跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/10 02:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林振華
研究生(外文):C. H. Lin
論文名稱:以原子力顯微鏡觀察高分子薄膜微觀變形區機制和其超塑性現象
論文名稱(外文):Crazing Micro-mechanism and Superplastic Behavior of the Brittle Polymer Film by AFM
指導教授:楊長謀
指導教授(外文):Arnold, C. -M. Yang
學位類別:博士
校院名稱:國立清華大學
系所名稱:材料科學工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:英文
論文頁數:118
中文關鍵詞:纖化區超塑性原子力顯微鏡剪變形區高分子薄膜應變集中
外文關鍵詞:crazesuperplasticityatomic force microscopeshear deformation zonepolymeric filmstrain localization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:241
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討高分子鏈網狀結構對其微觀變形機制的影響。藉由纖化區的微頸縮機制和原子力顯微鏡的高解析能力可以了解高分子應變集中時的微觀變形機制,求得纖化區內的孔隙率並證明纖化區內的微纖束是以最密堆積方式排列。配合Bridgman力學計算更可以纖化區的應力應變曲線。由纖化區內應變速率分佈可以求得纖化區應變硬化的臨界應變,並藉由改變分子網狀結構的交纏密度來分析高分子鏈的運動情形。本論文也嘗試將脆性高分子薄膜包夾在兩層韌性高分子薄膜中來探討脆性高分子薄膜纖化區頸縮機制被抑制時的變形行為。脆性高分子纖化區的頸縮機制被抑制時,脆性高分子可以被拉伸到很大的形變而不會產生應變集中並具有超塑性現象。三層高分子薄膜的超塑性現象與外層韌性高分子薄膜的厚度有關。隨著外層PPO薄膜厚度減少時,三層薄膜結構會產生明顯的韌脆轉換。為了解釋三層薄膜結構的超塑性現象,本論文由脆性高分子頸縮的剪應力和韌性高分子的束縛力推導超塑性的力學模型。力學模型預測的結果與實驗相符。
In this thesis, the micronecking mechanism of the craze is correlated with the molecular chain network and the entanglement density of the chain network will affect the deformation of polymer thin film. In addition, a new model of the strain localization of polymer thin film is explored. By suppressing the trend of strain localization the brittle polymer thin film can be toughened and demonstrate a super-plastic behavior. The void fraction in the fully necked craze region was determined and a close-packed fibril structure was then concluded. The local stress and strain within the craze were obtained from AFM topographic data by the Bridgman’s plasticity analysis. The stress / strain curve of craze fibrillation was subsequently determined where an apparent strain softening was found in the initiation of fibrillation. Strain rate was found to peak at the craze boundaries, consistent with the surface drawing mechanism from TEM results. We further exploited the necking characteristic of crazing by sandwiching the craze-forming brittle polymer film between two ductile polymer films to examine the deformation behavior of the brittle polymer which necking is suppressed. The super-plastic behavior is remarkably dependent on the thickness of the outer ductile polymer layers. When the outer-layer thickness is less than a critical thickness, the brittle polymer film in combination with the sandwich structure demonstrated a different degree of strain localization with the critical strain increased with the thickness of the outer-layer. A sharp ductile-brittle transition in the sandwich thin film structure was observed as the PPO thickness decreased. A simple mechanical model built upon the competition between the necking force, associated with crazing, and the constraining force, due to the ductile films, was utilized to analyze the stability of this super-plasticity. The result of the mechanical analysis is in good agreement with the experimental data.
封面
中文摘要
Abstract
Preface
Chapter I. Crazing Micro-mechanism in Glassy Atactic Polystyrene and its Blends with Poly(2,6dimethyl,1,4-diphenyl oxides) by AFM
1.1. INTRODUCTION
1.2. EXPERIMENTAL PROCEDURES
1.3. RESULTS AND DISCUSSIONS
1.3.1 The micro-necking mechanism of the craze
1.3.2 The stress distribution in the crazed region
1.3.3 The micro-drawing process during crazing:  
1.3.4 Effect of entanglement network structure  
1.4. CONCLUSIONS
1.5. REFERENCES
Chapter II: Super-plastic behavior of the brittle polymer film in multilayer systems
2.1. INTRODUCTION
2.2. EXPERIMENTAL PROCEDURES
2.3. RESULTS AND DISCUSSIONS
2.3.1 The super-plastic behavior of the multilayer films
2.3.2 The effects of the thickness of the constraining layers
2.3.1 The morphology and microstructure of the local deformation zones
2.3.2 The interfacial composition in the multiplayer structure
2.3.3 The PC/PS/PC multilayer samples
2.3.4 The uniform deformation of the glassy polymer
2.4. CONCLUSIONS
2.5. REFERENCES
Chapter III:Stability of the Superplastic Behavior of Glassy Polystyrene Thin Films in Sandwich Structures
3.1. INTRODUCTION
3.2. EXPERIMENTAL PROCEDURES
3.3. RESULTS AND DISCUSSIONS
3.3.1. The mechanical behavior of free-standing films
3.3.2 The super-plastic behavior of the sandwiched film
3.3.3 Mechanical stability of the super-plasticity in the PS film
3.3.4 Estimation of the “defect” size in the sandwiched glassy polymer film
3.4. CONCLUSIONS
3.5. REFERENCES
1.Kramer, E. J., Advance in Polymer Science 1983, 52/53, 1.
2.Sternstein, S. S.; Myers, F. A., J. Macromol. Sci.-Phys. 1973, B8, 557.
3.Argon, A. S.; Hannoosh, J. G., Phil. Mag. 1977, 36, 1195.
4.Gent, A. N., “The Mechanics of Fracture, AMD, F. Erdogon Ed., ASME: New York, 1976, Vol 19, p 55.
5.LeGrand, D. G.; Kambour, R. P.; and Haaf, W. R., J. Polymer Sci. A-2 1972, 10, 1565.
6.Kitagawa, M., J. Polymer Sci.-Polymer Phys. 1976, 14, 2095.
7.Argon, A. S.; Salama, M. M., Materials Sci. & Eng. 1977, 23, 219.
8.Steger, T. R.; Nielsen, L. E., J. Polymer Sci.-Polymer Phys. 1978, 16, 613.
9.Lauterwasser, B. D.; Kramer, E. J., Phil. Mag. 1979, A39, 469.
10.Brown, H. R., J. Mater. Sci. 1979, 14, 237.
11.Farrar, N. R.; Kramer, E. J., Polymer 1981, 22, 691.
12.Donald, A. M.; Kramer, E. J., Phil. Mag. 1981, A43, 857.
13.Wang, W. —C. V.; Kramer, E. J., J. Materials Sci. 1982, 17, 2013.
14.Takahashi, K.; Hyodo, S., J. Macromol. Sci. -Phys. 1981, B19, 695.
15.Kawagoe, M.; Kitagawa, M., J. Polymer Sci.-Polymer Phys. 1981, 19, 1423.
16.Donald, A. M.; Kramer, E. J., Polymer 1982, 23, 457.
17.Donald, A. M.; Chan, T.; Kramer, E. J., J. Materials Sci. 1981, 16, 669.
18.Yang, A.C.-M.; Kramer, E.J., J Polym. Sci.: Polym. Phys. Ed. 1985, 23, 1353.
19.Yang, A.C.-M.; Kramer, E. J.; Kuo, C. C.; Phoenix, S. L., Macromolecules 1986, 19, 2010.
20.Yang, A.C.-M.; Kramer, E. J.; Kuo, C. C.; Phoenix, S. L., Macromolecules 1986, 19, 2020.
21.Kramer, E. J.; Berger, L. L., Advance in Polymer Science 1990, 91/92, 1.
22.Yang, A.C.-M.; Kunz, M.S.; Logan, J. A., Macromolecules 1993, 26, 1767.
23.Yang, A.C.-M.; Wang, R.C.; Kunz, M.S.; Yang, I.C., J. Polym. Sci.- Polym. Phys. Ed. 1996, 34, 1141.
24.Taylor, G. I., Proc. Roy. Soc. 1950, A201, 192.
25.Saffman, P. G.; Taylor, G. I., Proc. Roy. Soc.1958, A245, 312.
26.Fields, R . J.; Ashby, M. F., Phil. Mag. 1976, 33, 33.
27.Bilby, B. A.; Eshelby, J. D., “Dislocation and the Theory of Fracture”, in Fracture, Liebowitz, H. Ed, Academic Press: New York, 1972, Vol. 1, Chap. 2, p. 111.
28.Porod, G., Kolloid Z. 1952, 125, 51, 109.
29.Parades, E.; Fisher, E. W., Makromol. Chem. 1979, 180, 2707.
30.Bridgman, D. W., “Studies in Large Plastic Flow and Fracture’, Harvard University Press: Cambridges, 1964, p.9.
31.Ward, I. M., “Mechanical Properties of Solid Polymers”, 2nd Ed. John Wiley & Sons Press: New York, 1983.
32.Dieter, G. E., “Mechanical Metallurgy”, McGraw Hill: 19 88.
33.G’sell, C.; Marquez-Lucero A, Polymer 1993, 34, 2740.
34.Hutchinson, J. W.; Neale K. W., J. the Mechanics and Physics of Solids 1983, 31, 405.
1.I. M. Ward, “Mechanical Properties of Solid Polymers”, 2ed. John Wiley & Sons press 1983.
2.Kambour, R. P., J. Polymer Sci. Macromol. Rev. 1973, 7, 1.
3.Rabinowitz, S., Beardmore, P., CRC Reviews in Macromol. Sci. 1972, 1, 1.
4.Gent, A. N., “The Mechanics of Fracture”, AMD, Vol. 19, New, York, ASME, P. 55 H. Tresca, Compt. Rend. Acad. Sci. Paris, 1867, 64, 809.
5.Donald, A. M., Kramer, E. J., Phil. Mag. 1981, A43, 857
6.E. J. Kramer, Advance in Polymer Science, 1983, 52/53, P.1.
7.Kausch, H. H., Polymer Fracture, SPringer-Verlag, Heidelberg, 1978.
8.Lauterwasser, B. D., Kramer, E. J., Phil. Mag., 1979, A39, 469.
9.Brown, H. R., J. Materials Sci., 1979, 14, 237.
10.Donald, A. M., Kramer, E. J., Bubeck, R. A., J. Polymer Sci.-Polymer Phys., 1979, 20, 1129.
11.Verhuelpen-Heymans, N, Polymer, 1979, 20, 356.
12.Trent, J. S., Palley, I. Baer, E., J. Materials Sci., 1981, 16, 331.
13.A. C. —M. Yang, M. S. Kunz, J. A. Logan, Macromolecules, 1993, 26, 1767.
14.R. E, Robertson, J. Appl. Polymer Sci., 1963, 7, 443.
15.N. Brown, I. M. Ward, J. Polymer Sci. 1968, A-2, 6, 607.
16.I. M. Ward, J. Materials Sci., 1971, 6, 1397.
17.B. L. Gregory, A. Siegmann, J. IM, A Hiltner, E. Baer, J. Materials Sci., 1987, 22, 532.
18.S. J. Pan, J. IM, M. J. Hill, A. Keller, A. Hiltner, E. Baer, J. Polymer Sci., Part B: Polymer Phys., 1990, 28, 1105.
19.M. Ma, K. Vijayan, A. Hiltner, J. IM, E. Baer, J. Materials Sci., 1990, 25, 2039.
20.E. Shin, A. Hiltner, E. Baer, J. Appl. Polymer Sci., 1993, 47, 269.
21.D. Haderski, K. Sung, J. IM, A. Hiltner, E. Baer, J. Appl. Polymer Sci. 1994, 52, 121.
22.K. Sung, D. Haderski, A. Hiltner, E. Baer, J. Appl. Polymer. Sci. 1994, 52, 147.
23.C. X. Zhu, S. Umemoto, N. Okui, T. Sakai, J. Materials Sci., 1988, 23, 4091.
24.C. X. Zhu, S. Umemoto, N. Okui, T. Sakai, J. Materials Sci., 1989, 24, 2787.
25.I. H. Hal, J. Appl. Polymer Sci., 1968, 12, 731.
26.M. Wada, T. Nakamura and N. Kinoshita, Phil. Mag., 1978, A38, 167.
27.Arnold. C. —M, Yang and T. W. Wu, J. Mater. Sci., 1993, 28, 955.
28.Arnold. C.-M, Yang, R. C. Wang and J. H. Lin, Polymer, 1996, 37, 5751.
29.G. D. Merfeld, A. Darim. B. Majumdar, S. K. Satija and D. R. Paul, J. Polym. Sci., Polym. Phys., 1998, Ed. 36, 3115.
30.J. Washiyama, E. J. Kramer and C. —Y. Hui, ibid., 1993, 26, 2928.
31.A. M. Donald and E. J. Kramer., Polymer, 1982, 23, 457.
32.A. M. Donald and E. J. Kramer., J. Mater. Sci., 1984, 16, 669.
33.Kramer, E. J., Polymer Eng. & Sci., 1984, 24, 761.
34.Berger, L. L., Kramer E. J., Macromolecules, 1987, 20, 1980.
35.Henkee, C. S., Kramer, E. J., J. Mat. Sci., 1986, 21, 1398.
36.Bucknall, C. B.: “Toughened Plastics”, Applied Science, London, 1977
37.Ricco, T., Pavan, A., Danusso, F., Polymer Eng. & Sci. 1978, 18, 774.
38.Broutman, L. J., Panizza, G., Int. J. Polymer. Materials, 1971, 1, 95.
39.C. H. Lin and A. C. —M. Yang, Macromolecules, 2001, 34, 3698.
40.K. R. Shull and E. J. Kramer, Macromolecules, 1990, 23, 4780.
41.H. R. Brown, ibid, 1991, 24, 2752.
42.Kevin H. Dai, E. J. Kramer and K. R. Shull, ibid., 1992, 25, 220.
43.C. Creton, E. J. Kramer, C. —Y. Hui and H. R. Brown, ibid., 1992, 25, 3075.
1.Ward, I. M., “Mechanical Properties of Solid Polymers”, 2ed. John Wiley & Sons Press 1983.
2.Tresca, H., Compt. Rend. Acad. Sci. Paris 1867, 64, 809.
3.Coulomb, C. A., Mèm. Math. et Phys. 1773, 7, 343.
4.Kambour, R. P., J. Polymer Sci. Macromol. Rev. 1973, 7, 1.
5.Rabinowitz, S.; Beardmore, P., CRC Reviews in Macromol. Sci. 1972, 1, 1.
6.Gent, A. N., The Mechanics of Fracture AMD, Vol. 19, New, York, ASME, 1976, p. 55.
7.Kramer, E. J., Advance in Polymer Science 1983, 52/53, 1.
8.Kausch, H. H., Polymer Fracture, Springer-Verlag, Heidelberg, 1978.
9.Lauterwasser, B. D.; Kramer, E. J., Phil. Mag. 1979, A39, 469.
10.Brown, H. R., J. Materials Sci. 1979, 14, 237.
11.Donald, A. M.; Kramer, E. J., Phil. Mag. 1981, A43, 857.
12.Yang, A. C.-M.; Wang, R. C.; Lin, C. H., Polymer 1996, 37, 5751.
13.Yang, A. C.-M.; Kramer, E. J.; Kuo C. C.; Phoenix, S. L., Macromolecules 1986, 19, 2010.
14.Yang, A. C.-M.; Kramer, E. J.; Kuo C. C.; Phoenix, S. L., Macromolecules 1986, 19, 2020.
15.Yang, A. C.-M.; Kunz, M. S.; Logan, J. A., Macromolecules 1993, 26, 1767.
16.Yang, A. C.-M.; Wang, R. C.; Kunz, M. S.; Yang, I. C., J. Polym. Sci.: Polym. Phys. Ed. 1996, 34, 1141.
17.Lin, C. H.; Yang, A. C.-M., submitted to Macromolecules.
18.Yang, A. C.-M.; Lee, C. K.; Ferline, S., J. Polym. Sci.: Polym. Phys. Ed. 1992, 30, 1123.
19.Lin, C. H.; Yang, A. C.-M., J. Mater. Sci. 2000, 35 (17), 4231.
20.Donald, A. M.; Kramer, E. J.; Bubeck, R. A., J. Polymer Sci.-Polymer Phys. 1982, 20, 1129.
21.Argon, A. S.; Salama, M. M., Mater. Sci. & Eng. 1977, 23, 219.
22.Taylor, G. I., Proc. Roy. Soc. 1950, A201, 192.
23.Kramer, E. J., Polymer Eng. & Sci. 1984, 24, 761.
24.Berger, L. L.; Kramer, E. J., Macromolecules 1987, 20, 1980.
25.Henkee, C. S.; Kramer, E. J., J. Mat. Sci. 1986, 21, 1398.
26.Robertson, R. E., J. Appl. Polymer Sci. 1963, 7, 443.
27.Brown, N.; Ward, I. M., J. Polymer Sci. A-2 1968, 6, 607.
28.Ward, I. M., J. Materials Sci. 1971, 6, 1397.
29.Bucknall, C. B., “Toughened Plastics”, Applied Science, London, 1977.
30.Ricco, T.; Pavan, A; Danusso, F, Polymer Eng. & Sci. 1978, 18, 774.
31.Broutman, L. J.; Panizza, G., Int. J. Polymer. Materials 1971, 1, 95.
32.Gregory, B. L.; Siegmann, A.; IM, J.; Hiltner, A; Baer, E., J. Materials Sci. 1987, 22, 532.
33.Pan, S.J.; IM, J.; Hill, M. J.; Keller, A.; Hiltner, A.; Baer, E., J. Polymer Sci., Part B: Polymer Phys. 1990, 28, 1105.
34.Ma, M.; Vijayan, K.; Hiltner, A.; IM, J.; Baer, E., J. Materials Sci. 1990, 25, 2039.
35.Shin, E.; Hiltner, A.; Baer, E., J. Appl. Polymer Sci. 1993, 47, 269.
36.Haderski, D.; Sung, K.; IM, J.; Hiltner, A.; Baer, E., J. Appl. Polymer Sci. 1994, 52, 121.
37.Sung, K.; Haderski, D.; Hiltner, A.; Baer, E., J. Appl. Polymer. Sci. 1994, 52, 147.
38.Zhu, C. X.; Umemoto, S.; Okui, N.; Sakai, T., J. Materials Sci. 1988, 23, 4091.
39.Zhu, C. X.; Umemoto, S.; Okui, N.; Sakai, T., J. Materials Sci. 1989, 24, 2787.
40.Berger, L. L.; Kramer, E. J., J. Mater. Sci. 1988, 23, 3536.
41.Bridgman, D. W., “Studies in Large Plastic Flow and Fracture’, Harvard University Press, Cambridge, MA, 1964, p.9.
42.Timoshenko, S. P.; Woinowsky-Krieger, S., “Theory of Plates and Shells”, McGraw-Hill International Ed., 1959.
43.Hal, I. H., J. Appl. Polymer Sci. 1968, 12, 731.
44.Wada, M.; Nakamura, T.; Kinoshita, N., Phil. Mag. 1978, A38, 167.
45.Whitlow, S. J.; Wool, R. P., Macromolecules 1989, 22, 2648.
46.Lin, H.C.; Tsai, I. F.; Yang, A. C.-M.; Hsu, M. S.; Ling, Y. C., submitted to Macromolecules.
47.O’Neil, P. V., “Advanced Engineering Mathematics”, 2nd edition, Wadworth Publishing Company, 1987.
48.Yang, A. C. M.; Ayala, J. E.; Scott, J. C., J. Mater. Sci. 1991, 26, 5823.
49.de Gennes, P. G., “Scaling concept of polymer physics”, Cornell Univ. Press, Ithaca, 1979.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top