55-66, 2011.
67. Angin, D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology, 128, 593-597, 2013.
68. Kim, K.H., Kim, J.Y., Cho, T.S., Choi, J.W. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (pinus rigida). Bioresource Technology, 118, 158-162, 2012.
69. Montané, D., Torné-Fernández, V., Fierro, V. Activated carbons from lignin: kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid, 106, 1-12, 2005.
70. Lillo-Ródenas, M.A., Marco-Lozar, J.P., Cazorla-Amorós, D., Linares-Solano, A. Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide. Journal of Analytical and Applied Pyrolysis, 80, 166-174, 2007.
71. Nahil, M.A., Williams, P.T. Activated carbons from acrylic textile waste. Journal of Analytical and Applied Pyrolysis, 89, 51-59, 2010.
72. Lillo-Ródenas, M.A., Fletcher, A.J., Thomas, K.M., Cazorla-Amorós, D., Linares-Solano, A. Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration. Carbon, 44, 1455-1463, 2006.
73. Chiang, Y.C., Chiang, P.C., Huang, C.P. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon, 39, 523-534, 2001.
74. Foo, K.Y., Hameed, B.H. Detoxification of pesticide waste via activated carbon adsorption process. Journal of Hazardous Materials, 175, 1-11, 2010.
75. Slejko, F.L. Adsorption technology: A step-by-step approach to process evaluation and application. New York:Marcel Dekker, Inc. 1985.
76. Batzias, F.A., Sidiras, D.K. Dye adsorption by calcium chloride treated beech sawdust in batch and fixed-bed systems. Journal of Hazardous Materials, B114, 167-174, 2004.
77. 曲榮君,金屬離子吸附材料製備‧結構‧性能,北京:化學工業出版社,2009。
78. Hubbe, M.A., Beck, K.R., O’Neal, W.G., Sharma, Y.C. Cellulosic substrates for removal of pollutants from aqueous systems: A review. 2. Dye. Bioresources 7(2), 2592-2687, 2012.
79. Chiang, Y.M., Birnie, D. P., Kingery, W.D. Physical Ceramics, John Wiley & Sons, Inc., 1997.
80. Huang, S.C., Chang, F.C., Lo, S.L., Lee, M.Y., Wang, C.F., Lin, J.D. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. Journal of Hazardous Materials, 144, 52-58, 2007.
81. Wainwright, P.J., Cresswell, D.J.F., Synthetic aggregates from combustion ashes using an innovative rotary kiln. Waste Management, 21, 241-246, 2001.
82. http://en.wikipedia.org/wiki/Boric_acid (2011).
83. http://en.wikipedia.org/wiki/Boric_oxide (2011).
84. Hung, M.F., Hwang, C.L. Study of fine sediments for making lightweight aggregate. Waste Management & Research, 25, 449–456, 2007.
85. Lehman, R.L., Gentry, J.S., Glumac, N.G. Thermal stability of potassium carbonate near its melting oint. Thermochimica Acta, 316, 1-9, 1998.
86. Kang, S.J.L., Sintering: Densification, Grain Growth, and Microstructure. Oxford: Elsevier Butterworth-Heinemann , 233-234, 2005.
87. Ochoa, de Alda, J.A.G., Feasibility of recycling pulp and paper mill sludge in the paper and board industries. Resources, Conservation and Recycling, 52, 965-972, 2008.
88. 陳豪吉,顏聰,王順元,除造華,賴文銘, 以燃煤電廠底灰燒製輕質骨材之研究, 台電工程月刊, 第七百二十期, 第37-49頁, 2007。89. Tay, J.H., Show, K.Y., Hong, S.Y., Chien, C.Y., Lee, D.J. Thermal stabilization of iron-rich sludge for high strength aggregates, Journal of Materials in Civil Engineering, 15, 557-585, 2003.
90. Chen, H.J., Wang, S.Y., and Tang, C.W. Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate, Construction and Building Materials, 24, 46-55, 2010.
91. Tang, C.W., Chen, H.J., Wang, S.Y., Spaulding, J. Production of synthetic lightweight aggregate using reservoir sediments for concrete and masonry, Cement & Concrete Composites, 33, 292-300, 2011.
92. Lu, X.Q., Johnson, W.D. The reaction of aquatic humic substances with copper(Ⅱ) ions: an ESR study of complexation. Science of the Total Environment, 203, 199-207, 1997.
93. Burton, A.W., Ong, K., Rea, T., Chan, I.Y. On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous and Mesoporous Materials, 117, 75-90, 2009.
94. Tseng, R.L. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation. Journal of Hazardous Materials, 147, 1020-1027, 2007.
95. Lin, Y.F., Chen, H.W., Chien, P.S., Chiou, C.S., Liu, C.C. Application of bifunctional magnetic adsorbent to adsorb metal cations and anionic dyes in aqueous solution. Journal of Hazardous Materials, 185, 1124-1130, 2011.
96. Han, R., Zhang, J., Han, P., Wang, Y., Zhao, Z., Tang, M. Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite. Chemical Engineering Journal, 145(3), 496-504, 2009.
97. Aksu, Z. Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(Ⅱ) ions onto Chlorella vulgaris. Process Biochemistry, 38(1), 89-99, 2002.
98. Zou, W., Han, R., Chen, Z., Zhang, J., Shi, J. Kinetic study of adsorption of Cu(II) and Pb(II) from aqueous solutions using manganese oxide coated zeolite in batch mode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279, 238-246, 2006.
99. Güzel, F., Yakut, H., Topal, G. Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues. Journal of Hazardous Materials, 153, 1275-1287, 2008.
100. Aksu, Z., Tezer, S. Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochemistry, 40, 1347-1361, 2005.
101. Smith, K.M., Fowler, G.D., Pullket, S., Graham, N.J.D. Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Research, 43, 2569-2594, 2009.
102. Ros, A., Lillo-Ródenas, M.A., Fuente, E., Montes-Morán, M.A., Martín, M.J., Linares-Solano, A. High surface area materials prepared from sewage sludge-based precursors. Chemosphere, 65, 132-140, 2006.
103. Bagreev, A., Bandosz, T.J., Locke, D.C., Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon, 39, 1971-1979, 2001.
104. Hayashi, J., Kazehaya, A., Muroyama, K., Watkinson, A.P. Preparation of activated carbon from lignin by chemical activation, Carbon, 38, 1873-1878, 2000.