1.AASHTO (2002), “LRFD Highway Bridge Design Specifications,American Association of State Highwqay and Transportation Officials”, Washington, D.C., Second Edition.
2.APILE PLUS 5.0 (2007), “A Program for the Analysis of the Axial Capacity of Driven Piles”.
3.Arduino, P. and Shin, H. et al (2008). “Seismic Response of a Typical Highway Bridge in Liquefiable Soil”, Geotechnical Earthquake Engineering and Soil Dynamics IV.
4.Byrne, P.M., (1991), “A cyclic shear-volume coupling and pore pressure model for sand”, Proceedings of the 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, St. Louis, Missouri,Vol. 1, pp. 47-56.
5.Bradley, B., Cubrinovski, M. and Dhakal, R. (2008), Performance-based seismic response of pile foundations. Geotechnical Earthquake Engineering and Soil Dynamics IV, ASCE Geotechnical Special Publication 181.
6.Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W. and Abghari, A. (1999), “Seismic soil-pile-structure interaction experiments and analyses”, J Geotech Geoenviron Engr., Vol. 125, pp. 750-759.
7.Chang, D.W. and Yeh, S.H. (1999), “Time-Domain Wave Equation analysis of single Piles Utilizing Transformed Radiation Damping”, Soil and foundations, JGS., Vol.39, No.2, pp.31-44.
8.Chang, D.W., Rosset, J.M. and Wen C.H. (2000), “A Time-Domain Viscous Damping Model Based on Frequency-Depend Damping Ratios”, Soil Dynamic and Earthquake Engineering, Vol. 19, pp.551-558.
9.Chang, D.W., B.S. Lin and S.H. Cheng (2009), “Lateral Load Distributions on Grouped Piles from Dynamic Pile-to-Pile Interactions Factors”, International Journal for Numerical and Analytical Methods in Geomechanics, Vol. 33, Issue 2, pp. 173-191.
10.Chang, D.W., T.Y. Yang and C.L. Yang (2010), “Seismic Performance of Piles from PBEE and EQWEAP Analyses”, J. of Geotechnical Engineering, SEAGS/AGSSEA, Vol. 41 , No.2, pp. 1-8.
11.Chang D.W., S.H. Cheng, Y.L. Wang (2011), “One-Dimensional Wave Equation Analyses for PileResponses Due to Horizontal Ground Motions of Earthquake”, Computers and Geotechnics.
12.Clancy, P. and Randolph, M. F. (1996), “Simple design tools for piled raft foundations”, Geotechnique, 46, No. 2, pp.313-328.
13.Eurocode 7 (1993), “Geotechnical Design, General Rules, European Committee for Standardization, Danish Geotechnical Institute”, Copenhagen..
14.EC8 (2004), “ Eurocode 8: Design of structures for earthquake resistance, part 1: general rules, seismic actions and rules for buildings”, European Norm. European Committee for Standardisation, European Committee for Standardisation CentralSecretariat, rue de Stassart 36, B-1050 Brussels.
15.Finn, W. D. L., Lee, K.W. and Martin, G. R. (1977), “An Effective Stress Model for Liquefaction”, Journal of the Geotechnical Engineering Division, ASCE, Vol. 103, No. SM7, pp. 657-692.
16.Geo-Code 21 (2004), “Japanese Geotechnical Society”, Tokyo.
17.Honjo, Y. and Kusakabe, O. (2002), “Proposal of a Comprehensive Foundation Design Code:Geo-Code 21 Ver. 2”, Proceedings, International Workshop on Foundation Design Codes and Soil Investigation in view of International Harmonization and Performance Based Design, Tokyo, pp.95-106.
18.Honjo, Y. (2003), “Comprehensive Design Codes Development in Japan: Geo-code21 ver. 3 and code PLATFORM ver. 1”, LSD2003: International Workshop on LimitState Design in Geotechnical Engineering Practice.
19.Honjo, et. al (2007), “Development of a basic specific design code on performance based specification concept: The Technical Standards for Prot and Harbor Facilities”.
20.Ishihara, K. (2003), “Liquefaction-induced Lateral Flow and Its effects on Foundation Piles”, 5th National Conference on Earthquake Engineering, Istanbul, Turkey, May, 28.
21.Ishihara, K. and Cubrinovski, M. (2004), “Case Studies on Pile Foundations undergoing Lateral Spreading in Liquefied Deposits”, Procds., 5th International Conference on Case Histories in Geotechnical Engineering, New York, Paper SOAP 5.
22.Johnson, SM and Kavanaugh, TC (1968), The Design of Foundations for Buildings, McGraw Hill, New York, pp. 393.
23.Kunnath, S.K. and Reinhorn, A.M. (1989), “Inelastic Three-Dimensional Response Analysis of RC Buildings (IDARC-3D) Part I - Modeling”, Technical Report NCEER-89-0009, National Center for Earthquake Engineering Research, SUNY/Buffalo.
24.Kramer, S.L., Mayfield, R.T., and Anderson, D.G. (2006), “Performance-based liquefaction hazard evaluation: Implications for codes and standards”, Proceedings, Eighth U.S. National Conference on Earthquake Engineering, San Francisco.
25.Kramer, S.L. (2008), “Performance-based earthquake engineering: opportunities and implications for geotechnical engineering practice”, Geotechnical Earthquake Engineering and Soil Dynamics IV, ASCE GSP 181.
26.Liyanapathirana, D.S. and Poulos, H.G. (2005a), “Seismic Lateral Response of Piles in Liquefying Soil”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, NO. 12, pp.1466-1479.
27.Liyanapathirana, D.S. and Poulos, H.G. (2005b), “Pseudostaic Approach for Seismic Analysis of Piles in Liquefying Soil”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 131, NO. 12, pp.1480-1487.
28.LPILE 6 (2010), “Documentation of Computer Program LPILE version 6”.
29.Matlock, H. and Reese, L.C. (1960), “Generalized Solution for Laterally Loaded Piles”, Journal of Soil Mechanics and Foundations Division, ASCE, VOL. 86, No. SM5, pp.1220-1246.
30.Matlock, H. (1970), “Correlations for Design of Laterally Loaded in Soft Clay”, Proceedings of the 2nd Annual Offshore Technology Conference, Houston, Texas, Vol. 1, pp.577-594.
31.Novak, M. (1974), “Dynamic Stiffness and Damping of Piles”, Journal of Canadian Geotechnical Engineering, Vol. 11, pp.574-598.
32.Orr, T.L.L. (2002), “Eurocode 7-A Code for Harmonized a Geotechnical Design”, Proceedings , International Workshop on Foundation Design Codes and Soil Investigation in View of International Harmonization and Performance Based Design, Tokyo, Japan, pp. 3-16.
33.Paikowski, S.G. (2002), “Load and Resistance Factor Design (LRFD) for Deep Foundations”, Proceedings, International Workshop on Foundation Design Codes and Soil Investigation in view of International Harmonization and Performance Based Design, Tokyo, pp. 59-94.
34.Paikowski, S.G. (2004), “Load and Resistance Factor Design (LRFD) for Deep Foundations”, NCHRP Report 507, National Cooperative Highway Research Program, Transportation Research Board, Washington, DC, USA, p.76-88
35.Phoon, K.K. (2008), “Reliability-Based Design in Geotechnical Engineering:Computations and Applications”.
36.Poulos, H. G. (1971), “Behavior of Laterally-Loaded Piles II: Pile Groups”, Journal of Soil Mechanics and Foundation Engineering Division, ASCE, Vol. 97, SM5, pp.733-751
37.Reese, L.C. and Van Impe, W.F. (2001), Single Piles and Pile Groups under Lateral Loading, Rotterdam, The Netherlands, A. A. Balkema
38.Randolph, M.F. (1994), “Design methods for pile groups and piled rafts”, Proceedings, XIII ICSMFE, New Delhi, Vol. 5, pp. 61-82.
39.Salvati and Pestana (2006). “Small Strain Behavior of Granular Soils: II. Seismic Response Analyses and Model Evaluation”, Journal of Geotechnical and Geoenvironmental Engineering, Vol. 132, No. 8, pp. 1082-1090.
40.Seed, H. B. and Idriss, I. M. (1982), “Ground Motions and Soil Liquefaction During Earthquakes”, Earthquake Engineering Research Institute, California.
41.Shin, H.S. (2007), Numerical Modeling of a Bridge System &; Its Application for Performance-Based Earthquake Engineering, PhD Thesis, Dept. of Civil &; Environmental Engineering, University of Washington.
42.Skempton, A.W. (1986) “Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, aging and overconsolidation”, Geotechnique, Vol. 36, No. 3, pp. 425-447.
43.Tokimatsu K and Asaka Y. (1998) “Effects of liquefaction-induced ground displacement on pile performance in the 1995 Hyogoken-Nambu earthquake”, Soils and Foundations, Special Issue, pp. 163-78.
44.Tokimatsu, K. and Suzuki, H. (2004), “Pore Water Pressure Response around Pile and Its Effects on P-Y Behavior during Soil Liquefaction”, Soils and Foundations, Vol. 44, No. 6, pp.101-110.
45.Yang, Z., Lu, J. and Elgamal, A. (2004), “A Web-based Platform for Live Internet Computation of Seismic Ground Response”, Advances in Engineering Software, Vol. 35, pp. 249-259.
46.Yoshida (2008), “Prediction of Liquefaction against Huge Ocean Type Earthquake”, 3rd Taiwan-Japan Workshop, Geotechnical Hazards from Large Earthquake and Heavy Rainfall, Keynote Lectures.
47.王世權 (2001),“垂直地震樁基之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。48.王志煒 (2002),“側向地震樁基之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。49.王彥誌 (2012),“以波動方程和有限元素分析樁基礎受震行為之比較”,碩士論文,淡江大學土木工程研究所,台灣,淡水。50.日本道路協會 (1990),“道路橋示方書 . 同解說,V耐震設計篇」。
51.內政部營建署 (2001),“建築物基礎構造設計規範”,營建雜誌社。
52.內政部營建署 (2009),“建築物耐震設計規範及解說”,營建雜誌社。
53.台灣世曦工程顧問股份有限公司 (2011),“特二號道路高架橋梁樁基礎設計資料”。
54.台灣世曦工程顧問股份有限公司 (2011),“特二號道路高架橋梁樁基礎場址地盤鑽探報告”。
55.交通部中央氣象局網站http://www.cwb.gov.tw/V7/earthquake/accsta.htm
56.交通部 (2008),“公路橋梁耐震設計規範”。
57.巫秀星 (2005),“液化土壤模數折減下樁基動力反應分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。58.李漢珽 (2008),“土質參數折減係數應用於液化影響樁基礎之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。59.宋士豪 (2012),“樁基承載力與耐震性能之關聯性研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。。60.林三賢、曾玉如、江承家、李維峰 (2005),“液化土層產生側潰對基樁之影響分析”,地工技術,第103期,第43-52頁。61.林伯勳 (2002),“群樁受垂直向及側向載重之非線性變形研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。62.卿建業、謝宜宏 (2006),“大地工程系統性能可靠度之估算”,地工技術, 第109期,第27~38頁。63.吳偉特 (1979),“台灣地區砂性土壤液化潛能評估之初步分析”,中國土木水利季刊,第六卷,第二期,第39-70頁。64.吳偉特 (1988),“台北盆地地盤分區土壤之工程特性”,地工技術雜誌,第22期,第5-27頁。65.胡邵敏 (2009),“樁基工程”,地工技術叢書之九。
66.徐守亨 (2009),“間接土壓力模式應用於側潰影響之樁基波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。67.陳皆儒、謝佑明 (2006),“極限狀態設計與可靠度設計觀念”,地工技術,第109期。68.陳正興、楊鶴雄、黃俊鴻、李維峰、王淳讙 (2006),“交通結構物基礎耐震性能設計之研議”,地工技術,第109期,第73-82頁。69.陳正興、黃俊鴻、鄧崇任 (2009),“公共工程性能設計準則之研究”,行政院公共工程委員會專案研究計畫。
70.國家地震工程研究中心 (2004),“耐震與性能設計規範研究(一)”,國家地震工程研究中心報告,NCREE-04-015。
71.國家地震工程研究中心 (2007),“公路橋梁耐震設計規範修訂草案之研究”,國家地震工程研究中心報告,NCREE-07-055。
72.國家地震工程研究中心 (2009),“公路橋梁耐震能力評估及補強準則之研究”,國家地震工程研究中心報告,NCREE-09-028。
73.國家地震工程研究中心 (2009),“耐震性能設計規範改進先期研究(一&;二)”,國家地震工程研究中心報告,NCREE-09-012。
74.國家地震工程研究中心 (2010),“耐震性能設計規範改進先期研究(三)”,國家地震工程研究中心報告,NCREE-10-013。
75.張德文、林伯勳 (2003),“含樁帽及互制影響之樁基礎波動方程分析”,地工技術,第95期,第49-60頁。76.張德文、鄭世豪、楊恆偉 (2006),“AASHTO 樁基礎載重和阻抗因子設計(LRFD)新近發展”,地工技術雜誌,第109期,第51-62頁。77.張德文等 (2012),“樁基礎耐震性能分析評估與運用”,台灣世曦工程顧問股份有限公司研發報告。
78.張紹綸 (2008),“孔隙水壓模式應用於液化影響樁基礎之波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。79.黃俊鴻 (2000),“液化地盤中樁基礎之耐震設計”,地工技術,第82期,第65-78頁。80.黃俊鴻、楊志文 (2000),“基樁載重試驗承載力判釋方法之探討與建議”,地工技術雜誌,第80期,第5-16頁。81.黃俊鴻、鍾明劍 (2006),“液化流動壓作用下側向樁之簡化解析解”,中國土木水利工程學刊,第十八卷,第四期,第465-474頁。82.楊子逸 (2009),“基樁耐震性能分析之初探”,碩士論文,淡江大學土木工程研究所,台灣,淡水。83.葉健輝 (2006),“液化地盤樁基之靜力分析模式研究”,碩士論文,淡江大學土木工程研究所,台灣,淡水。84.劉凱方 (2009),“直接土壓力模式應用於側潰影響之樁基波動方程分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。85.鄭錦桐 (2002),“台灣地區地震危害度的不確定性分析與參數拆解”, 博士論文,國立中央大學地球物理研究所,台灣,桃園。86.鄭世豪 (2004),“簡易橋墩基礎之地震反應分析”,碩士論文,淡江大學土木工程研究所,台灣,淡水。87.盧之偉 (2009),“以數值方法分析可側潰液化土對樁基礎之動態反應的研究”,國科會計畫案。
88.盧志杰 (2009),“隧道受震反應分析之研究”,博士論文,國立中央大學土木工程研究所,台灣,桃園。