跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.17) 您好!臺灣時間:2025/09/03 10:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝佳儒
研究生(外文):Chia Ju Hsieh
論文名稱:第二型囊泡單胺轉運體正子放射斷層影像於帕金森氏病之定量分析並與多巴胺轉運體單光子斷層掃描影像比較
論文名稱(外文):Study on data quantization of VMAT2 imaging in PET for Parkinson’s disease and comparison to DAT imaging in SPECT
指導教授:蕭穎聰
指導教授(外文):I. T. Hsiao
學位類別:碩士
校院名稱:長庚大學
系所名稱:醫學影像暨放射科學系
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
論文頁數:98
中文關鍵詞:帕金森氏病18F-AV-13399mTc-TRODATVMAT2SUVR
外文關鍵詞:Parkinson diseases (PD)18F-AV-13399mTc-TRODATVMAT2SUVR
相關次數:
  • 被引用被引用:0
  • 點閱點閱:524
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
  18F-AV-133為偵測VMAT2之嶄新核醫藥物,藉以評估帕金森氏病人多巴胺神經元退化情形,與目前臨床常用的DAT造影之藥物-99mTc-TRODAT比較,18F-AV-133有高解析度、敏感度、不易受治療藥物影響之優點,具臨床應用潛力。而在廣泛運用於臨床前,須針對18F-AV-133於帕金森氏病之鑑別力,找出最佳造影流程與影像的定量分析。本論文將研究18F-AV-133之最佳造影時間,並與99mTc-TRODAT比較其診斷效力。以4位健康受測者與9位帕金森氏病人影像,利用定量與半定量分析法,分別計算SUVR與DVR,探討二參數相關性以及18F-AV-133之SUVR影像與健康對照組與帕金森氏病人間的鑑別力,綜合評估最佳造影時間。獲得最佳造影時間之影像後,評估18F-AV-133影像與臨床資料的相關性,並與99mTc-TRODAT影像比較。
  結果中發現,於90-100分鐘,SUVR與DVR有高度相關,且SUVR影像於健康對照組與帕金森氏病病人間有高鑑別力,因此推估90-100分鐘為最佳造影時間。18F-AV-133影像在區別帕金森氏病與健康對照組之能力優於99mTc-TRODAT影像,且與臨床資料之相關性也與DAT影像類似。因此,18F-AV-133有潛力成為比99mTc-TRODAT更具臨床診斷價值之核醫藥物,以利早期發現與早期診斷帕金森氏病。

18F-AV-133 is a novel PET tracer for imaging the vesicular monoamine transporter 2 (VMAT2) in dopaminergic neuron degeneration of Parkinson diseases (PD) and is expected with more diagnosis power as compared to conventional SPECT tracer for DAT(dopamine transporter, DAT) imaging including 99mTc-TRODAT. Before the wide application in clinical trials, the optimization of scanning protocol and data quantitation for 18F-AV-133 is necessary to guarantee optimal diagnosis power in differentiation of PD from normal controls. This thesis is aimed to study the optimal scanning time, as well as compare the diagnosis power with that of 99mTc-TRODAT. The study included 4 normal controls (NCs) and 9 Parkinson diseases patients. The imaging time window was optimized by using a simple semi-quantitative SUVR (standardized uptake value ratio) and its correlation to a quantitative analysis from DVR (distribution volume ratio), as well as discriminating capability of PD from NCs. After ideal time window was obtained, 18F-AV-133 PET images were correlated with clinical data, and compare to 99mTc-TRODAT SPECT images in same subjects.
As the results indicated, at 90-100 min time window, SUVRs were strongly correlated with DVR, and showed good differentiation between NCs and PD patients. Therefore, 90-100 min was considered as the optimal time window. 18F-AV-133 imaging showed better discrimination between NCs and PD patients, and better correlation with clinical characteristics than 99mTc-TRODAT imaging. In these regards, 18F-AV-133 PET is promising for clinical use of detecting monoaminergic terminal reduction in PD patients.

目錄
誌謝 iv
中文摘要 v
英文摘要 vi
目錄 viii
表目錄 xi
圖目錄 xii
第一章 簡介 1
1-1 關於帕金森氏病 1
1-1-1 帕金森氏病臨床表現與診斷 2
1-1-2 帕金森氏病致病原因 8
1-2 帕金森氏病之核醫造影 10
1-3 實驗目的 15
第二章 定量與半定量分析 16
2-1 定量分析 17
2-1-1 隔室模型(compartment model) 17
2-1-2 參考組織模型(reference tissue model) 23
2-2 半定量分析 24
2-3 Logan graphical model之DVR與SUVR關係 26
第三章 實驗材料與方法 28
3-1 18F-AV-133的製備 28
3-2 受試者與來源(Subjects) 28
3-3 造影流程(Imaging studies) 29
3-4 感興趣體積(VOI)的定義 30
3-5 評估18F-AV-133最佳造影時間 32
3-5-2 最佳造影時間評估 33
3-6 比較18F-AV-133與99mTc-TRODAT於健康對照組與帕金森氏病病人之造影 36
3-6-1 影像分析 36
3-6-2 臨床診斷資料分別與18F-AV-133正子造影和99mTc-TRODAT單光子斷層掃描造影之影像相關性分析 36
第四章 實驗結果 39
4-1 評估18F-AV-133最佳造影時間 40
4-1-1 18F-AV-133 SUVR與DVRLogan、DVR2C4k的相關性 41
4-1-2 SUVR於健康受測者與帕金森氏病病人間的區別力 47
4-2 比較18F-AV-133與99mTc-TRODAT於健康對照組與帕金森氏病病人之
造影 52
4-2-1 18F-AV-133 SUVR與99mTc-TRODAT UR之相關性 53
4-2-2 99mTc-TRODAT單光子斷層掃描與臨床診斷資料之相關性 55
4-2-3 18F-AV-133正子造影與臨床診斷資料相關性 58
第五章 討論與結論 61
5-1 評估18F-AV-133最佳造影時間之討論 61
5-2 比較18F-AV-133與99mTc-TRODAT於健康對照組與帕金森氏病病人之造影之討論 66
5-3 結論 70
5-4 未來發展重點 71
參考文獻 72















表目錄
表1-1 Unified Parkinson Disease Rating Scale-Part Ⅰ、Part Ⅱ 4
表1-2 Unified Parkinson Disease Rating Scale-Part Ⅲ 5
表1-3 Unified Parkinson Disease Rating Scale-Part Ⅳ 6
表1-4 Hoehn and Yahr stage 7
表3-1 Clinical Laterality Score 29
表4-1 受試者之臨床表徵 39
表4-2 18F-AV-133於8個VOI的DVR2C4k與DVRLogan 48
表4-3 NC與PD於各VOI的18F-AV-133 SUVR與99mTc-TRODAT UR 54
表4-4 18F-AV-133 SUVR與99mTc-TRODAT UR於病徵側有效差異值 55















圖目錄
圖1-1 多巴胺直接與間接神經傳導路徑示意圖 9
圖1-2 多巴胺神經傳導系統,各核醫藥物做用位置示意圖 12
圖2-1 雙隔室模型示意圖 19
圖2-2 三隔室模型示意圖 21
圖3-1 本研究所用的8個VOI與參考組織 32
圖4-1 18F-AV-133健康受測者與帕金森氏病病人的動態造影 40
圖4-2  13位受測者8個VOI的DVRLogan與DVR2C4k之線性相關 41
圖4-3  13位受測者8個VOI的SUVR與DVR2C4k、DVRLogan於10-20分鐘、20-30分鐘、50-60分鐘之線性相關 42
圖4-4  13位受測者8個VOI的SUVR與DVR2C4k、DVRLogan於60-70分鐘、70-80分鐘、80-90分鐘之線性相關 43
圖4-5  13位受測者8個VOI的SUVR與DVR2C4k、DVRLogan於90-100分鐘、100-110分鐘、110-120分鐘之線性相關 44
圖4-6  13位受測者8個VOI的SUVR與DVR2C4k、DVRLogan於120-130分鐘、130-140分鐘、160-170分鐘之線性相關 45
圖4-7 14個時間區間SUVR分別與DVR2C4k、DVRLogan的線性回歸結果 46
圖4-8 健康對照組與帕金森氏病病人於病徵側的尾核與外核的SUVR與時間關係曲線 49
圖4-9 14個時間區間,帕金森氏病病人在病徵側之於健康對照組時間與Mann-Whitney U test之p-value關係圖 49
圖4-10 尾核與外核於病徵側14個時間區間SUVR有效差異值結果 51
圖4-11 健康受測者與帕金森氏病病人T1 MRI、18F-AV-133注射後90-100分鐘SUVR之影像與99mTc-TRODAT打藥後4-5小時的UR影像 52
圖4-12 以散佈圖表示13位受測者6個VOI的18F-AV-133 SUVR與99mTc-TRODAT UR之相關性分析 53
圖4-13 99mTc-TRODAT UR於尾核與外核在影像上的病徵側與H-Y stage之相關性分析結果 56
圖4-14 尾核與外核99mTc-TRODAT影像上攝取值的對稱性與臨床症狀上的單側性等級之相關性 56
圖4-15 病徵側之尾核與外核99mTc-TRODAT UR與UPDRS總分、UPDRSm、UPDRS運動部分中的肢體僵硬與動作緩慢程度的分數之相關性 57
圖4-16 18F-AV-133 SUVR於尾核與外核在影像上的病徵側與H-Y stage之相關性分析結果 58
圖4-17 尾核與外核18F-AV-133正子造影攝取值的對稱性與臨床症狀上的單側性等級之相關性 59
圖4-18 病徵側之尾核與外核18F-AV-133 SUVR與UPDRS總分、UPDRSm、UPDRS運動部分中的肢體僵硬與動作緩慢程度的分數之相關性 60


1. Marttila, R.J. and U.K. Rinne, Dementia in Parkinson's disease. Acta Neurologica Scandinavica, 2009. 54(5): p. 431-441.
2. Chen, R.C., S.F. Chang, and C.L. Su, Prevalence, incidence, and mortality of PD: a door-to-door survey in Ilan county, Taiwan. Neurology, 2001. 57(9): p. 1679.
3. Lozano, A.M. and S.K. Kalia, New movement in Parkinson's. Scientific American, 2005. 293(1): p. 68-75.
4. 曾岐原, ed. 最新病理學, 第四版. 2008, 匯華圖書出版有限公司. p. 470-471.
5. 陳品豪, 劉智仰, and 陳鵬升, 巴金森氏症. 基層醫學, 2008. 23(3): p. 76-80.
6. Goetz, C.G., et al., Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): process, format, and clinimetric testing plan. Movement Disorders, 2007. 22(1): p. 41-47.
7. Goetz, C.G., et al., Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. MOVEMENT DISORDERS-NEW YORK-, 2004. 19(9): p. 1020-1028.
8. Sioka, C., A. Fotopoulos, and A.P. Kyritsis, Recent advances in PET imaging for evaluation of Parkinson’s disease. European journal of nuclear medicine and molecular imaging, 2010: p. 1-10.
9. Widmaier, E.P., H. Raff, and K.T. Strang, Vander's Human Physiology: The Mechanisms of Body Function10th edition. 2006, Boston, MA: McGraw-Hill.
10. Fearnley, J.M. and A.J. Lees, Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain, 1991. 114(5): p. 2283.
11. Heiss, W.D. and R. Hilker, The sensitivity of 18-fluorodopa positron emission tomography and magnetic resonance imaging in Parkinson's disease. European Journal of Neurology, 2004. 11(1): p. 5-12.
12. Jahanshahi, M., et al., Self-initiated versus externally triggered movements: I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Brain, 1995. 118(4): p. 913.
13. Firbank, M.J., et al., Regional cerebral blood flow in Parkinson's disease with and without dementia. neuroImage, 2003. 20(2): p. 1309-1319.
14. Koeppe, R.A., et al., 11C-DTBZ and 18F-FDG PET measures in differentiating dementias. Journal of Nuclear Medicine, 2005. 46(6): p. 936.
15. Otsuka, M., et al., Differentiating between multiple system atrophy and Parkinson’s disease by positron emission tomography with 18 F-dopa and 18 F-FDG. Annals of nuclear medicine, 1997. 11(3): p. 251-257.
16. Antonini, A., et al., Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson's disease. Brain, 1997. 120(12): p. 2187.
17. Geng, Y., et al., Investigating the role of 99mTc-TRODAT-1 SPECT imaging in idiopathic Parkinson’s disease. Journal of Zhejiang University. Science. B, 2005. 6(1): p. 22.
18. Hwang, W.J., et al., Reproducibility of 99mTc-TRODAT-1 SPECT measurement of dopamine transporters in Parkinson's disease. Journal of Nuclear Medicine, 2004. 45(2): p. 207.
19. Okamura, N., et al., In Vivo Measurement of Vesicular Monoamine Transporter Type 2 Density in Parkinson Disease with 18F-AV-133. Journal of Nuclear Medicine, 2010. 51(2): p. 223.
20. Heinz, A., et al., Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F] DOPA and [18F] DMFP PET study in detoxified alcoholic patients. American Journal of Psychiatry, 2005. 162(8): p. 1515.
21. Pappata, S., E. Salvatore, and A. Postiglione, In vivo imaging of neurotransmission and brain receptors in dementia. Journal of Neuroimaging, 2008. 18(2): p. 111-124.
22. Nagasawa, H., et al., 6-[18F] fluorodopa metabolism in patients with hemiparkinsonism studied by positron emission tomography. Journal of the neurological sciences, 1993. 115(2): p. 136-143.
23. Broussolle, E., et al., The relation of putamen and caudate nucleus 18F-Dopa uptake to motor and cognitive performances in Parkinson's disease. Journal of the neurological sciences, 1999. 166(2): p. 141-151.
24. Bruck, A., et al., A follow-up study on 6-[18F] fluoro-L-dopa uptake in early Parkinson's disease shows nonlinear progression in the putamen. Movement Disorders, 2009. 24(7): p. 1009-1015.
25. Brooks, D.J., et al., Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson's disease. Experimental neurology, 2003. 184: p. 68-79.
26. Logan, J., et al., Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism, 1990. 10(5): p. 740.
27. Logan, J., et al., Concentration and occupancy of dopamine transporters in cocaine abusers with [11C] cocaine and PET. Synapse, 1997. 27(4): p. 347-356.
28. Hantraye, P., et al., Dopamine fiber detection by [11C]-CFT and PET in a primate model of parkinsonism. Neuroreport, 1992. 3(3): p. 265.
29. Nurmi, E., et al., Progression in Parkinson's disease: a positron emission tomography study with a dopamine transporter ligand [18F] CFT. Annals of Neurology, 2000. 47(6): p. 804-808.
30. Frost, J.J., et al., Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson's disease. Annals of Neurology, 1993. 34(3): p. 423-431.
31. Pirker, W., Correlation of dopamine transporter imaging with parkinsonian motor handicap: how close is it? Mov Disord, 2003. 18 Suppl 7: p. S43-51.
32. Benamer, H.T.S., et al., Correlation of Parkinson's disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Movement Disorders, 2000. 15(4): p. 692-698.
33. Fischman, A.J., et al., Rapid detection of Parkinson's disease by SPECT with altropane: a selective ligand for dopamine transporters. Synapse, 1998. 29(2): p. 128-41.
34. Emond, P., et al., Synthesis and ligand binding of nortropane derivatives: N-substituted 2beta-carbomethoxy-3beta-(4′-iodophenyl) nortropane and N-(3-iodoprop-(2E)-enyl)-2beta-carbomethoxy-3beta-(3′, 4′-disubstituted phenyl) nortropane. New high-affinity and selective compounds for the dopamine transporter. J Med Chem, 1997. 40(9): p. 1366-1372.
35. Mateos, J.J., et al., [Striatal dopamine transporter density decrease in first episode schizophrenic patients treated with risperidone]. Rev Esp Med Nucl, 2006. 25(3): p. 159-65.
36. Weng, Y.H., et al., Sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson's disease from healthy subjects. J Nucl Med, 2004. 45(3): p. 393-401.
37. Ravina, B., et al., The role of radiotracer imaging in Parkinson disease. Neurology, 2005. 64(2): p. 208.
38. Martin, W.R.W., et al., Dihydrotetrabenazine positron emission tomography imaging in early, untreated Parkinson's disease. Annals of Neurology, 2008. 63(3): p. 388-394.
39. Chen, M.K., et al., VMAT2 and dopamine neuron loss in a primate model of Parkinson's disease. Journal of neurochemistry, 2008. 105(1): p. 78-90.
40. Lee, C.S., et al., In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease. Annals of Neurology, 2000. 47(4): p. 493-503.
41. Stoessl, A.J., Positron emission tomography in premotor Parkinson's disease. Parkinsonism &; related disorders, 2007. 13: p. S421.
42. Farde, L., et al., PET analysis of human dopamine receptor subtypes using 11 C-SCH 23390 and 11 C-raclopride. Psychopharmacology, 1987. 92(3): p. 278-284.
43. Tatsch, K., et al., SPECT imaging of dopamine D2 receptors with 123I-IBZM: initial experience in controls and patients with Parkinson's syndrome and Wilson's disease. Nuclear medicine communications, 1991. 12(8): p. 699.
44. Zhou, Y., et al., Using a reference tissue model with spatial constraint to quantify [11C] Pittsburgh compound B PET for early diagnosis of Alzheimer's disease. NeuroImage, 2007. 36(2): p. 298-312.
45. Huang, S.C., J.R. Barrio, and M.E. Phelps, Neuroreceptor assay with positron emission tomography: equilibrium versus dynamic approaches. Journal of cerebral blood flow and metabolism, 1986. 6(5): p. 515-521.
46. Lammertsma, A.A. and S.P. Hume, Simplified reference tissue model for PET receptor studies. NeuroImage, 1996. 4(3): p. 153-158.
47. van der Weerdt, A.P., et al., Image-derived input functions for determination of MRGlu in cardiac 18F-FDG PET scans. Journal of Nuclear Medicine, 2001. 42(11): p. 1622.
48. Lee, J.S., et al., Blind separation of cardiac components and extraction of input function from h215o dynamic myocardial pet using independent component analysis. Journal of Nuclear Medicine, 2001. 42(6): p. 938.
49. Zanotti-Fregonara, P., et al., Comparison of 3 methods of automated internal carotid segmentation in human brain PET studies: application to the estimation of arterial input function. Journal of Nuclear Medicine, 2009. 50(3): p. 461.
50. Jung, T.P., et al., Imaging brain dynamics using independent component analysis. Proceedings of the IEEE, 2001. 89(7): p. 1107-1122.
51. Reimold, M., et al., Non-invasive assessment of distribution volume ratios and binding potential: tissue heterogeneity and interindividually averaged time-activity curves. European journal of nuclear medicine and molecular imaging, 2004. 31(4): p. 564-577.
52. Logan, J., et al., Distribution volume ratios without blood sampling from graphical analysis of PET data. Journal of Cerebral Blood Flow &; Metabolism, 1996. 16(5): p. 834-840.
53. Varga, J. and Z. Szabo, Modified regression model for the Logan plot. Journal of Cerebral Blood Flow &; Metabolism, 2002. 22(2): p. 240-244.
54. Logan, J., et al., A strategy for removing the bias in the graphical analysis method. Journal of Cerebral Blood Flow &; Metabolism, 2001. 21(3): p. 307-320.
55. Ho, S., et al., Tumour-to-normal uptake ratio of 90Y microspheres in hepatic cancer assessed with 99Tcm macroaggregated albumin. British Journal of Radiology, 1997. 70(836): p. 823.
56. Hamberg, L.M., et al., The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? Journal of Nuclear Medicine, 1994. 35(8): p. 1308.
57. Keyes Jr, J.W., SUV: Standard uptake or silly useless value? Journal of Nuclear Medicine, 1995. 36(10): p. 1836.
58. McNamee, R.L., et al., Consideration of optimal time window for Pittsburgh compound B PET summed uptake measurements. Journal of Nuclear Medicine, 2009. 50(3): p. 348.
59. Kole, A.C., et al., Standardized uptake value and quantification of metabolism for breast cancer imaging with FDG and L-[1-11C]tyrosine PET. J Nucl Med, 1997. 38(5): p. 692-6.
60. Visser, E.P., et al., Comparison of tumor volumes derived from glucose metabolic rate maps and SUV maps in dynamic 18F-FDG PET. Journal of Nuclear Medicine, 2008. 49(6): p. 892.
61. Carson, R.E., et al., Comparison of Bolus and Infusion Methods for Receptor quantitation: Application to [18F]cyclofoxy and Positron Emission Tomography. J Cereb Blood Flow Metab, 1993. 13(1).
62. Carson, R.E., PET physiological measurements using constant infusion. Nuclear Medicine and Biology, 2000. 27(7): p. 657-660.
63. Tsao, H.H., et al., Binding characteristics of 9-fluoropropyl-(+)-dihydrotetrabenzazine (AV-133) to the vesicular monoamine transporter type 2 in rats. Nuclear Medicine and Biology.
64. Cohen, J., Statistical power analysis for the behavioral sciences. 1988: Lawrence Erlbaum.
65. Christian, B.T., et al., Quantitation of striatal and extrastriatal D-2 dopamine receptors using PET imaging of [18F] fallypride in nonhuman primates. Synapse, 2000. 38(1): p. 71-79.
66. Burger, C., et al., Evaluation of a bolus/infusion protocol for 11C-ABP688, a PET tracer for mGluR5. Nuclear Medicine and Biology, 2010.
67. Marshall, V. and D. Grosset, Role of dopamine transporter imaging in routine clinical practice. Movement Disorders, 2003. 18(12): p. 1415-1423.
68. Wilson, J.M. and S.J. Kish, The vesicular monoamine transporter, in contrast to the dopamine transporter, is not altered by chronic cocaine self-administration in the rat. Journal of Neuroscience, 1996. 16(10): p. 3507.
69. de la Fuente-Fernandez, R., et al., Visualizing vesicular dopamine dynamics in Parkinson's disease. Synapse, 2009. 63(8): p. 713-716.
70. Wilson, J.M., et al., Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson's disease. Neurology, 1996. 47(3): p. 718.
71. Dhawan, V., et al., Comparative analysis of striatal FDOPA uptake in Parkinson's disease: ratio method versus graphical approach. Journal of Nuclear Medicine, 2002. 43(10): p. 1324.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top