跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.213) 您好!臺灣時間:2025/11/08 18:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡伯煜
研究生(外文):Po-Yu Tsai
論文名稱:K線圖探勘於股票預測之研究
論文名稱(外文):Mining candlestick charts for stock prediction
指導教授:蔡志豐蔡志豐引用關係
指導教授(外文):Chih-Fong Tsai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊管理研究所
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2012
畢業學年度:100
語文別:中文
論文頁數:47
中文關鍵詞:影像資料探勘K 線圖影像股價分析
外文關鍵詞:stock predictioncandlestick chartimage mining
相關次數:
  • 被引用被引用:6
  • 點閱點閱:804
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
股價預測 (stock prediction) 對於投資者而言是一個有趣的議題之外,在學術上也是一個重要的議題。然而由於股價的變動因素過多,使得投資者難以預測股價,於是發展出「基本分析」及「技術分析」來輔助投資者進行決策。K 線圖是一種技術分析的方法,其中包含歷史交易的價格和交易量資料,因此投資者可以根據 K 線圖所顯示的波動趨勢和型態來分析股價趨勢。然而以往的 K 線圖分析法皆是根據分析師個人的經驗,因而缺乏一套客觀且自動化的方法來解讀 K 線圖,為了改善這個限制,本研究提出一個 K 線圖探勘 (Candlestick Chart Mining,CCM),其作法是透過影像處理技術來萃取出 K 線圖影像的特徵向量,結合傳統技術分析的技術指標來預測股價漲跌趨勢,並且透過固定模式和滑動視窗模式來訓練分類器。
根據實驗結果,本研究所提出的新方法,結合影像特徵及技術指標特徵的混合特徵對於提升股價預測正確率是有用的。且在本研究所做的短、中、長期股票預測,中期股票預測中的影像特徵預測效能比技術指標特徵好,而滑動視窗模式相較於固定模式而言,更適合用於中期股票預測。
Stock prediction is an interesting and important issue for many investors. However, the factors that affect stock price are very complicated and difficult to analyze. Therefore, it is very hard to effectively predict stock price. In general, both fundamental analysis and technical analysis have been used for stock prediction. The analysis of candlestick chart (also called K chart) is one of the technical analysis methods since such figures usually contain lots of trading information which allow the investors to analyze the stock trend. However, previous studies of K chart analysis have all been based on the analysts'' personal experiences. In the other words, an objective and automated method to interpret those figures is lacking. To solve this limitation, we propose a novel method called Candlestick Chart Mining (CCM). In CCM, the image processing technique is used to extract the image features from K charts. Particularly, the texture features are extracted as the image descriptors to combine with some technical indicators.
The results demonstrate that the new method that we proposed to combine the image features with the technical indicators is useful for improving stock prediction accuracy, and in the mid-term stock prediction. Moreover, using the image feature alone can make the neural network classifier to perform better than using the technical indicators. Furthermore, the sliding windows mode for training the prediction model is more suitable than the stable training mode for the mid-term stock prediction.
摘要 i
Abstract ii
致謝辭 iii
目錄 iv
圖目錄 v
表目錄 vi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 2
1.3 研究貢獻 3
1.4 論文架構 3
第二章 文獻探討 4
2.1 股價預測 4
2.2 技術指標 5
2.3 型態學與趨勢理論 6
2.4 相關研究 8
第三章 K 線圖探勘 (candlestick charts mining) 11
3.1 資料蒐集與整理 12
3.2 技術指標特徵 14
3.3 K 線圖影像特徵 16
3.3.1 K線圖影像分析與轉換 16
3.3.2 K線圖影像特徵萃取 19
3.4 特徵向量內容 20
3.5 模型建立與效能評估 20
第四章 實驗結果與相關討論 24
4.1 實驗環境與設計 24
4.2 實驗結果 26
4.3 討論 29
第五章 結論 32
5.1 研究總結 32
5.2 未來研究方向 32
參考文獻 34
英文部分
[1]Fama, E.F.,“Efficient capital markets: A review of theory and empirical work,”Journal of Finance, vol. 25, no. 2, pp. 383-417, 1970.
[2]Wyckoff, P., The Psychology of Stock Market Timing,” Prentice-Hall, New Jersey, 1967.
[3]Abarbanell, J.S., and Bushee, B.J.,“Fundamental analysis, future earnings, and stock prices,”Journal of Accounting Research, vol. 35, no. 1, pp. 1-24, 1997.
[4]Dechow, P.M., Hutton, A.P., Meulbroek, L., and Sloana, R.G., “Short-sellers, fundamental analysis, and stock returns,”Journal of Financial Economics, vol. 61, no. 1, pp. 77-106, 2001.
[5]Edwards, R.D., and Magee, J.,“Technical Analysis of Stock Trends, 7th edition,”AMACOM, 1997.
[6]Murphy, J.J.,“Technical analysis of the financial markets: a comprehensive guide to trading methods and applications,”New York Institute of Finance, 1999.
[7]Levy, R.A.,“Relative strength as a criterion for investment selection,”Journal of Finance, vol. 22, no. 4, pp. 595-610, 1967.
[8]Brock, W., Lakonishok, J., and LeBaron, B.,“Simple technical trading rules and the stochastic properties of stock returns,”Journal of Finance, vol. 47, no. 5, pp. 1731-1764, 1992.
[9]Ratner, M., and Leal, R.P.C.,“Tests of technical trading strategies in the emerging equity markets of Latin America and Asia,”Journal of Banking and Finance, vol. 23, no. 12, pp. 1887-1905, 1999.
[10]Gunasekaragea, A., and Power, D. M.,“The profitability of moving average trading rules in South Asian stock markets,”Emerging Markets Review, vol. 2, no. 1, pp, 17-33, 2001.
[11]Kwon, K.Y., and Kish, R.J.,“A comparative study of technical trading strategies and return predictability: An extension of Brock, Lakonishok, and LeBaron (1992) using NYSE and NASDAQ indices,” The Quarterly Review of Economics and Finance, vol. 42, no. 3, pp. 611-631, 2002.
[12]Morris, G.L.,“Candlestick Charting Explained: Time Techniques for Trading Stocks and Futures, Second ed.,” McGraw-Hill Trade, New York, 1995.
[13]Caginalp, G., and Laurent, H.,“The predictive power of price patterns,”Applied Mathematical Finance, vol. 5, no. 3, pp. 181-205, 1998.
[14]Lee, K.H., and Jo, G.S.,“Expert system for predicting stock market timing using a candlestick chart,”Expert Systems with Applications, vol. 16, no. 4, pp. 357-364, 1999.
[15]Fiessa, N.M., and MacDonald, R.,“Towards the fundamentals of technical analysis: analysing the information content of High, Low and Close prices,” Economic Modeling, vol. 19, no. 3, pp. 353-374, 2002.
[16]Lee, C.H.L., Liu, A., and Chen, W.S.,“Pattern discovery of fuzzy time series for financial prediction,” IEEE Transactions on Knowledge and Data Engineering, vol. 18, no. 5, pp. 613-625, 2006.
[17]Prechter, R.R.,“R.N. Elliott’s Masterworks: The Definitive Collection,” New Classics, 1994a.
[18]Prechter, R.R.,“The Complete Elliott Wave Writings of A. Hamilton Bolton,” Bookworld Services, 1994b.
[19]Daubechies, I.,“Orthonormal bases of compactly supported wavelets,”Communications on Pure and Applied Mathematics, vol. 41, no. 7, pp. 909-996, 1988.
[20]Mallat, S.G.,“A theory for multiresolution signal decomposition:the wavelet representation,”IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674-693, 1989.
[21]Rioul, O., and Vetterli, M.,“Wavelets and signal processing,”IEEE. Signal Processing Mag., vol. 8, pp. 14-38, Oct. 1991
[22]Stollnitz, E.J., DeRose, T.D., and Salesin, D.H., “Wavelets for Computer Graphics: A Primer, Part 2,”IEEE Computer Graphics and Applications, vol.15 no.4, pp.75-85, 1995
[23]Chuang, G.C., and Kuo, C.J., “Wavelet descriptor of planar curves: Theory and applications,”IEEE Trans. Image Processing, vol. 5, pp.56 -70, 1996.
[24]Rui, Y., Huang, T.S., and Chang, S.F.,“Image retrieval: current techniques, promising directions and open issues,”Journal of Visual Communication and Image Representation, vol. 10, no. 1, pp. 39-62, 1999.
[25]Jiang, W. and Ortega, A.,“Lifting factorization-based discrete wavelet transform architecture design,”IEEE Trans. on Circuits and Systems for technology, vol. 11, pp. 651-657, 2001.
[26]Fernando, P.C., Julio, A.R., and Javier, G., “Estimating GARCH models using support vector machines,” Quantitative Finance, vol. 3, no. 3, pp. 163-172, 2003.
[27]Saad, E.W., Prokhorov, D.V., and Wunsch, D.C., “Comparative study of stock trend prediction using time delay, recurrent and probabilistic neural networks,”IEEE Transactions on Neural Networks, vol. 9, no. 6, pp. 1456-1470, 1998.
[28]Chen, A.S., Leung, M.T., Daouk, H.,“Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index,”Computers & Operations Research, vol. 30, no. 6, pp. 901-923, 2003.
[29]Zhang, D., and Zhou, L.,“Discovering golden nuggets: Data mining in financial application,”IEEE Transactions on Systems, Man, and Cybernetics, Part C, Applications and Reviews, vol. 34, no. 4, pp. 513-522, 2004.
[30]Qi, M., and Zhang, G.P.,“Trend time-series modeling and forecasting with neural networks,”IEEE Transactions on Neural Networks, vol. 19, no. 5, pp. 808-816, 2008.
[31]Tsai, C.F., Lin, Y.C., Yen, D.C., Chen, Y. M., “Predicting stock returns by classifier ensembles,” Applied Soft Computing, vol. 12, no. 2, pp. 2452-2459, 2011.
[32]Wang, J.Z., Wang, J.J., Zhang, Z.G., Guo, S.P., “Forecasting stock indices with back propagation neural network,” Expert Systems with Applications, vol. 38, no. 11, pp. 14346–14355, 2011
[33]Tsai, C.F., and Hsiao, Y.C.,“Combining multiple feature selection methods for stock prediction: union, intersection, and multi-intersection approaches,” Decision Support Systems, vol. 50, no. 1, pp. 258-269, 2010.

中文部分
[34]于明,「點數圖交易法︰深藏120餘年古老金融煉金術」,地震出版社,2011。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top