跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.31) 您好!臺灣時間:2025/12/02 21:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡政龍
研究生(外文):Cheng-lung Tsai
論文名稱:雜訊分析與低雜訊放大器之實現
論文名稱(外文):Noise Analysis and Low Noise Amplifier Implementation
指導教授:陳世志陳世志引用關係王瑞祿
指導教授(外文):Shih-chih ChenRuey-Lue Wang
學位類別:碩士
校院名稱:國立雲林科技大學
系所名稱:光學電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:95
語文別:中文
論文頁數:98
中文關鍵詞:低雜訊放大器
外文關鍵詞:Low Noise Amplifier
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,使用了TSMC 0.18um CMOS與TSMC 0.35 SiGe先進製成來設計低雜訊放大器,其中有三顆晶片式用於UWB系統中,低雜訊放大器是接收機中一個關鍵電路,一個低雜訊放大器的性能好壞可從高增益、低雜訊、輸入與輸出反射係數、低功率損耗等電路參數去決定。在我的設計中,廣泛的使用回授架構來達成所要的增益平坦度與輸入匹配。尤其是在寬頻電路方面,輸入匹配上是非常困難的,且通常輸入端常會處於匹配和雜訊的取捨,雖然回授降低了增益,但在現今元件製程上,本質增益的提高可克服此問題。另外一個晶片電路是設計適用於24GHz的低雜訊放大器,藉由Common Gate Resister Feedback(CGRF)的方式可降低首級的雜訊,進而造成整體電路的低雜訊。
在第一顆晶片中,採用Folded架構去實現3-5GHz的低雜訊放大器,搭配兩組回授電路提高增益平坦度,晶片總面積為1.21 mm × 1.15 mm。
在第二顆晶片中,採用三級電路去實現24GHz頻段的低雜訊放大器,且對首級分析其雜訊,晶片總面積為1.08 mm × 0.96 mm。
在第三顆晶片中,使用了台積電的SiGe製程技術。除了使用傳統電流再使用式架構來實現低雜訊放大器,亦引入回授機制,以大大提升了增益的平坦度(Gain flatness),晶片總面積為1.26 mm × 1.18 mm。
在第四顆晶片中,使用傳統的Cascode電路,回授RC提供輸入匹配,藉由Body端偏壓,可提高轉導,進而抑制雜訊,晶片總面積為1.07 mm × 1.02 mm。
In this thesis,we employed the TSMC 0.18um CMOS processes and TSMC 0.35um SiGe processes to design and implement the low noise amplifiers. Among these amplifiers, three circuits are suitable for the applications of IEEE 802.15.3a ultra wide band standard. The low noise amplifier is a key component for the front end of receivers. Sufficient gain, low noise, good input and output matching, low power consumption are important performances of a low noise amplifier. The feedback topology is generally used in my design. By this way, gain flatness and input matching can be attained. Especially, the broadband matching is very difficult in the input terminal. Input impedance matching and noise matching are usually trade-off. Though feedback topology decreases the gain, but the intrinsic gain of modern active devices is enough to face the persecution. Another circuit is a 24GHz low noise amplifier, using the common gate topology as the input stage. By the Common Gate Resister Feedback (CGRF) skill, we can suppress noise of the first stage and then overall noise can be lower.
In the first chip, a folded-cascode 3-5GHz UWB LNA is designed with feedback technologies to enhance gain flatness. The area of the chip is 1.21 mm × 1.15 mm. In the second chip, a 24GHz LNA is implemented by using three-stage technology. In addition, noise contribution of the first stage is analyzed. The whole area of the chip is 1.08 mm × 0.96 mm. In the third chip, the TSMC 0.35um SiGe processes is used to implement a current-reused LNA. The feedback topology is added to attain the gain flatness. The whole area of the chip is 1.26 mm × 1.18 mm. In the fourth chip, the traditional cascode technology with feedback technology is used to attain the input matching. In addition, the body-biasing technology is used to enhance the MOS tranconductance. The area of the chip is 1.27 mm × 1.12 mm.
Contents
中文摘要------------------------------------------------------------------------------------- I
英文摘要----------------------------------------------------------------------------------- II
誌謝 ----------------------------------------------------------------------- III
Contents ---------------------------------------------------------------------- IV-VI
List of tables --------------------------------------------------------------------------- VII
List of Figures ----------------------------------------------------------------------- VIII-X
Chapter1緒論
1.1 簡介Ultra Wide Band (WUB)------------------------------------------------ 1
1.2 直接序列UWB --------------------------------------------------------------- 2
1.3 MB-OFDM UWB -------------------------------------------------------------- 3
Chapter2接收機架構
2.1系統簡介----------------------------------------------------------------------- 4
2.1.1 類比與數位系統------------------------------------------------------ 4
2.1.1.1類比系統---------------------------------------------------- 5
2.1.1..2數位系統----------------------------------------------------- 5
2.2 超外差式接收器 (Super-Heterodyne Receiver)----------------------------- 7
2.2.1 鏡像頻率 (Image) --------------------------------------------- 8
2.2.2 半中頻 (Half IF) -------------------------------------------- 9
2.3 直接降頻接收器 (Direct Conversion Receiver DCR)---------------------------- 10
2.3.1 直流準位偏移 (DC Offset) ---------------------------------------- 11
2.3.2 偶次諧波失真 (Even-Order Distortion) ----------------------------- 12
2.3.3 顫動雜訊(Flicker Noise) ------------------------------------------------ 13
2.4 接收機雜訊源 (Receiver Noise)--------------------------------------------- 13
2.4.1 接收機熱雜訊 (Receiver Thermal Noise)--------------------------- 13
2.4.2 發射端雜訊--------------------------------------------------------------- 15
2.4.3 本地振盪器雜訊與干擾 (LO Leakage and Interference)-------- 16
2.5 傳播效應 (Propagation Effects)-------------------------------------------------------- 17
2.5.1 路徑損耗(Path Loss)----------------------------------------------------- 17
2.5.2 多重路徑與通道衰減 (Multipath and Fading)--------------------- 18
2.5.3 等化器 (Equalization)、分集 (Diversity)、加密 (Coding)----- 19
Chapter3高頻電路設計考量
3.1 散射參數 (Scattering Factor;S parameter)------------------------ 20
3.2 增益 (Gain)------------------------------------------------------------- 23
3.3 穩定度 (Stability)---------------------------------------------------------- 26
3.4 非線性效應 (Effect of Nonlinearity)--------------------------------- 27
3.4.1 諧波項 (Harmonics)------------------------------------- 28
3.4.2 1dB增益壓縮點 (1dB Gain Compression Point)---- 29
3.4.3 交互調變與三階截斷點 (Intermodulation and Third-Orde
Intercept Point )---------------------------------------------- 30
3.4.4 IP3的計算-------------------------------------------------- 32
3.5阻抗匹配網路 (Impedance Matching Network )--------------------- 35
3.5.1 電阻匹配------------------------------------------------------- 38
3.5.2 電晶體主動匹配---------------------------------------------- 39
3.5.3 源極退化電感匹配------------------------------------------ 40
3.5.4 LC-Ladder匹配--------------------------------------------- 42
Chapter4雜訊分析
4.1 雜訊簡介------------------------------------------------------------------ 44
4.1.1 功率頻譜密度 (Power Spectral density;PSD)------ 44
4.1.2 白色頻譜 (White Spectrum)------------------------------- 45
4.1.3 相關與非相關雜訊源------------------------------------- 46
4.2 電阻熱雜訊------------------------------------------------------------- 47
4.3 MOS中的雜訊---------------------------------------------------------- 49
4.3.1 通道熱雜訊-------------------------------------------------- 49
4.3.2 閘極誘發雜訊----------------------------------------------- 49
4.3.3 MOSFET中的Flicker Noise---------------------------------- 51
4.4 Bipolar中的雜訊-------------------------------------------------------- 52
4.5 Bipolar雜訊最佳化----------------------------------------------------- 53
4.5.1 雜訊因子與雜訊參數-------------------------------------- 53
4.5.2 雜訊參數求法----------------------------------------------- 54
4.5.3 Bipolar 雜訊雙埠網路計算------------------------------- 56
4.6 雜訊最佳化的證明------------------------------------------------------ 59
4.7 CMOS雜訊最佳化及與Bipolar的比較----------------------------- 61
4.8 多級電路雜訊計算-------------------------------------------------------- 63
Chapter 5 電路實作-
5.1 設計流程--------------------------------------------------------------------- 65
5.2應用於超寬頻3-5GHz低供應電壓之低雜訊放大器-------------- 66
5.2.1電路架構---------------------------------------------------------- 66
5.2.2架構說明---------------------------------------------------------- 66
5.2.3模擬與量測------------------------------------------------------- 67
5.2.4規格列表---------------------------------------------------------- 72
5.3降低基板耦和效應用於24GHz之低雜訊放大器------------------ 73
5.3.1電路架構---------------------------------------------------------- 73
5.3.2架構說明---------------------------------------------------------- 73
5.3.3模擬與量測------------------------------------------------------- 80
5.3.4規格列表---------------------------------------------------------- 84
5.4應用於全頻帶電流再使用式之低雜訊放大器---------------------- 85
5.4.1電路架構---------------------------------------------------------- 85
5.4.2架構說明---------------------------------------------------------- 85
5.4.3模擬結果---------------------------------------------------------- 86
5.4.4規格列表---------------------------------------------------------- 90
5.5轉導增強式全頻帶低雜訊放大器-------------------------------------- 91
5.5.1電路架構---------------------------------------------------------- 91
5.5.2架構說明---------------------------------------------------------- 91
5.5.3模擬結果---------------------------------------------------------- 92
5.5.4規格列表---------------------------------------------------------- 96





List of tables
表5.1 3-5GHz低供應電壓之低雜訊放大器 ------------------------------------- 72
表5.2 24GHz低雜訊放大器 ------------------------------------------------------ 84
表5.3 電流再使用式低雜訊放大器三種不同Corner Case模擬之比較 -- 90
表5.4 Post-sim後三種不同Corner Case模擬之比較 ----------------------- 96
[1].Derek K. Shaeffer, Thomas H. Lee, 1997, IEEE JOURNAL OF SOLID-STATE
CIRCUITS, vol.32, pp.745-759, MAY “A 1.5V, 1.5GHz CMOS Low Noise
Amplifier“
[2].David J. Allstot, Xiaoyong Li, Sudip Shekhar, 2004,IEEE Radio Frequency
Integrated Circuit Symposium, pp.97-100, “Design Considerations for CMOS
Low-Noise Amplifiers“
[3].Shih-Chih Chen, Ruey-Lue Wang, Ming-Lung Kung, Hen-Cho Hung,
2005,International Conference on Wireless Networks, Communications and Mobile
Computing, pp.1354-1357, “An Integrated CMOS Low Noise Amplifier for Ultra
Wide Band Applications“
[4].Sumit Vishwakarma, Sungyong Jung, Youngjoong Joo, 2004, pp.415-419, “Ultra
Wideband CMOS Low Noise Amplifier with Active Input Matching“
[5].Bo-Yang Chang, 2005, APMC2005 Proceedings, “Design of a 3.1-10.6GHz
Low-Voltage, Low-Power CMOS Low-Noise Amplifier for Ultra-Wideband
Receivers“
[6].Heechan Doh, Youngkyun Jeong, Sungyong Jung, Youngjoong Joo, 2004,
pp.641-644, The 47th IEEE International Midwest Symposium on Circuits and
Systerms, “Design of CMOS UWB Low Noise Amplifier with Cascode Feedback“
[7].David Maxwell, Sungyong Jung, Heechan Doh, Jean Gao, Youngjoong Joo, 2005,
pp.627-630, “A Two-Stage Cascode CMOS LNA for UWB Wireless Systems“
[8].Seyed Hossein Miri Lavasani, Sayfe Kiaei, 2003, pp.982-985, “A NEW MATHOD
TO STABILIZE HIGH FREQUENCY HIGH GAIN CMOS LNA“
[9].Federico Bruccoleri, Eric A. M. Klumperink, Bram Nauta, 2004, February,
pp.275-282, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL.39,
NO.2, “Wide-Band CMOS Low-Noise Amplifier Exploiting Thermal Noise
Canceling“
[10]. Federico Bruccoleri, E. A. M. Klumperink, Bram Nauta, 2002, IEEE International
Solid-State Circuit Conference, “Noise Canceling in Wideband CMOS LNAs“
[11].Chang-Wan Kim, Min-Suk Kang, Phan Tuan Anh, Hoon-Tae Kim, Sang-Gug Lee,
2005, February, pp.544-547, IEEE JOURNAL OF SOLID-STATE CIRCUIT,
VOL.40, NO.2, “An Ultra-Wideband CMOS Low Noise Amplifier for 3-5GHz
UWB System“
[12].Xiang Guan, AliHajimiri, 2004, February, pp.368-373, IEEE JOURNAL OF
SOLID-STATE CIRCUIT, VOL.39, NO.2, “A 24 GHz CMOS Front-End“
[13]. Shih-Chih Chen, Ruey-Lue Wang, Hslang-Chen Kuo, Ming-Lung Kung,
Chang-Sing Gao, 2006, Proceedings of Asia-Pacific Microwave Conference, “The
Design of Full Band (3.1-10.6GHz) CMOS UWB Low Noise Amplifier with
Thermal Noise Canceling“
[14].Yi-Jing Lin, Shawn S. H. Hsu, Jun-De Jin, C. Y. Chan, 2007, March, pp.232-234,
IEEE MICROWAVE AND WIRELESS COMPONENTS LETTER, VOL.17,
NO.3, “A 3.1-10.6GHz Ultra-Wideband CMOS Low Noise Amplifier With
Current-Reused Technique“
[15].Chih-Fan Liao, Shen-Iuan Liu, 2005, pp.161-164, IEEE 2005 CUSTOM
INTEGRATED CIRCUITS CONFERENCE, “A Broadband Noise-Canceling
CMOS LNA for 3.1-10.6GHz UWB Receiver“
[16].Stephan C. Blaakmeer, ERIC A. M. Klumperink, Domine M. W. Leenaerts, Bram
Nauta, “A Wideband Noise-Canceling CMOS LNA Exp;oiting a transformer“
[17].Yunseo Park, Chang-Ho Lee, John D. Cressler, Joy Laskar, 2006, September,
pp.517-519, IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS,
VOL16, NO.9, “Theoretical Analysis of a Low Dispersion SiGe LNA for
Ultra-Wideband Applications“
[18].Y. Park, C. H. Lee, J.D. Cressler, J. Laskar, A. Joseph, 2005, IEEE, pp.1041-1044,
“A Very Low Power SiGe LNA for UWB Application“
[19].Li Yang, Huailin Liao, Guoyan Zhang, Ru Huang, Xing Zhang, 2005, IEEE,
pp.237-240, “A Fully Integrated SiGe Low Noise Amplifier for 3-5GHz
Ultra-Wideband Radio“
[20].Jongsoo Lee, John D. Cressler, 2005, IEEE, pp.545-548, 2005 IEEE Radio
Frequency Integrated Circuits Symposium, “A 3-10GHz SiGe Resistive Feedback
Low Noise Amplifier for UWB Application“
[21].Bo Shi, Michael, Yan Wah Chia, 2004, pp.101-104, ISCAS 2004, “Design of A
SiGe Low Noise Amplifier for 3.1-10.6GHz Ultra WideBand Radio“
[22].Yunseo Park, Chang-Ho Lee, John D. Cressler, Joy Laskar, 2006, April,
pp.1687-1697, IEEE TRANSACTIONS ON MICROWAVE THEORY AND
TECHNIQUES, VOL54, NO.4, “The Analysis of UWB SiGe HBT LNA for Its
Noise, Linearity, and Minimim Group Delay Variation“
[23].Yuan Lu, Ramkumar Krithivasan, Wei-Min Lance Kuo, John D. Cressler, “A
1.8-3.1dB Noise Figure (3-10GHz) SiGe HBT LNA for UWB Application“
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top