1. Marttila, R.J. and U.K. Rinne, Dementia in Parkinson's disease. Acta Neurologica Scandinavica, 2009. 54(5): p. 431-441.
2. Chen, R.C., S.F. Chang, and C.L. Su, Prevalence, incidence, and mortality of PD: a door-to-door survey in Ilan county, Taiwan. Neurology, 2001. 57(9): p. 1679.
3. Lozano, A.M. and S.K. Kalia, New movement in Parkinson's. Scientific American, 2005. 293(1): p. 68-75.
4. 曾岐原, ed. 最新病理學, 第四版. 2008, 匯華圖書出版有限公司. p. 470-471.
5. 陳品豪, 劉智仰, and 陳鵬升, 巴金森氏症. 基層醫學, 2008. 23(3): p. 76-80.6. Goetz, C.G., et al., Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): process, format, and clinimetric testing plan. Movement Disorders, 2007. 22(1): p. 41-47.
7. Goetz, C.G., et al., Movement Disorder Society Task Force report on the Hoehn and Yahr staging scale: status and recommendations. MOVEMENT DISORDERS-NEW YORK-, 2004. 19(9): p. 1020-1028.
8. Sioka, C., A. Fotopoulos, and A.P. Kyritsis, Recent advances in PET imaging for evaluation of Parkinson’s disease. European journal of nuclear medicine and molecular imaging, 2010: p. 1-10.
9. Widmaier, E.P., H. Raff, and K.T. Strang, Vander's Human Physiology: The Mechanisms of Body Function10th edition. 2006, Boston, MA: McGraw-Hill.
10. Fearnley, J.M. and A.J. Lees, Ageing and Parkinson's disease: substantia nigra regional selectivity. Brain, 1991. 114(5): p. 2283.
11. Heiss, W.D. and R. Hilker, The sensitivity of 18-fluorodopa positron emission tomography and magnetic resonance imaging in Parkinson's disease. European Journal of Neurology, 2004. 11(1): p. 5-12.
12. Jahanshahi, M., et al., Self-initiated versus externally triggered movements: I. An investigation using measurement of regional cerebral blood flow with PET and movement-related potentials in normal and Parkinson's disease subjects. Brain, 1995. 118(4): p. 913.
13. Firbank, M.J., et al., Regional cerebral blood flow in Parkinson's disease with and without dementia. neuroImage, 2003. 20(2): p. 1309-1319.
14. Koeppe, R.A., et al., 11C-DTBZ and 18F-FDG PET measures in differentiating dementias. Journal of Nuclear Medicine, 2005. 46(6): p. 936.
15. Otsuka, M., et al., Differentiating between multiple system atrophy and Parkinson’s disease by positron emission tomography with 18 F-dopa and 18 F-FDG. Annals of nuclear medicine, 1997. 11(3): p. 251-257.
16. Antonini, A., et al., Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson's disease. Brain, 1997. 120(12): p. 2187.
17. Geng, Y., et al., Investigating the role of 99mTc-TRODAT-1 SPECT imaging in idiopathic Parkinson’s disease. Journal of Zhejiang University. Science. B, 2005. 6(1): p. 22.
18. Hwang, W.J., et al., Reproducibility of 99mTc-TRODAT-1 SPECT measurement of dopamine transporters in Parkinson's disease. Journal of Nuclear Medicine, 2004. 45(2): p. 207.
19. Okamura, N., et al., In Vivo Measurement of Vesicular Monoamine Transporter Type 2 Density in Parkinson Disease with 18F-AV-133. Journal of Nuclear Medicine, 2010. 51(2): p. 223.
20. Heinz, A., et al., Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F] DOPA and [18F] DMFP PET study in detoxified alcoholic patients. American Journal of Psychiatry, 2005. 162(8): p. 1515.
21. Pappata, S., E. Salvatore, and A. Postiglione, In vivo imaging of neurotransmission and brain receptors in dementia. Journal of Neuroimaging, 2008. 18(2): p. 111-124.
22. Nagasawa, H., et al., 6-[18F] fluorodopa metabolism in patients with hemiparkinsonism studied by positron emission tomography. Journal of the neurological sciences, 1993. 115(2): p. 136-143.
23. Broussolle, E., et al., The relation of putamen and caudate nucleus 18F-Dopa uptake to motor and cognitive performances in Parkinson's disease. Journal of the neurological sciences, 1999. 166(2): p. 141-151.
24. Bruck, A., et al., A follow-up study on 6-[18F] fluoro-L-dopa uptake in early Parkinson's disease shows nonlinear progression in the putamen. Movement Disorders, 2009. 24(7): p. 1009-1015.
25. Brooks, D.J., et al., Assessment of neuroimaging techniques as biomarkers of the progression of Parkinson's disease. Experimental neurology, 2003. 184: p. 68-79.
26. Logan, J., et al., Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. Journal of cerebral blood flow and metabolism: official journal of the International Society of Cerebral Blood Flow and Metabolism, 1990. 10(5): p. 740.
27. Logan, J., et al., Concentration and occupancy of dopamine transporters in cocaine abusers with [11C] cocaine and PET. Synapse, 1997. 27(4): p. 347-356.
28. Hantraye, P., et al., Dopamine fiber detection by [11C]-CFT and PET in a primate model of parkinsonism. Neuroreport, 1992. 3(3): p. 265.
29. Nurmi, E., et al., Progression in Parkinson's disease: a positron emission tomography study with a dopamine transporter ligand [18F] CFT. Annals of Neurology, 2000. 47(6): p. 804-808.
30. Frost, J.J., et al., Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson's disease. Annals of Neurology, 1993. 34(3): p. 423-431.
31. Pirker, W., Correlation of dopamine transporter imaging with parkinsonian motor handicap: how close is it? Mov Disord, 2003. 18 Suppl 7: p. S43-51.
32. Benamer, H.T.S., et al., Correlation of Parkinson's disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Movement Disorders, 2000. 15(4): p. 692-698.
33. Fischman, A.J., et al., Rapid detection of Parkinson's disease by SPECT with altropane: a selective ligand for dopamine transporters. Synapse, 1998. 29(2): p. 128-41.
34. Emond, P., et al., Synthesis and ligand binding of nortropane derivatives: N-substituted 2beta-carbomethoxy-3beta-(4′-iodophenyl) nortropane and N-(3-iodoprop-(2E)-enyl)-2beta-carbomethoxy-3beta-(3′, 4′-disubstituted phenyl) nortropane. New high-affinity and selective compounds for the dopamine transporter. J Med Chem, 1997. 40(9): p. 1366-1372.
35. Mateos, J.J., et al., [Striatal dopamine transporter density decrease in first episode schizophrenic patients treated with risperidone]. Rev Esp Med Nucl, 2006. 25(3): p. 159-65.
36. Weng, Y.H., et al., Sensitivity and specificity of 99mTc-TRODAT-1 SPECT imaging in differentiating patients with idiopathic Parkinson's disease from healthy subjects. J Nucl Med, 2004. 45(3): p. 393-401.
37. Ravina, B., et al., The role of radiotracer imaging in Parkinson disease. Neurology, 2005. 64(2): p. 208.
38. Martin, W.R.W., et al., Dihydrotetrabenazine positron emission tomography imaging in early, untreated Parkinson's disease. Annals of Neurology, 2008. 63(3): p. 388-394.
39. Chen, M.K., et al., VMAT2 and dopamine neuron loss in a primate model of Parkinson's disease. Journal of neurochemistry, 2008. 105(1): p. 78-90.
40. Lee, C.S., et al., In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson's disease. Annals of Neurology, 2000. 47(4): p. 493-503.
41. Stoessl, A.J., Positron emission tomography in premotor Parkinson's disease. Parkinsonism &; related disorders, 2007. 13: p. S421.
42. Farde, L., et al., PET analysis of human dopamine receptor subtypes using 11 C-SCH 23390 and 11 C-raclopride. Psychopharmacology, 1987. 92(3): p. 278-284.
43. Tatsch, K., et al., SPECT imaging of dopamine D2 receptors with 123I-IBZM: initial experience in controls and patients with Parkinson's syndrome and Wilson's disease. Nuclear medicine communications, 1991. 12(8): p. 699.
44. Zhou, Y., et al., Using a reference tissue model with spatial constraint to quantify [11C] Pittsburgh compound B PET for early diagnosis of Alzheimer's disease. NeuroImage, 2007. 36(2): p. 298-312.
45. Huang, S.C., J.R. Barrio, and M.E. Phelps, Neuroreceptor assay with positron emission tomography: equilibrium versus dynamic approaches. Journal of cerebral blood flow and metabolism, 1986. 6(5): p. 515-521.
46. Lammertsma, A.A. and S.P. Hume, Simplified reference tissue model for PET receptor studies. NeuroImage, 1996. 4(3): p. 153-158.
47. van der Weerdt, A.P., et al., Image-derived input functions for determination of MRGlu in cardiac 18F-FDG PET scans. Journal of Nuclear Medicine, 2001. 42(11): p. 1622.
48. Lee, J.S., et al., Blind separation of cardiac components and extraction of input function from h215o dynamic myocardial pet using independent component analysis. Journal of Nuclear Medicine, 2001. 42(6): p. 938.
49. Zanotti-Fregonara, P., et al., Comparison of 3 methods of automated internal carotid segmentation in human brain PET studies: application to the estimation of arterial input function. Journal of Nuclear Medicine, 2009. 50(3): p. 461.
50. Jung, T.P., et al., Imaging brain dynamics using independent component analysis. Proceedings of the IEEE, 2001. 89(7): p. 1107-1122.
51. Reimold, M., et al., Non-invasive assessment of distribution volume ratios and binding potential: tissue heterogeneity and interindividually averaged time-activity curves. European journal of nuclear medicine and molecular imaging, 2004. 31(4): p. 564-577.
52. Logan, J., et al., Distribution volume ratios without blood sampling from graphical analysis of PET data. Journal of Cerebral Blood Flow &; Metabolism, 1996. 16(5): p. 834-840.
53. Varga, J. and Z. Szabo, Modified regression model for the Logan plot. Journal of Cerebral Blood Flow &; Metabolism, 2002. 22(2): p. 240-244.
54. Logan, J., et al., A strategy for removing the bias in the graphical analysis method. Journal of Cerebral Blood Flow &; Metabolism, 2001. 21(3): p. 307-320.
55. Ho, S., et al., Tumour-to-normal uptake ratio of 90Y microspheres in hepatic cancer assessed with 99Tcm macroaggregated albumin. British Journal of Radiology, 1997. 70(836): p. 823.
56. Hamberg, L.M., et al., The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? Journal of Nuclear Medicine, 1994. 35(8): p. 1308.
57. Keyes Jr, J.W., SUV: Standard uptake or silly useless value? Journal of Nuclear Medicine, 1995. 36(10): p. 1836.
58. McNamee, R.L., et al., Consideration of optimal time window for Pittsburgh compound B PET summed uptake measurements. Journal of Nuclear Medicine, 2009. 50(3): p. 348.
59. Kole, A.C., et al., Standardized uptake value and quantification of metabolism for breast cancer imaging with FDG and L-[1-11C]tyrosine PET. J Nucl Med, 1997. 38(5): p. 692-6.
60. Visser, E.P., et al., Comparison of tumor volumes derived from glucose metabolic rate maps and SUV maps in dynamic 18F-FDG PET. Journal of Nuclear Medicine, 2008. 49(6): p. 892.
61. Carson, R.E., et al., Comparison of Bolus and Infusion Methods for Receptor quantitation: Application to [18F]cyclofoxy and Positron Emission Tomography. J Cereb Blood Flow Metab, 1993. 13(1).
62. Carson, R.E., PET physiological measurements using constant infusion. Nuclear Medicine and Biology, 2000. 27(7): p. 657-660.
63. Tsao, H.H., et al., Binding characteristics of 9-fluoropropyl-(+)-dihydrotetrabenzazine (AV-133) to the vesicular monoamine transporter type 2 in rats. Nuclear Medicine and Biology.
64. Cohen, J., Statistical power analysis for the behavioral sciences. 1988: Lawrence Erlbaum.
65. Christian, B.T., et al., Quantitation of striatal and extrastriatal D-2 dopamine receptors using PET imaging of [18F] fallypride in nonhuman primates. Synapse, 2000. 38(1): p. 71-79.
66. Burger, C., et al., Evaluation of a bolus/infusion protocol for 11C-ABP688, a PET tracer for mGluR5. Nuclear Medicine and Biology, 2010.
67. Marshall, V. and D. Grosset, Role of dopamine transporter imaging in routine clinical practice. Movement Disorders, 2003. 18(12): p. 1415-1423.
68. Wilson, J.M. and S.J. Kish, The vesicular monoamine transporter, in contrast to the dopamine transporter, is not altered by chronic cocaine self-administration in the rat. Journal of Neuroscience, 1996. 16(10): p. 3507.
69. de la Fuente-Fernandez, R., et al., Visualizing vesicular dopamine dynamics in Parkinson's disease. Synapse, 2009. 63(8): p. 713-716.
70. Wilson, J.M., et al., Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson's disease. Neurology, 1996. 47(3): p. 718.
71. Dhawan, V., et al., Comparative analysis of striatal FDOPA uptake in Parkinson's disease: ratio method versus graphical approach. Journal of Nuclear Medicine, 2002. 43(10): p. 1324.