跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.23) 您好!臺灣時間:2025/10/27 05:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:胡慎知
研究生(外文):Shen-Chih Hu
論文名稱:以低溫共燒與表面改質技術進行污泥資源化之研究
論文名稱(外文):The Study of Resource Recycling of Sludge by Low-Temperature Co-melting and Surface Modified Techniques
指導教授:胡紹華胡紹華引用關係傅彥培
指導教授(外文):Shao-Hwa HuYen-Pei Fu
學位類別:博士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
論文頁數:146
中文關鍵詞:下水污泥紙漿污泥石材污泥輕質骨材染料吸附
外文關鍵詞:Sewage sludgePaper sludgeStone manufacturing sludgeLightweight aggregateDye adsorption
相關次數:
  • 被引用被引用:3
  • 點閱點閱:469
  • 評分評分:
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
都市廢水經污水處理所產生下水污泥,含大量易腐敗有機物,隨意棄置會造成環境及公共衛生問題,根據中華民國九十九年版污水下水道統計要覽所載,目前下水污泥大多採焚化與掩埋方式處理,由於部分下水污泥會藉焚化方式形成污泥焚化灰,因此下水污泥與污泥焚化灰為本研究之主要研究對象。此外花蓮縣主要的產業尚包括造紙業與石材加工業,故紙漿污泥與石材污泥亦為研究對象。本研究旨在開發污泥之資源化技術,研究目標分為低溫共燒技術製備輕質骨材與表面改質技術製備染料吸附劑兩部分,以期能擴展污泥之再利用用途進而促進污泥資源化。
在眾多污泥處置技術中,以燒結法形成輕質骨材,因同時具有再利用與減少天然建材消耗之優點而備受重視。但燒製輕質骨材需要使污泥形成熔融玻璃相,燒製溫度多超過1000 oC能量消耗大,製造成本高。為解決此缺點,本研究藉添加硼酸(H3BO3)與碳酸鈉(Na2CO3)等低熔點物質做為助熔劑與污泥進行低溫共燒,使污泥燒製溫度降低。透過骨材之吸水率、視孔隙率、體密度、抗壓強度、健性等試驗以了解不同實驗條件對骨材性質的影響。
依本研究實驗規劃,下水污泥先以SiO2調質,使SiO2/Al2O3=4:1。當H3BO3為助熔劑時,需再添加調質污泥3 wt%之CaO以消除骨材黑心現象。H3BO3添加量為調質污泥之13 wt%,在400 oC持溫0.5 hr,850 oC持溫1 hr可得抗壓強度最高之輕質骨材,其吸水率、視孔隙率、體密度、抗壓強度分別為3.88 %、3.93 %、1.05 g/cm3、29.7 Mpa。以Na2CO3為助熔劑時,添加量為調質污泥之16 wt%,以400 oC持溫0.5 hr,900 oC持溫1 hr亦可得抗壓強度最強之輕質骨材,其前述之四項參數試驗結果分別為1.36 %、1.7 %、1.26 g/cm3、27.7 MPa。
污泥灰為下水污泥先經過900 oC灼燒1小時後形成。如同下水污泥,污泥灰先以SiO2調質,使SiO2/Al2O3=4:1再進行燒製實驗。以H3BO3為助熔劑時,最佳燒製方式:H3BO3添加量為調質污泥灰22 wt%,以900 oC持溫15 min可得高抗壓輕質骨材,其四項參數試驗結果分別為5.43 %、5.15 %、0.97 g/cm3與29.2 Mpa。調質污泥灰添加22 wt%之Na2CO3為助熔劑,以900 oC持溫0.5 hr可得抗壓強度高之輕質骨材,其四項參數試驗結果分別為1.42 %、1.64 %、1.17 g/cm3及88.4 MPa。
紙漿污泥含矽量較低,先以SiO2調質,使濕污泥中含SiO2為13 wt%。添加調質污泥18 wt%之H3BO3為助熔劑,以890 oC持溫30 min可得低吸水率之輕質骨材,其前述之四項參數分別為4.64 %、2.77 %、及0.6 g/cm3、13.2 MPa。
石材污泥最佳之燒製條件為:添加污泥15 wt%之H3BO3為助熔劑,850 oC持溫15 min可得輕質骨材,其吸水率、視孔隙率、體密度及抗壓強度分別為0.21 %、0.35 %、1.67 g/cm3 及66.94 MPa。
除了輕質骨材資源化,本實驗第二部在於吸附劑資源化技術開發,選定下水污泥,污泥灰與紙漿污泥為實驗對象,選擇之離子性染料為陽離子性染料亞甲基藍(Methylene Blue,MB)及陰離子性染料普施安紅(Procion Red MX-5B,PR)。下水污泥具有含富氧官能基之有機物而可成為水體中污染物之吸附材料。為使污泥具有陰陽離子性染料的吸附能力,並且提升污泥過濾效率,本實驗利用水熱法將Fe3O4合成於污泥顆粒表面,一方面作為離子性染料之吸附位,另一方面透過Fe3O4之結晶顆粒改善污泥之過濾特性。實驗結果顯示,鐵氧磁體化污泥對MB與PR兩種染料的理想吸附pH分別為6與3,其吸附模式滿足Langmuir equation,經計算所得之最大吸附量分別為25.06 mg/g與18.83 mg/g。依動力學實驗結果,符合pseudo-second-order動力學模型,其吸附活化能分別為42.78 kJ/mol (MB)與32.69 kJ/mol (PR)。鐵氧磁體結晶合成於污泥顆粒表面,可大幅改善污泥之過濾效率,透過過濾阻抗實驗量測結果,污泥之過濾阻抗值,由1.34×107 s2/g降至0.08×107 s2/g以下。
相較於下水污泥,由於污泥灰經過熱處理程序,有機物均氧化為二氧化碳氣體逸失,故污泥灰顆粒缺少含官能基之有機物質幫助吸附,因此本實驗將污泥灰進行鐵氧磁體化,利用Fe3O4作為活性吸附位而使其能資源化形成離子性染料吸附材料。由於鐵氧磁體其顆粒界達電位在酸性環境具正值,在鹼性環境中則為負值,故可藉靜電引力對離子性染料產生吸附。實驗結果顯示,在鹼性環境中對MB的吸附效果較佳,反之酸性中對PR吸附效果較好,符合界達電位之結果。等溫吸附結果符合Langmuir equation,動力學上符合pseudo-second-order模型,計算所得之最大吸附量分別是22.27 mg/g (針對MB),28.8 mg/g (針對PR),其吸附活化能則分別為61.7 kJ/mol 與9.07 kJ/mol。
紙漿污泥含有大量纖維及其他有機化合物,可藉由熱解法使污泥形成活性碳,作為染料之吸附劑。故本實驗藉紙漿污泥在氮氣氛中熱解成為活性碳而製備染料吸附劑。實驗條件為在氮氣氛下,於600 oC熱解1 hr,樣品以1M HCl水洗後再以蒸餾水水洗,烘乾形成活性碳吸附劑。依吸附實驗結果,紙漿污泥製備之活性碳符合Langmuir equation及pseudo-second-order模型。其對MB與PR之最大吸附量分別為119.1 mg/L及65.8 mg/L,其吸附活化能則為8.66 kJ/mol及2.47 kJ/mol。

Sewage sludge is produced by urban waste water treatment. Because of the perishable organic substances, sludge disposal without advanced treatment can produce public health problem. Lightweight aggregate synthesized with sewage sludge is a feasible method for sludge recycling and natural constructive materials saving, but the sintering temperature is always over 1000 oC to form melting glassy phase and large energy is consumed. This study focused on adding some low melting point compounds (H3BO3 and Na2CO3) as flux in order to lower the sintering temperature of artificial aggregates. Water adsorption, apparent porosity, bulk density, compressive strength, and soundness test were applied to evaluate the effect of experiment condition on the characteristics of synthetic aggregates. In addition, there were three other wastes which were used as raw materials for aggregates synthesis in this study, including sludge ash derived from sewage sludge, paper sludge and stone manufacturing sludge. As a result, all these industrial waste could be transformed to lightweight aggregates by thermal treatment and the characteristics of these aggregates were different in a reasonable range.
According to the experimental design, sewage sludge was adjusted by adding SiO2 to make the SiO2/Al2O3 ratio of the conditioned sludge up to 4. When the flux of H3BO3 was used, 3 wt% of conditioned sludge of CaO was added to prevent the occurrence of black core phenomenon. Conditioned sewage sludge mixed with 13 wt% H3BO3 and 3 wt% CaO were heated at 400 oC for 0.5 hr and 850 oC for 1hr was followed to get highest compressive strength aggregate. The values of four primary parameters of aggregate (including water adsorption, apparent porosity, bulk density and compressive strength) were 3.88 %, 3.93 %, 1.05 g/cm3, 29.7 MPa. The flux was Na2CO3, the highest value of compressive strength of aggregates were got when sludge mixed with 16 wt% Na2CO3 and sintered at 400 oC for 0.5 hr; 900 oC for 1 hr. The values of the four primary parameters of aggregates are 1.36 %, 1.7 %, 1.26 g/cm3, and 27.7 MPa.
Sewage sludge ash was also adjusted by adding SiO2 and the ratio of SiO2/Al2O3 was 4. The identical dosages of both H3BO3 and Na2CO3 were 22 wt% of conditioned ash. When the flux was H3BO3, the synthetic aggregates with high compressive strength were sintered at 900 oC for 15 min. When the flux was Na2CO3, the aggregates with higher compressive strength were sintered at 900 oC for 0.5 hr. The values of the four primary parameters of aggregates mentioned above were 5.43 %、5.15 %、0.97 g/cm3、29.2 MPa and 1.42 %、1.64 %、1.17 g/cm3、88.4 MPa respectively.
Because the content of Si of paper sludge was too low, SiO2 was added to make the SiO2 content up to 12 wt% of the wet paper sludge. The dosage of H3BO3 was 18 wt% of the conditioned paper sludge and the sintering program was 890 oC for 30 min. The aggregates synthesized with this procedure have the lower water adsorption and the values of the four primary parameters of aggregates are 4.64 %, 2.77 %, 0.6 g/cm3, and 13.2 MPa.
Lightweight aggregates can be produced from stone manufacturing sludge with 15 wt% of H3BO3. The sintering program was set for 850 oC 15 min. The water adsorption, apparent porosity, bulk density and compressive strength of the aggregates were 0.21 %, 0.35 %, and 1.67 g/cm3 and 66.9 MPa.
Sewage sludge, sewage sludge ash and paper sludge were investigated to be adsorbent for Methylene Blue (MB, cationic dye) and Procion Red MX-5B (PR, ionic dye). Sewage sludge contained organic compounds with oxygen-rich functional group (such as humic substances) which can adsorb pollutants in the water. In order to improve the adsorption ability and filtration efficiency of sewage sludge, Fe3O4 was synthesized on the sewage sludge by hydrothermal method. Fe3O4 can not only act as an adsorptive site for ionic dye, but also decrease the specific resistance of sewage sludge by crystallization. The experimental results showed that ideal pH for modified magnetic sewage sludge to adsorb MB and PR were 6 and 3, and the isotherm adsorption was fitted well to Langmuir equation. The maximum adsorption capacity for MB and PR were 25.06 and 18.83 mg/g. Pseudo-first-order and pseudo-second-order models were utilized to realize the kinetic adsorption of MB and PR. The adsorption data of both dyes were fitted pseudo-second-order model well and the activation energy of MB and PR adsorption were 42.78 kJ/mol and 32.69 kJ/mol, respectively. The crystalline of Fe3O4 synthesized on sewage sludge improved the filtration efficiency of modified magnetic adsorbent and the filtration resistance was decreased from 1.34×107 s2/g to less than 0.08×107 s2/g.
Different from sewage sludge, sludge ash was under thermal treatment and the organic compounds were oxidized to CO2 so that sludge ash particle possessed no organic functional group on the surface. In this study, ferrite process was also conducted on sludge ash and Fe3O4 can act as adsorptive site for ionic dyes because Fe3O4 can provide electrostatic attraction to ionic dyes. The zeta potential of Fe3O4 was positive in acid and anionic dye can be adsorbed. Similarly, that was negative in alkali solution and cationic dye can be adsorbed. As the result of adsorption, MB was well adsorbed in pH 9 and that for PR was 2.7 which corresponded to the zeta potential of modified magnetic sludge ash. The isotherm adsorption and kinetic adsorption of MB and PR were also investigated. For isotherm adsorption, the results were fitted Langmuir equation well and the maximum adsorption capacities of MB and PR were 22.27 mg/g and 28.8 mg/g. For kinetic adsorption, pseudo-first-order and pseudo-second-order models were utilized to examine the adsorption behavior and the results were fitted pseudo-second-order models well. The activation energy calculated from Arrhenius equation was 61.7 kJ/mol for MB and 9.07 kJ/mol for PR.
Owing to paper sludge contained large amount of organic compounds such as fibers and lignin, it could be pyrolyzed to form activated carbon for dye adsorption. In this study, paper sludge was pyrolyzed under nitrogen atmosphere at 600 oC 1 hr. Then, sample was washed with 1 M HCl and DI water, and dried in an oven. The zeta potential measurement of adsorbent showed that the isoelectric point of paper sludge derived activated carbon was around 3 which meant PR should be adsorbed well below pH 3 and that of MB was in neutral or alkali solution. The effect of pH on adsorption, isotherm adsorption and kinetic adsorption were examined to realize the adsorption behavior of paper sludge derived activated carbon. The results of adsorption in different pH condition were conformed to the results of zeta potential. The data of isotherm adsorption experiment revealed that the adsorption behavior can be described by Langmuir equation well and the maximum adsorption capacities of MB and PR were 119.1 mg/L and 65.8 mg/L. Kinetic adsorption revealed that the adsorption of two dyes were fitted pseudo-second-order model well, and the activation energy of MB and PR adsorption were 8.66 and 2.47 kJ/mol.

中文摘要 I
ABSTRACT V
目錄 IX
表目錄 XV
圖目錄 XVII
第一章 緒論 1
1-1前言 1
1-1-1污泥輕質骨材資源化技術 2
1-1-1-1 下水污泥製備輕質骨材 4
1-1-1-2 下水污泥灰製備輕質骨材 5
1-1-1-3紙漿污泥燒製陶瓷材料 6
1-1-1-4石材污泥燒製陶瓷材料 7
1-1-2污泥之吸附劑資源化技術 8
1-1-2-1下水污泥製備吸附劑 8
1-1-2-2污泥灰製備吸附劑 10
1-1-2-3 紙漿污泥製備吸附劑 11
1-2研究動機與目的 12
1-3研究架構 13
第二章 理論基礎 15
2-1低溫共燒技術 15
2-2 表面改質技術 16
2-2-1鐵氧磁體化 16
2-2-2 熱解技術 17
2-3 染料吸附研究 18
2-3-1 等溫吸附模型 18
2-3-2 吸附動力學 20
第三章 實驗材料與方法 23
3-1實驗樣品與藥劑 23
3-2低溫共燒製備輕質骨材 25
3-2-1污泥特性分析 25
3-2-2輕質骨材燒製 26
3-2-2-1 下水污泥燒製輕質骨材 26
3-2-2-2污泥灰燒製輕質骨材 27
3-2-2-3紙漿污泥燒製輕質骨材 29
3-2-2-4石材污泥燒製輕質骨材 30
3-2-3骨材特性試驗 31
3-2-3-1吸水率、體密度、視孔隙率試驗 31
3-2-3-2抗壓強度試驗 31
3-2-3-3健性試驗 32
3-3表面改質製備染料吸附劑 32
3-3-1吸附劑性質分析方法 32
3-3-2下水污泥鐵氧磁體化 33
3-3-3污泥灰鐵氧磁體化 35
3-3-4紙漿污泥熱解 37
3-3-5離子性染料濃度及吸附量測定 39
3-3-6溶液化學需氧量(COD)測定 39
3-3-7吸附活化能 40
3-3-8過濾阻抗實驗 40
第四章 低溫共燒製備輕質骨材 43
4-1下水污泥製備輕質骨材 43
4-1-1下水污泥特性分析 43
4-1-2以H3BO3為助熔劑進行輕質骨材製備 45
4-1-2-1過篩條件對骨材性質影響 45
4-1-2-2骨材黑心現象探討 46
4-1-2-3 H3BO3添加量對骨材性質影響 48
4-1-2-4燒製溫度對骨材性質影響 49
4-1-2-5持溫時間對骨材性質影響 52
4-1-3以Na2CO3為助熔劑進行輕質骨材製備 56
4-1-3-1過篩條件對骨材性質影響 56
4-1-3-2 Na2CO3添加量對骨材性質影響 58
4-1-3-3燒製溫度對骨材性質影響 59
4-1-3-4持溫時間對骨材性質影響 61
4-2下水污泥灰製備輕質骨材 64
4-2-1下水污泥灰特性分析 64
4-2-2以H3BO3為助熔劑進行輕質骨材製備 64
4-2-2-1過篩條件對骨材性質影響 64
4-2-2-2 H3BO3添加量對骨材性質影響 65
4-2-2-3燒製溫度對骨材性質影響 67
4-2-2-4持溫時間對骨材性質影響 70
4-2-3以Na2CO3為助熔劑進行輕質骨材製備 72
4-2-3-1過篩條件對骨材性質影響 72
4-2-3-2 Na2CO3添加量對骨材性質影響 73
4-2-3-3燒製溫度對骨材性質影響 75
4-2-3-4持溫時間對骨材性質影響 77
4-3紙漿污泥製備輕質骨材 79
4-3-1紙漿污泥特性分析 79
4-3-2以H3BO3作為助熔劑燒製輕質骨材 80
4-3-3燒製溫度對骨材性質影響 81
4-3-4 H3BO3添加量對骨材性質影響 83
4-3-5持溫時間對骨材性質影響 85
4-3-6紙漿污泥燒製輕質骨材之效益評估 87
4-4石材污泥製備輕質骨材 89
4-4-1石材污泥特性分析 89
4-4-2 H3BO3添加量對骨材性質影響 90
4-4-3燒製溫度對骨材性質影響 92
4-4-4 持溫時間對骨材性質影響 93
第五章 表面改質製備吸附劑 95
5-1下水污泥製備離子性染料吸附劑 95
5-1-1 下水污泥吸附劑性質 95
5-1-2 溶液pH對染料吸附之影響 99
5-1-3等溫吸附 104
5-1-4吸附動力學 106
5-1-5過濾阻抗實驗 107
5-2污泥灰製備離子性染料吸附劑 109
5-2-1 污泥灰鐵氧磁體化 109
5-2-2溶液pH對染料吸附之影響 111
5-2-3等溫吸附 115
5-2-4吸附動力學 117
5-3 紙漿污泥製備離子性染料吸附劑 118
5-3-1 紙漿污泥熱解 118
5-3-2 溶液pH對染料吸附之影響 120
5-3-3等溫吸附 123
5-3-4 吸附動力學 125
第六章 總結論與建議 127
6-1 低溫共燒輕質骨材結論 127
6-2 污泥表面改質吸附劑 131
6-3 建議 133
參考文獻 135

1. 朱敬平,李篤中, 污泥處置(IV):策略與永續利用, 國立臺灣大學「台大工程」學刊第八十四期,第 91–101頁,2002。
2. Khanbilvardi, R., Afshari, S. Sludge ash as fine aggregate for concrete mix. Journal of environmental engineering, 121, 633-638, 1995.
3. Wang, K.S., Chiou, I.J., Chen, C.H., Wang, D. Lightweight properties and pore structure of foamed material made from sewage sludge ash. Construction and Building Materials, 19, 627-633, 2005.
4. 謝國正, 石門水庫淤泥燒製輕質骨材性質,礦冶,50/2,第126-133頁,2006。
5. 林維明,吳介源, 應用結構輕質骨材混凝土的經濟性評估,土木技術第三卷第四期,第152-165頁, 2000。
6. Riley, C. M. Relation of chemical properties to the bloating of clays. Journal of The American Ceramic Society, 34, 121-128, 1951.
7. de’Gennaro, R., Cappeletti, P., Cerri, G., de’Gennaro, M., Dondi, M., Langella, A. Zeolitic tuffs as raw materials for lightweight aggregates. Applied Clay Science, 25, 71-81, 2004.
8. González-Corrochano, B., Alonso-Azcárate, J., Rodas, M., Luque, F.J., Barrenechea, J.F. Microstructure and mineralogy of lightweight aggregates produced from washing aggregate sludge, fly ash and used motor oil, Cement & Concrete Composites, 32, 694-707, 2010.
9. Ramamurthy, K., Harikrishnan, K.I. Influence of binders on properties of sintered fly ash aggregate. Cement & Concrete Composites, 28, 33-38, 2006.
10. 蔡尚晏,水庫淤泥添加玻璃粉燒製輕質骨材之研究,碩士論文,國立成功大學資源工程研究所,2008。
11. 傅建璋,升溫速率對石門水庫淤泥製備輕質骨材之影響,碩士論文,國立成功大學資源工程研究所,2009。
12. Tay, J.H., Yip, W.K., Show, K.Y. Clay-blended sludge as lightweight aggregate concrete material. Journal of Environmental Engineering, 117(6), 834-844, 1991.
13. 林月婷,下水污泥焚化灰燒製輕質骨材與應用於混凝土材料之性質研究,碩士論文,國立中央大學環境工程研究所,2003。
14. Wang, X., Jin, Y., Wang, Z., Mahar, R.B., Nie, Y. A research on sintering characteristics and mechanisms of dried sewage sludge. Journal of Hazardous Materials, 160, 489-494, 2008.
15. Chiou, I.J., Wang, K.S., Chen, C.H., Lin, Y.T. Lightweight aggregate made from sewage sludge and incinerated ash. Waste Management, 26, 1453-1461, 2006.
16. Cheeseman, C.R., Virdi, G.S. Properties and microstructure of lightweight aggregate produced from sintered sewage sludge ash. Resources, Conservation and Recycling, 45, 18-30, 2005.
17. Ochoa, de Alda, J.A.G., Feasibility of recycling pulp and paper mill sludge in the paper and board industries. Resources, Conservation and Recycling, 52, 965-972, 2008.
18. Furlani, E., Tonello, G., Maschio, S., Aneggi, E., Minichelli, D., Bruckner, S., Lucchini, E., Sintering and characterization of ceramics containing paper sludge, glass cullet and different types of clayey materials. Ceramics international, 37, 1293-1299, 2011.
19. Torres, P., Fernandes, H.R., Agathopoulos, S., Tulyaganov, D.U., Ferreira, J.M.F. Incorporation of granite cutting sludge in industrial porcelain tile formulations. Journal of European Ceramic Society, 24, 3177-3185, 2004.
20. Srivastava, V.C., Mall, I.D., Mishra, I.M. Equilibrium modeling of ternary adsorption of metal ions onto rice husk ash. Journal of Chemical and Engineering Data, 54, 705-711, 2009.
21. Naiya, T.K., Bhattacharya, A.K., Mandal, S., Das, S.K. The sorption of lead(Ⅱ) ions on rice husk ash. Journal of Hazardous Materials, 163, 1254-1264, 2009.
22. Feng, Q., Lin, Q., Gong, F., Sugita, S., Shoya, M. Adsorption of lead and mercury by rice husk ash. Journal of Colloid and Interface Science, 278, 1-8, 2004.
23. Mane, V.S., Mall, I.D., Srivastava, V. C. Kinetic and equilibrium isotherm studies for the adsorptive removal of Brilliant Green dye from aqueous solution by rice husk ash. Journal of Environmental Management, 84, 390-400, 2007.
24. Lakshmi, U.R., Srivastava, V.C., Mall, I.D., Lataye, D.H. Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for Indigo Carmine dye. Journal of Environmental Management, 90, 710-720, 2009.
25. Sharma, P., Kaur, R., Baskar, C., Chung, W.J., Removal of methylene blue from aqueous waste using rice husk and rice husk ash. Desalination, 259, 249-257, 2010.
26. Jang, H.T., Park, Y.K., Ko, Y.S., Lee, J.Y., Margandan, B. Highly siliceous MCM-48 from rice husk ash for CO2 adsorption. International Journal of Greenhouse Gas Control, 3, 545-549, 2009.
27. Margandan, B., Lee, J.Y., Ramani, A., Jang, H.T. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting. Journal of Hazardous Materials, 175, 928-938, 2010.
28. Lee, C.L., Lee, K.T., Mohamed, A.R. Rice husk ash sorbent doped with copper for simultaneous removal of SO2 and NO: Optimization study. Journal of Hazardous Materials, 183, 738-745, 2010.
29. Xue, Y., Hou, H., Zhu, S. Competitive adsorption of copper(Ⅱ), cadmium(Ⅱ), lead(Ⅱ) and zinc(Ⅱ) onto basic oxygen furnace slag. Journal of Hazardous Materials, 162, 391-401, 2009.
30. Agyei, N.M., Strydom, C.A., Potgieter, J.H. An investigation of phosphate ion adsorption from aqueous solution by fly ash and slag. Cement and Concrete Research, 30, 823-826, 2000.
31. Xue, Y., Hou, H., Zhu, S. Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: Isotherm and kinetic study. Chemical Engineering Journal, 147, 272-279, 2009.
32. Bonenfant, D., Kharoune, L., Sauvé,S., Hausler, R., Niauette, P., Mimeault, M., Kharoune, M. Molecular analysis of carbon dioxide adsorption processes on steel slag oxides. International Journal of Greenhouse Gas Conctrol, 3, 20-28, 2009.
33. Liu, C.F., Shih, S.M. Kinetics of the reaction of iron blast furnace slag/hydrated lime sorbents with SO2 at low temperatures: effects of sorbent preparation conditions. Chemical Engineering Science, 59, 1001-1008, 2004.
34. Gascó, G., Blanco, C.G., Guerrero, F., Mendez Lázaro, A.M. The influence of organic matter on sewage sludge pyrolysis. Journal of Analytical and Applied Pyrolysis, 74, 413-420, 2005.
35. Senesi, N. Binding mechanisms of pesticides to soil humic substances. Science of the Total Environment, 123/124, 63-76,1992.
36. Gascó, G., Cueto, M.J., Méndez, A. The effect of acid treatment on the pyrolysis behavior of sewage sludges. Journal of Analytical and Applied Pyrolysis, 80, 496-501, 2007.
37. Martin, M.J., Artola, A., Balaguer, M.D., Rigola, M. Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chemical Engineering Journal, 94, 231-239, 2003.
38. Jindarom, C., Meeyoo, V., Kitiyanan, B., Rirksomboon, T., Rangsunvigit, P. Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge. Chemical Engineering Journal, 133, 239-246, 2007.
39. Jindarom, C., Meeyoo, V., Kitiyanan, B., Rirksomboon, T., Rangsunvigit, P., Surface characterization and dye adsorptive capacities of char obtained from pyrolysis/gasification of sewage sludge. Chemical Engineering Journal, 133, 239-246, 2007.
40. Rozada, F., Calvo, L.F., García, A.I., Martín-Villacorta, J., Otero, M. Dye adsorption by sewage sludge-based activated carbons in batch and fixed-bed systems. Bioresource Technology, 87, 221-230, 2003.
41. Rio, S., Le Coq, L., Faur, C., Lecomte, D., Le Cloirec, P., Preparation of adsorbents from sewage sludge by steam actvation for industrial emission treatment. Process Safety and Environmental Protection, 84(B4), 258-264, 2006.
42. Bouzid, J., Elouear, Z., Ksibi, M., Feki, M., Montiel, A. A study on removal characteristics of copper from aqueous solution by sewage sludge and pomace ashes. Journal of Hazardous Materials, 152, 838-845, 2008.
43. Pan, S.C., Lin, C.C., Tseng, D.H. Reusing sewage sludge ash as adsorbent for copper removal from wastewater. Resources, Conservation and Recycling, 39, 79-90, 2003.
44. Li, W.H., Yue, Q.Y., Gao, B.Y., Ma, Z.H., Li, Y.J., Zhao, H.X. Preparation and utilization of sludge-based activated carbon for the adsorption of dyes from aqueous solutions. Chemical Engineering Journal, 171, 320-327, 2011.
45. Tsai, C.C., Wang, K.S., Chiou, I.J. Effect of SiO2-Al2O3-flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge. Journal of Hazardous Materials, B134, 87-93, 2006.
46. Ducman,V., Mirtič,B. The applicability of different waste materials for the production of lightweight aggregates. Waste Management, 29, 2361-2368, 2009.
47. Huang, Q.W., Zhu, L.H., Wang, P.L., Cheng, Y.B. Formation behaviors of Sr0.4Ba0.6Nb2O6 powders synthesized from the molten salt of KCl. Journal of Materials Science Letters, 22, 949-951, 2003.
48. Soykan, H.Ş. Low-temperature fabrication of steatite ceramics with boron oxide addition. Ceramics International, 33, 911-914, 2007.
49. Hong, S.H., Messing, G. L. Mullite Transformation Kinetics in P2O5-, TiO2-, and B2O3-Doped Aluminosilicate Gels. Journal of the American Ceramic Society, 80 (6), 1551-1559, 1997.
50. Christogerou, A., Kavas, T., Pontikes, Y., Rathossi, C., Angelopoulos, G.N. Evolution of microstructure, mineralogy and properties during firing of clay-based ceramics with borates. Ceramics International, 36, 567–575, 2010.
51. Uslu, T., Arol, A.I. Use of boron waste as an additive in red bricks. Waste Management, 24, 217-220, 2004.
52. McCulloch, L. Crystalline Boric Oxide. Journal of the American Chemical Society, 59(12), 2650–2652, 1937.
53. http://en.wikipedia. org/ wiki/sodium_ carbonate (2011).
54. Yang, J., Xiao, B., Boccaccini, A.R. Preparation of low melting temperature glass-ceramics from municipal waste incineration fly ash. Fuel, 88 1275-1280, 2009.
55. Hsiung, J.S., Huang, Y.C., Li, K.C.,Yang, S. Study on the influence of additives in an industrial calcium fluoride and waterworks sludge co-melting system. Journal of Environmental Management, 84, 384-389, 2007.
56. Ruixiang, Z. Process optimization in batch crystallization of sodium fluosilicate. Crystal Research and Technology, 40, 243-247, 2005.
57. Hu, S.H., Wu, J.Y., Hsiao, T.C., Tsai, M.S. Characteristic improvement of metal-contaminated sludge using mineralization. Environmental Progress & Sustainable Energy, 29, 68-77, 2010.
58. Liu, X.M., Yang, G., Fu, S.Y. Mass synthesis of nanocrystalline spinel ferrites by a polymer-pyrolysis route, Materials Science and Engineering: C, 27, 750-755, 2007.
59. Sun, Z., Liu, L., Jia, D.Z., Pan, W. Simple synthesis of CuFe2O4 nanoparticles as gas-sensing materials. Sensors and Actuators B: Chemical, 125, 144-148, 2007.
60. Zhu, H., Yang, D., Zhu, L. Hydrothermal growth and characterization of magnetite (Fe3O4) thin films. Surface and Coatings Technology, 201, 5870-5874, 2007.
61. Barale, M., Lefévre, G., Carrette, F., Catalette, H., Fédoroff, M., Cote, G. Effect of the adsorption of lithium and borate species on the zeta potential of particles of cobalt ferrite, nickel ferrite, and magnetite. Journal of Colloid and Interface Science, 328, 34-40, 2008.
62. Mastral, A.M., Gallen, M.S., García, T., Navarro, M.V. Improvement of liquids from coal-tire co-thermolysis. Characterization of the obtained oils. Fuel Processing Technology, 64, 135-140, 2000.
63. Chang, Y.M. On pyrolysis of waste tire: degradation rate and product yields. Resources, Conservation and Recycling, 17, 125-139, 1996.
64. Ouadi, M., Brammer, J.G., Yang, Y., Hornung, A., Kay, M. The intermediate pyrolysis of de-inking sludge to produce a sustainable liquid fuel. Journal of Analytical and Applied Pyrolysis, 102, 24-32, 2013.
65. Samanya, J., Hornung, A., Apfelbacher, A., Vale, P. Characteristics of the upper phase of bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw. Journal of Analytical and Applied Pyrolysis, 94, 120-125, 2012.
66. Xu, R., Ferrante, L., Hall, K., Briens, C., Berruti, F. Thermal self-sustainability of biochar production by pyrolysis. Journal of Analytical and Applied Pyrolysis, 91, 55-66, 2011.
67. Angin, D. Effect of pyrolysis temperature and heating rate on biochar obtained from pyrolysis of safflower seed press cake. Bioresource Technology, 128, 593-597, 2013.
68. Kim, K.H., Kim, J.Y., Cho, T.S., Choi, J.W. Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (pinus rigida). Bioresource Technology, 118, 158-162, 2012.
69. Montané, D., Torné-Fernández, V., Fierro, V. Activated carbons from lignin: kinetic modeling of the pyrolysis of Kraft lignin activated with phosphoric acid, 106, 1-12, 2005.
70. Lillo-Ródenas, M.A., Marco-Lozar, J.P., Cazorla-Amorós, D., Linares-Solano, A. Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide. Journal of Analytical and Applied Pyrolysis, 80, 166-174, 2007.
71. Nahil, M.A., Williams, P.T. Activated carbons from acrylic textile waste. Journal of Analytical and Applied Pyrolysis, 89, 51-59, 2010.
72. Lillo-Ródenas, M.A., Fletcher, A.J., Thomas, K.M., Cazorla-Amorós, D., Linares-Solano, A. Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration. Carbon, 44, 1455-1463, 2006.
73. Chiang, Y.C., Chiang, P.C., Huang, C.P. Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon, 39, 523-534, 2001.
74. Foo, K.Y., Hameed, B.H. Detoxification of pesticide waste via activated carbon adsorption process. Journal of Hazardous Materials, 175, 1-11, 2010.
75. Slejko, F.L. Adsorption technology: A step-by-step approach to process evaluation and application. New York:Marcel Dekker, Inc. 1985.
76. Batzias, F.A., Sidiras, D.K. Dye adsorption by calcium chloride treated beech sawdust in batch and fixed-bed systems. Journal of Hazardous Materials, B114, 167-174, 2004.
77. 曲榮君,金屬離子吸附材料製備‧結構‧性能,北京:化學工業出版社,2009。
78. Hubbe, M.A., Beck, K.R., O’Neal, W.G., Sharma, Y.C. Cellulosic substrates for removal of pollutants from aqueous systems: A review. 2. Dye. Bioresources 7(2), 2592-2687, 2012.
79. Chiang, Y.M., Birnie, D. P., Kingery, W.D. Physical Ceramics, John Wiley & Sons, Inc., 1997.
80. Huang, S.C., Chang, F.C., Lo, S.L., Lee, M.Y., Wang, C.F., Lin, J.D. Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. Journal of Hazardous Materials, 144, 52-58, 2007.
81. Wainwright, P.J., Cresswell, D.J.F., Synthetic aggregates from combustion ashes using an innovative rotary kiln. Waste Management, 21, 241-246, 2001.
82. http://en.wikipedia.org/wiki/Boric_acid (2011).
83. http://en.wikipedia.org/wiki/Boric_oxide (2011).
84. Hung, M.F., Hwang, C.L. Study of fine sediments for making lightweight aggregate. Waste Management & Research, 25, 449–456, 2007.
85. Lehman, R.L., Gentry, J.S., Glumac, N.G. Thermal stability of potassium carbonate near its melting oint. Thermochimica Acta, 316, 1-9, 1998.
86. Kang, S.J.L., Sintering: Densification, Grain Growth, and Microstructure. Oxford: Elsevier Butterworth-Heinemann , 233-234, 2005.
87. Ochoa, de Alda, J.A.G., Feasibility of recycling pulp and paper mill sludge in the paper and board industries. Resources, Conservation and Recycling, 52, 965-972, 2008.
88. 陳豪吉,顏聰,王順元,除造華,賴文銘, 以燃煤電廠底灰燒製輕質骨材之研究, 台電工程月刊, 第七百二十期, 第37-49頁, 2007。
89. Tay, J.H., Show, K.Y., Hong, S.Y., Chien, C.Y., Lee, D.J. Thermal stabilization of iron-rich sludge for high strength aggregates, Journal of Materials in Civil Engineering, 15, 557-585, 2003.
90. Chen, H.J., Wang, S.Y., and Tang, C.W. Reuse of incineration fly ashes and reaction ashes for manufacturing lightweight aggregate, Construction and Building Materials, 24, 46-55, 2010.
91. Tang, C.W., Chen, H.J., Wang, S.Y., Spaulding, J. Production of synthetic lightweight aggregate using reservoir sediments for concrete and masonry, Cement & Concrete Composites, 33, 292-300, 2011.
92. Lu, X.Q., Johnson, W.D. The reaction of aquatic humic substances with copper(Ⅱ) ions: an ESR study of complexation. Science of the Total Environment, 203, 199-207, 1997.
93. Burton, A.W., Ong, K., Rea, T., Chan, I.Y. On the estimation of average crystallite size of zeolites from the Scherrer equation: A critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous and Mesoporous Materials, 117, 75-90, 2009.
94. Tseng, R.L. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation. Journal of Hazardous Materials, 147, 1020-1027, 2007.
95. Lin, Y.F., Chen, H.W., Chien, P.S., Chiou, C.S., Liu, C.C. Application of bifunctional magnetic adsorbent to adsorb metal cations and anionic dyes in aqueous solution. Journal of Hazardous Materials, 185, 1124-1130, 2011.
96. Han, R., Zhang, J., Han, P., Wang, Y., Zhao, Z., Tang, M. Study of equilibrium, kinetic and thermodynamic parameters about methylene blue adsorption onto natural zeolite. Chemical Engineering Journal, 145(3), 496-504, 2009.
97. Aksu, Z. Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(Ⅱ) ions onto Chlorella vulgaris. Process Biochemistry, 38(1), 89-99, 2002.
98. Zou, W., Han, R., Chen, Z., Zhang, J., Shi, J. Kinetic study of adsorption of Cu(II) and Pb(II) from aqueous solutions using manganese oxide coated zeolite in batch mode. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 279, 238-246, 2006.
99. Güzel, F., Yakut, H., Topal, G. Determination of kinetic and equilibrium parameters of the batch adsorption of Mn(II), Co(II), Ni(II) and Cu(II) from aqueous solution by black carrot (Daucus carota L.) residues. Journal of Hazardous Materials, 153, 1275-1287, 2008.
100. Aksu, Z., Tezer, S. Biosorption of reactive dyes on the green alga Chlorella vulgaris. Process Biochemistry, 40, 1347-1361, 2005.
101. Smith, K.M., Fowler, G.D., Pullket, S., Graham, N.J.D. Sewage sludge-based adsorbents: A review of their production, properties and use in water treatment applications. Water Research, 43, 2569-2594, 2009.
102. Ros, A., Lillo-Ródenas, M.A., Fuente, E., Montes-Morán, M.A., Martín, M.J., Linares-Solano, A. High surface area materials prepared from sewage sludge-based precursors. Chemosphere, 65, 132-140, 2006.
103. Bagreev, A., Bandosz, T.J., Locke, D.C., Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer. Carbon, 39, 1971-1979, 2001.
104. Hayashi, J., Kazehaya, A., Muroyama, K., Watkinson, A.P. Preparation of activated carbon from lignin by chemical activation, Carbon, 38, 1873-1878, 2000.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top