跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.126) 您好!臺灣時間:2025/11/30 22:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馬郁東
研究生(外文):Yu-Dong Ma
論文名稱:Pyrogallol和Caveolin-1抑制血管平滑肌細胞遷移能力和小鼠頸動脈結紮引起內膜增厚之角色及其機制探討
論文名稱(外文):The role and underlying mechanism of pyrogallol and caveolin-1 on down-regulation of VSMC migration and intima hyperplasia in carotid ligation mouse model
指導教授:翁慶豐翁慶豐引用關係
指導教授(外文):Ching-Feng Weng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生物技術研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:82
外文關鍵詞:carotid ligationcaveolin-1atherosclerosisMMPpyrogallol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:401
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
Caveolin-1 (Cav-1) 為構成Caveolae的重要蛋白,負責調控許多訊息傳遞路徑,且在血管平滑肌細胞中高度表現。動脈粥狀硬化(Atherosclerosis) 為心血管中主要的疾病之一,在大部分的心血管疾病病程中,都可以發現內膜增厚( Intima hyperplasia)的現象,而造成這種現象的最主要因素為血管平滑肌細胞的增生與遷移。先前的研究指出,與正常血管平滑肌細胞比較,Cav-1缺失小鼠的血管平滑肌細胞具有不正常的高增生率、高遷移能力。過去Cav-1與細胞增生的機制已被一一發現,但是Cav-1與細胞遷移的關係卻仍然不清楚。Pyrogallol是一種從香椿中萃取的多酚類,多酚類一直被認為具有抗氧化的能力,能保護血管,降低心血管疾病的發生,但是pyrogallol也被證實會製造出大量的自由基。因此本實驗目的在探討Cav-1對血管平滑肌細胞中的遷移中所扮演的角色及此天然化合物是否能抑制血管平滑肌細胞的遷移與相關機制,並利用小鼠頸動脈結紮手術評估此藥物對正常小鼠與Cav-1基因缺陷小鼠內膜增生的影響。利用原子力顯微鏡,可以觀察到Cav-1缺陷小鼠的血管平滑肌細胞其細胞表面含有較多filopodia及較少lamellipodia,且其基質金屬蛋白酶(Matrix metalloproteinase, MMP)家族中的MMP-3、MMP-13與cox-2表現量都明顯的比正常細胞少,而MMP-14的表現量會上升。此外,從細胞遷移分析實驗(Wound healing assay)中亦證實pyrogallol可抑制小鼠血管平滑肌細胞遷移,但是Cav-1的存在會影響其調控的路徑:當Cav-1存在時,pyrogallol是透過抑制MMP-2的活性及提高MMP家族的抑制蛋白(Tissue inhibitor of metalloproteinases, TIMP )的TIMP-1。但在Cav-1缺失後,pyrogallol則透過抑制MMP-1及提高TIMP-2的表現量。此外,在活體實驗中,pyrogallol也可以明顯抑制頸動脈結紮三周的小鼠血管內膜增厚,亦觀察到血清中的ProMMP-9活性在小鼠頸動脈結紮二天內會明顯增加,但二天後到第七天會逐漸降低;MMP-9之活性則是在第二天到第七天都有大量表現,而在分別經過8次腹腔注射doxyxyxline及pyrogallol的組別,其血清中MMP-2與MMP-9活性都沒有明顯的變化。本實驗結果顯示pyrogallol可有效降低血管平滑肌細胞的遷移及抑制頸動脈血管結紮後的內膜增厚,具有抗動脈粥狀硬化的潛力。
Caveolin-1 (Cav-1) is identified as the major unit forms scaffold structure, regulates several signaling pathway and abundantly expressed in vascular smooth muscle cell (VSMC). VSMC migration contributes to intimal hyperplasia, which is involved in several vascular diseases including atherosclerosis. Previous study demonstrated that Cav-1-deficient VSMC showed an abnormal increase in proliferation and migration rate as compared with wild-type. The mechanism of Cav-1 in VSMC proliferation is already demonstrated, but the role of Cav-1 in VSMC migration has not been certain. In addition, Pyrogallol, a polyphenol compound, plays an antioxidant character and reduces the risk of cardiovascular disease. This study attempted to dissect the role of Cav-1 in VSMC migration and investigate effect of pyrogallol on VSMC mobility and carotid artery ligation to mimic a neointimal hyperplasia phenotype. The data showed that Cav-1 deficient VSMC down-regulated the mRNA expression of MMP-3, MMP-13 and cox-2 whereas up-regulated of MMP-14 expression. Moreover, the AFM picture also showed that Cav-1 deficient VSMC had less lamellipodia and higher filopodia than wild-type VSMC. Additionally, Pyrogallol could significantly inhibit VSMC migration in the presence and absence of Cav-1 via two different pathways. Pyrogallol inhibited WT VSMC migration by repressing MMP-2 activity and increasing TIMP-1 expression. In contrast, without Cav-1 in VSMC, pyrogallol inhibits its migration via promoting the TIMP-2 expression and down-regulating MMP-1 expression. In vivo study, pyrogallol also could significantly inhibit the intima formation at third week after mouse carotid ligation. At the early stage of carotid ligation in mice, the proMMP-9 was significantly increased from Day 0 to Day 2 and decreased from Day 2 to Day 7 at a time-dependent manner from zymography of serum. Furthermore, MMP-9 activity was elevated from Day 2 to Day 7. However there was no significant difference in both MMP-2 and MMP-9 activity after treated with pyrogallol and doxycycline for 8 times, respectively. The present study suggests that pyrogallol could prevent the severity of neointima hyperplasia via a ROS scavenger in mouse carotid ligation model and has potential anti-atherogenic effects in the treatment of vascular diseases.
ABSTRACT III
ABBREVIATIONS VII
INTRODUCTION
The Pathogenesis of Atherosclerosis 1
Role of MMPs in Atherosclerosis 2
Characterization of VSMC in Atherosclerosis 4
Caveolae and Caveoin-1 6
Carotid ligation animal model 7
RATIONALE AND SPECIFIC AIMS 9
RESEARCH DESIGN AND METHODS
Research design - in vitro 11
Research design - in vivo 12
Animal feeding and diets 13
Pyrogallol and doxycycline preparation 13
Carotid ligation model 13
VSMC Isolation and Cell Culture 14
Identification of VSMC 15
Cell viability assay 16
Wound Healing Scratch assay 17
Gelatin Zymography 17
Western blotting 18
Reverse transcription PCR (RT-PCR) 18
Statistical Analyses 19
RESULTS
Identification of isolated vascular smooth muscle cells 21
The morphology of VSMC by AFM scanning 21
Effect of pyrogallol and doxycycline on VSMC viability 21
Effect of pyrogallol and doxycycline on VSMC migration 22
The roles of Cav-1, pyrogallol and doxycycline on VSMC mobility 22
The roles of Cav-1, pyrogallol and doxycycline on MMPs family expression 23
The roles of Cav-1, pyrogallol and doxycycline on cox-2 and TGase 2 expression 24
Effect of pyrogallol and doxycycline on neointima formation: Histopathological changes and morphometric analysis 25
The change of MMP-2 and MMP-9 activity in mice serum during carotid ligation 26
DISCUSSION 27
FUTURE WORKS 35
RESERENCES 37
TABLES 49
FIGURES 52
Abram CL, Courtneidge SA. Src family tyrosine kinases and growth factor signaling. Exp Cell Res. 2000; 254: 1–13.

Beardsley A, Fang K, Mertz H, Castranova V, Friend S, Liu J. Loss of caveolin-1 polarity impedes endothelial cell polarization and directional movement. J Biol Chem. 2005; 280: 3541-7.

Bergdahl A, Sward K. Caveolae-associated signalling in smooth muscle. Can J Physiol Pharmacol. 2004; 82: 289-99.

Bishop-Bailey D, Warner TD. PPARgamma ligands induce prostaglandin production in vascular smooth muscle cells: indomethacin acts as a peroxisome proliferator-activated receptor-gamma antagonist. FASEB J. 2003; 17: 1925-7.

Borden P, Heller R. Transcriptional control of matrix metalloproteinases, and their tissue inhibitors of matrix metalloproteinases. Eukaryotic Gene Express. 1997; 7: 159-78.

Borutaite V, Brown G. What else has to happen for nitric oxide to induce cell death? Biochem Soc Trans. 2005; 33: 1394-6.

Braet F. Rac1, caveolin-1 and vascular endothelial growth factor -mediated liver sinusoidal endothelial cell angiogenesis. Liver Int. 2009; 29: 143-4.

Braunwald E. Shattuck lecture--cardiovascular medicine at the turn of the millennium: triumphs, concerns, and opportunities. N Engl J Med. 1997; 337:1360-9.

Burgermeister E, Liscovitch M, Rocken C, Schmid RM, Ebert MP. Caveats of caveolin-1 in cancer progression. Cancer Lett. 2008; 268: 187-201.

Burggraf D, Trinkl A, Dichgans M, Hamann GF. Doxycycline inhibits MMPs via modulation of plasminogen activators in focal cerebral ischemia. Neurobiol Dis. 2007; 25: 506-13.

Butler GS, Butler MJ, Atkinson SJ, Will H, Tamura T, Schade van Westrum S, Crabbe T, Clements J, d'Ortho MP, Murphy G. The TIMP2 membrane type 1 metalloproteinase "receptor" regulates the concentration and efficient activation of progelatinase A. A kinetic study. J Biol Chem. 1998; 273: 871-80.

Caudroy S, Polette M, Nawrocki-Raby B, Cao J, Toole BP, Zucker S, Birembaut P: EMMPRIN-mediated MMP regulation in tumor and endothelial cells. Clin Exp Metastasis. 2002; 19: 697-702.

Chamley-Campbell JH, Campbell GR, Ross R. Phenotype-dependent response of cultured aortic smooth muscle to serum mitogens. J Cell Biol. 1981; 89: 379-83.

Chang CJ, Ko YS, Ko PJ, Hsu LA, Chen CF, Yang CW, Hsu TS, Pang JH. Thrombosed arteriovenous fistula for hemodialysis access is characterized by a marked inflammatory activity. Kidney Int. 2005; 68: 1312-9.

Chen SF, Liou JY, Huang TY, Lin YS, Yeh AL, Tam K, Tsai TH, Wu KK, Shyue SK. Caveolin-1 facilitates cyclooxygenase-2 protein degradation. J Cell Biochem. 2010; 109: 356-62.

Chen X, Kelemen SE, Autieri MV. Expression of granulocyte colony-stimulating factor is induced in injured rat carotid arteries and mediates vascular smooth muscle cell migration. Am J Physiol Cell Physiol. 2005; 288: C81-8.

Chinen I, Shimabukuro M, Yamakawa K, Higa N, Matsuzaki T, Noguchi K, Ueda S, Sakanashi M, Takasu N. Vascular lipotoxicity: endothelial dysfunction via fatty-acid-induced reactive oxygen species overproduction in obese Zucker diabetic fatty rats. Endocrinology. 2007; 148: 160-5.

Chintala SK, Tonn JC, Rao JS. Matrix metalloproteinases and their biological function in human gliomas. Int J Dev Neurosci. 1999; 17: 495-502.

Cho BR, Kim MK, Suh DH, Hahn JH, Lee BG, Choi YC, Kwon TJ, Kim SY, Kim DJ. Increased tissue transglutaminase expression in human atherosclerotic coronary arteries. Coron Artery Dis. 2008; 19: 459-68.

Cohen AW, Hnasko R, Schubert W, Lisanti MP. Role of caveolae and caveolins in health and disease. Physiol Rev. 2004; 84: 1341–1379.

Cohen AW, Park DS, Woodman SE, Williams TM, Chandra M, Shirani J, Pereira de Souza A, Kitsis RN, Russell RG, Weiss LM, Tang B, Jelicks LA, Factor SM, Shtutin V, Tanowitz HB, Lisanti MP. Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol. 2003; 284: C457-74.

Corbitt CA, Lin J, Lindsey ML. Mechanisms to inhibit matrix metalloproteinase activity: where are we in the development of clinically relevant inhibitors? Recent Pat Anticancer Drug Discov. 2007; 2: 135-42.

Cornelis MC, El-Sohemy A, Campos H. Genetic polymorphism of CYP1A2 increases the risk of myocardial infarction. J Med Genet. 2004; 41: 758-62.

Deckers JW. Towards prevention, and not just postponement, of atherosclerotic disease. Eur Heart J. 2002; 23: 771-3.

Doyle DD, Upshaw-Earley J, Bell E, Palfrey HC. Expression of caveolin-3 in rat aortic vascular smooth muscle cells is determined by developmental state. Biochem Biophys Res Commun. 2003; 304: 22–25.

Du JR, Li X, Zhang R, Qian ZM. Tanshinone inhibits intimal hyperplasia in the ligated carotid artery in mice. J Ethnopharmacol. 2005; 98:319-22.

Du ZM, Hu CF, Shao Q, Huang MY, Kou CW, Zhu XF, Zeng YX, Shao JY. Upregulation of caveolin-1 and CD147 expression in nasopharyngeal carcinoma enhanced tumor cell migration and correlated with poor prognosis of the patients. Int J Cancer. 2009; 125: 1832-41.

Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995; 92: 657–71

Galbiati F, Volonte D, Engelman JA, Watanabe G, Burk R, Pestell RG, Lisanti MP. Targeted downregulation of caveolin-1 is sufficient to drive cell transformation and hyperactivate the p42/44 MAP kinase cascade. EMBO J. 1998; 17: 6633-48.
Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis. The good, the bad, and the ugly. Circ Res. 2002; 90: 251-62.

Garcia-Cardena G, Oh P, Liu J, Schnitzer JE, Sessa WC. Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci U S A. 1996; 93: 6448–53.

George SJ, Dwivedi A. MMPs, cadherins, and cell proliferation. Trends Cardiovasc Med. 2004; 14: 100-5.

Gough PJ, Gomez IG, Wille PT, Raines EW. Macrophage expression of active MMP-9 induces acute plaque disruption in apoE-deficient mice. J Clin Invest. 2006; 116: 59-69.

Grande-Garcia A, del Pozo MA. Caveolin-1 in cell polarization and directional migration. Eur J Cell Biol. 2008; 87: 641-7.

Grande-Garcia A, Echarri A, de Rooij J, Alderson NB, Waterman-Storer CM, Valdivielso JM, del Pozo MA. Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases. J Cell Biol. 2007; 177: 683-94.

Gratton JP, Bernatchez P, Sessa WC. Caveolae and caveolins in the cardiovascular system. Circ Res. 2004; 94: 1408-17.

Guo Z, Su W, Allen S, Pang H, Daugherty A, Smart E, Gong MC. COX-2 up-regulation and vascular smooth muscle contractile hyperreactivity in spontaneous diabetic db/db mice. Cardiovasc Res. 2005; 67: 723-35.

Han YH, Kim SH, Kim SZ, Park WH. Caspase inhibitor decreases apoptosis in pyrogallol-treated lung cancer Calu-6 cells via the prevention of GSH depletion. Int J Oncol. 2008; 33: 1099-105.

Han YH, Kim SH, Kim SZ, Park WH. Pyrogallol inhibits the growth of human pulmonary adenocarcinoma A549 cells by arresting cell cycle and triggering apoptosis. J Biochem Mol Toxicol. 2009; 23: 36-42.

Han YH, Park WH. Pyrogallol-induced calf pulmonary arterial endothelial cell death via caspase-dependent apoptosis and GSH depletion. Food Chem Toxicol. 2010: 558-63
Hao H, Gabbiani G, Bochaton-Piallat ML. Arterial smooth muscle cell heterogeneity: implications for atherosclerosis and restenosis development. Arterioscler Thromb Vasc Biol. 2003; 23: 1510–20.

Hardin CD, Vallejo J. Caveolins in vascular smooth muscle: form organizing function. Cardiovasc Res. 2006; 69: 808-15.

Hassan GS, Williams TM, Frank PG, Lisanti MP. Caveolin-1-deficient aortic smooth muscle cells show cell autonomous abnormalities in proliferation, migration, and endothelin-based signal transduction. Am J Physiol Heart Circ Physiol. 2006; 290: H2393-401.

Hedin U, Roy J, Tran PK. Control of smooth muscle cell proliferation in vascular disease. Curr Opin Lipidol. 2004; 15: 559-65.

Hijova E. Matrix metalloproteinases: their biological functions and clinical implications. Bratisl Lek Listy. 2005; 106: 127-32.

Kajita M, Itoh Y, Chiba T, Mori H, Okada A, Kinoh H, Seiki M. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J. Cell Biol. 2001; 153: 893–904.

Kappert K, Sparwel J, Sandin A, Seiler A, Siebolts U, Leppanen O, Rosenkranz S, Ostman A. Antioxidants relieve phosphatase inhibition and reduce PDGF signaling in cultured VSMCs and in restenosis. Arterioscler Thromb Vasc Biol. 2006; 26: 2644-51.

Kawabe J, Okumura S, Nathanson MA, Hasebe N, Ishikawa Y. Caveolin regulates microtubule polymerization in the vascular smooth muscle cells. Biochem Biophys Res Commun. 2006; 342: 164–169.

Kim HN, Chung HS. Caveolin-1 inhibits membrane-type 1 matrix metalloproteinase activity. BMB Rep. 2008; 41: 858-62.

Korshunov VA, Berk BC. Flow-induced vascular remodeling in the mouse: a model for carotid intima-media thickening. Arterioscler Thromb Vasc Biol. 2003; 23: 2185-91.

Kunitomo M. Oxidative stress and atherosclerosis. Yakugaku Zasshi. 2007; 127: 1997-2014.

Kurokawa K, Itoh RE, Yoshizaki H, Nakamura YO, Matsuda M. Coactivation of Rac1 and Cdc42 at lamellipodia and membrane ruffles induced by epidermal growth factor. Mol Biol Cell. 2004; 15: 1003-10.

Lee RT. Matrix metalloproteinase inhibition and the prevention of heart failure. Trends Cardiovasc Med. 2001; 1: 202-5.

Liang J, Liu E, Yu Y, Kitajima S, Koike T, Jin Y, Morimoto M, Hatakeyama K, Asada Y, Watanabe T, Sasaguri Y, Watanabe S, Fan J. Macrophage metalloelastase accelerates the progression of atherosclerosis in transgenic rabbits. Circulation. 2006; 113: 1993-2001.

Libby P, Aikawa M. Stabilization of atherosclerotic plaques: new mechanisms and clinical targets. Nat Med. 2002; 8: 1257–62.

Libby P, Geng Y, Aikawa M, Schoenbeck U, Mach F, Clinton S, Sukhova G, Lee R. Macrophages and atherosclerotic plaque stability. Curr Opin Lipidol 1996; 7: 330-5.

Libby P. Molecular bases of the acute coronary syndromes. Circulation 1995; 91: 2844-50.

Libby P. The interface of atherosclerosis and thrombosis: basic mechanisms. Vasc Med. 1998; 3: 225-9.

Lijnen HR. Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost. 2001; 86: 324-33.

Little PJ, Ivey ME, Osman N. Endothelin-1 actions on vascular smooth muscle cell functions as a target for the prevention of atherosclerosis. Curr Vasc Pharmacol. 2008; 6: 195-203.

Lizarbe TR, Tarin C, Gomez M, Lavin B, Aracil E, Orte LM, Zaragoza C. Nitric oxide induces the progression of abdominal aortic aneurysms through the matrix metalloproteinase inducer EMMPRIN. Am J Pathol. 2009; 175: 1421-30.

Lluri G, Jaworski DM. Regulation of TIMP-2, MT1-MMP, and MMP-2 expression during C2C12 differentiation. Muscle Nerve. 2005; 32: 492-9.

Loftus IM, Naylor AR, Bell PRF, Thompson MM. Matrix metalloproteinases and atherosclerotic plaque instability. Br J Surg. 2002; 89: 680-94.

Ma C, Chegini N. Regulation of matrix metalloproteinases (MMPs) and their tissue inhibitors in human myometrial smooth muscle cells by TGF-beta1. Mol Hum Reprod. 1999; 5: 950-4.

Matsumoto Y, Park IK, Kohyama K. Matrix metalloproteinase (MMP)-9, but not MMP-2, is involved in the development and progression of C protein-induced myocarditis and subsequent dilated cardiomyopathy. J Immunol. 2009; 183: 4773-81.

McCarty OJ, Larson MK, Auger JM, Kalia N, Atkinson BT, Pearce AC, Ruf S, Henderson RB, Tybulewicz VL, Machesky LM, Watson SP. Rac1 is essential for platelet lamellipodia formation and aggregate stability under flow. J Biol Chem. 2005; 280: 39474-84.

Murata T, Lin MI, Huang Y, Yu J, Bauer PM, Giordano FJ, Sessa WC. Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. J Exp Med. 2007; 204: 2373-82.

Nam D, Ni CW, Rezvan A, Suo J, Budzyn K, Llanos A, Harrison D, Giddens D, Jo H. Partial carotid ligation is a model of acutely induced disturbed flow, leading to rapid endothelial dysfunction and atherosclerosis. Am J Physiol Heart Circ Physiol. 2009; 297: H1535-43.

Navarro A, Anand-Apte B, Parat MO. A role for caveolae in cell migration. FASEB J. 2004; 18:1801-11.

Newby AC. Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res. 2006; 69: 614-24.

Nobes CD, Hall A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell. 1995; 81: 53-62.

Norgauer J, Hildenbrand T, Idzko M, Panther E, Bandemir E, Hartmann M, Vanscheidt W, Herouy Y. Elevated expression of extracellular matrix metalloproteinase inducer (CD147) and membrane-type matrix metalloproteinases in venous leg ulcers. Br J Dermatol. 2002; 147: 1180-86.

Okamoto T, Schlegel A, Scherer PE, Lisanti MP. Caveolins, a family of scaffolding proteins for organizing "preassembled signaling complexes" at the plasma membrane. J Biol Chem. 1998; 273: 5419-22.

Okker-Reitsma GH, Dziadkowiec IJ, Groot CG. Isolation and culture of smooth muscle cells from human umbilical cord arteries. In Vitro Cell Dev Biol. 1985; 21: 22-5.

Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev. 2004; 84: 767-801.

Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. 1995; 75: 487–517.

Pauly RR, Passaniti A, Bilato C, Monticone R, Cheng L, Papadopoulos N, Gluzband YA, Smith L, Weinstein C, Lakatta EG. Migration of cultured vascular smooth muscle cells through a basement membrane barrier requires type IV collagenase activity and is inhibited by cellular differentiation. Circ Res. 1994; 75: 41-54.

Raffetto JD, Khalil RA. Matrix metalloproteinases and their inhibitors in vascular remodeling and vascular disease. Biochem Pharmacol. 2008; 75: 346-59.

Ray JL, Leach R, Herbert JM, Benson M. Isolation of vascular smooth muscle cells from a single murine aorta. Methods Cell Sci. 2001; 23: 185-8.

Razani B, Engelman JA, Wang XB, Schubert W, Zhang XL, Marks CB, Macaluso F, Russell RG, Li M, Pestell RG, Di Vizio D, Hou H Jr, Kneitz B, Lagaud G, Christ GJ, Edelmann W, Lisanti MP. Caveolin-1 null mice are viable but show evidence of hyperproliferative and vascular abnormalities. J Biol Chem. 2001; 276: 38121-38.

Rensen SS, Doevendans PA, van Eys GJ. Regulation and characteristics of vascular smooth muscle cell phenotypic diversity. Neth Heart J. 2007; 15: 100-8.

Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med. 1996; 20:933-56.

Robert AH. The pathogenesis of atherosclerosis. J. Clinica Chimica Acta, 1996; 246: 21-38.

Rodriguez-Feo JA, Hellings WE, Moll FL, De Vries JP, van Middelaar BJ, Algra A, Sluijter J, Velema E, van den Broek T, Sessa WC, De Kleijn DP, Pasterkamp G. Caveolin-1 influences vascular protease activity and is a potential stabilizing factor in human atherosclerotic disease. PLoS One. 2008; 3: e2612.

Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature. 1993; 362: 801–9.

Ruusalepp A, Vaage J, Valen G. A model of neointima formation in the atherosclerotic carotid artery of mice. Interact Cardiovasc Thorac Surg. 2003; 2: 196-200.

Schmoker JD, McPartland KJ, Fellinger EK, Boyum J, Trombley L, Ittleman FP, Terrien C, Stanley A, Howard A. Matrix metalloproteinase and tissue inhibitor expression in atherosclerotic and nonatherosclerotic thoracic aortic aneurysms. J Thorac Cardiovasc Surg. 2007; 133: 155-61.

Schwartz SM, Virmani R, Rosenfeld ME. The good smooth muscle cells in atherosclerosis. Curr Atheroscler Rep. 2000; 2: 422–29.

Schwencke C, Schmeisser A, Walter C, Wachter R, Pannach S, Weck B, Braun-Dullaeus RC, Kasper M, Strasser RH. Decreased caveolin-1 in atheroma: loss of antiproliferative control of vascular smooth muscle cells in atherosclerosis. Cardiovasc Res. 2005; 68: 128-35.

Shofuda K, Yasumitsu H, Nishihashi A, Miki K, Miyazaki K. Expression of three membrane-type matrix metalloproteinases (MT-MMPs) in rat vascular smooth muscle cells and characterization of MT3-MMPs with and without transmembrane domain. J Biol Chem. 1997; 272: 9749-54.

Sluijter JP, de Kleijn DP, Pasterkamp G. Vascular remodeling and protease inhibition-bench to bedside. Cardiovasc Res. 2006; 69: 595-603.

Stamenkovic I. Matrix metalloproteinases in tumor invasion and metastasis. Semin Cancer Biol. 2000; 10: 415-33.

Suzuki K, Enghild JJ, Morodomi T, Salvesen G, Nagase H. Mechanisms of activation of tissue procollagenase by matrix metalloproteinase 3 (stromelysin). Biochemistry. 1990; 29: 10261-70.

Thyberg J. Differences in caveolae dynamics in vascular smooth muscle cells of different phenotypes. Lab Invest. 2000; 80: 915-29.

Tyagi SC. Physiology and homeostasis of extracellular matrix: cardiovascular adaptation and remodeling. Pathophysiology. 2000; 7: 177-82.

Verma RP, Hansch C. Matrix metalloproteinases (MMPs): chemical-biological functions and (Q) SARs. Bioorg Med Chem. 2007; 15: 2223-68.

Werb Z. ECM and cell surface proteolysis: regulating cellular ecology. Cell. 1997; 91: 439-42.

Will H, Atkinson SJ, Butler GS, Smith B, Murphy G. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J Biol Chem. 1996; 271: 17119-23.

Williams TM, Medina F, Badano I, Hazan RB, Hutchinson J, Muller WJ, Chopra NG, Scherer PE, Pestell RG, Lisanti MP. Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo. Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem. 2004; 279: 51630-46.

Yamada J, Yoshimura S, Yamakawa H, Sawada M, Nakagawa M, Hara S, Kaku Y, Iwama T, Naganawa T, Banno Y, Nakashima S, Sakai N. Cell permeable ROS scavengers, Tiron and Tempol, rescue PC12 cell death caused by pyrogallol or hypoxia/reoxygenation. Neurosci Res. 2003; 45:1-8.

Yang CJ, Wang CS, Hung JY, Huang HW, Chia YC, Wang PH, Weng CF, Huang MS. Pyrogallol induces G2-M arrest in human lung cancer cells and inhibits tumor growth in an animal model. Lung Cancer. 2009; 66: 162-8.

Yeh D, Chen C, Sun MZ, Shao S, Hao L, Song Y, Gong L, Hu J, Wang Q. Caveolin-1 is an important factor for the metastasis and proliferation of human small cell lung cancer NCI-H446 cell. Anat Rec (Hoboken). 2009; 292: 1584-92.

Yu A, Murphy A, Stetler-Stevenson W. 72-kDa Gelatinase (Gelatinase A); structure activation, regulation and substrate specificity. In: Parks W, Mecham R, editors. Matrix Metalloproteinases, 1998; 4: 85–113.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top