跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/04 13:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李承運
研究生(外文):Lee, Chen-Yun
論文名稱:考慮生產與運送批量之滾動式供應鏈排程研究
論文名稱(外文):Rolling Supply Chain Scheduling with Respect to Production and Delivery Lot-size
指導教授:黃榮華黃榮華引用關係
指導教授(外文):Huang,Rong-Hwa
口試委員:蔡東亦黃靜蓮
口試委員(外文):Tsai, Tung-IHuang, Ching-Lien
口試日期:2015-07-22
學位類別:碩士
校院名稱:輔仁大學
系所名稱:企業管理學系管理學碩士班
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2015
畢業學年度:103
語文別:中文
論文頁數:53
中文關鍵詞:滾動式供應鏈排程生產批量運送批量混合式基因演算法
外文關鍵詞:rolling supply chain schedulingproduction lot-sizedelivery lot-sizehybrid genetic algorithm
相關次數:
  • 被引用被引用:1
  • 點閱點閱:219
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:1
考慮供應鏈庫存與運送成本問題一直受到高度的關注,妥善規劃供應鏈排程可以有效減少供應鏈成本浪費,提高整體作業效率。現有供應鏈的研究中,多考慮訂單式(make-to-order)生產環境,同時大多研究將交運成本與生產批次合而為一,簡化問題的複雜度。本研究旨在契約式生產(make-to-contract)環境下同時考慮進料批量、生產批量與交運批量,建立一套滾動式供應鏈排程,能夠在滿足顧客要求達交需求的前提下,有效求解原料庫存、成品庫存、運送與提早交運成本最小化之生產與交運批量。以此為基礎建構一套解程序,使用滾動時程計畫與基因演算法做結合,分別以運送批量、成品庫存以及提早交運數量著眼獲致可行解,考量實際情況進行綜合評估,提供決策者得以選用最適的進料、生產與交運批量之供應鏈排程計畫。模擬實務的電腦測試結果顯示,在不同的成本結構與需求環境下,此探索解與資訊完全的排程進行比較,此套方法都可以達到90%以上的資訊完全解接近率。
Consider the inventory and delivery cost problem always be attentionin the supply chain issues. With the fitness scheduling can reduce the cost wasted and improved the whole processing efficiency. Most of existing researches focused on the make-to-order environment, and considered the delivery cost into the production batch to simplify the question. However, this study aims to consider the material lot-size, production lot-size, and delivery lot-size to construct a rolling supply chain scheduling in the make-to-contract environment. To fulfill the customers’ demand and minimize the total supply chain cost. This study provides a scheduling method. Combine the genetic algorithm and the rolling horizon planning method become a heuristic solution. In this method, we provide three different viewpoints for schedulingincluding delivery size (DS), finish good stock (FS), and early delivery (ED). And use the rolling horizon planning to improve the solution. It can provide the decision makers a satisfying production and delivery quantity under the premise which fulfill all the requirements of consumers. Finally the simulating data test shows the Hybrid-GA can achieve 90% approaching rate relative to the prefect information solution.
第壹章 緒論 1
第一節 研究背景與動機 1
第二節 研究範圍與限制 3
第三節 研究目的 5
第四節 研究流程 6
第貳章 文獻探討 7
第一節 供應鏈 7
第二節 滾動時程計畫 12
第三節 批量生產排程 15
第四節 探索式演算法 17
第參章 契約式供應鏈排程問題 23
第一節 問題描述 23
第二節 數學模式建構 25
第三節 求解程序 28
第四節 釋例 31
第肆章 資料測試與分析 38
第一節 測試資料說明 38
第二節 測試結果與分析 41

圖目錄
圖1-1-1 供應鏈結構圖 2
圖1-2-1 三階層供應鏈排程示意圖 3
圖1-4-1 研究流程圖 6
圖2-2-1 滾動時程計畫示意圖 13
圖2-4-1 輪盤式機率示意圖 20
圖2-4-2 單點交配示意圖 21
圖2-4-3 多點交配示意圖 21
圖3-1-1 契約式供應鏈 23
圖3-3-1 求解程序示意圖 28
圖3-3-2 可行解DS示意圖 29
圖3-3-3 可行解FS示意圖 30
圖3-3-4 可行解ED示意圖 30
圖3-4-1 契約式供應鏈決策圖 33
圖3-4-2 供應鏈排程示意圖 35
圖3-4-3 成本抵換示意圖 35

表目錄
表2-4-1 二進位編碼示意表 18
表2-4-2 實數編碼示意表 19
表2-4-3 符號編碼示意表 19
表3-4-1 限制與成本參數表 31
表3-4-2 顧客需求表 31
表3-4-3 使用DS之三階層供應鏈排程表 36
表3-4-4 使用FS之三階層供應鏈排程表 37
表3-4-5 使用ED之三階層供應鏈排程表 37
表3-4-6 成本比較表 37
表4-1-1 成本結構 39
表4-1-2 限制參數表 39
表4-1-3 資料型態 39
表4-1-4 基因演算法之參數 40
表4-1-5 滾動時程計畫測試表 42
表4-2-1 有效性分析表1(TypeⅠ) 42
表4-2-2 有效性分析表1(TypeⅡ) 43
表4-2-3 有效性分析表1(TypeⅢ) 44
1.Agnetis, A., Hall, N. G., & Pacciarelli, D. (2006). Supply chain scheduling: Sequence coordination. Discrete Applied Mathematics, 154(15), 2044-2063.
2.Beamon, B. M. (1999). Measuring supply chain performance. International Journal of Operations & Production Management, 19(3), 275-292.
3.Cakici, E., Mason, S. J., & Kurz, M. E. (2012). Multi-objective analysis of an integrated supply chain scheduling problem. International Journal of Production Research, 50(10), 2624-2638.
4.Caridi, M., Perego, A., & Tumino, A. (2013). Measuring supply chain visibility in the apparel industry. Benchmarking: An International Journal, 20(1), 25-44.
5.Choi, T.M., Yeung, W.K., & Cheng, T. C. E. (2013). Scheduling and co-ordination of multi-suppliers single-warehouse-operator single-manufacturer supply chains with variable production rates and storage costs. International Journal of Production Research, 51(9), 2593-2601.
6.Choudhary, D., & Shankar, R. (2014). A goal programming model for joint decision making of inventory lot-size, supplier selection and carrier selection. Computers & Industrial Engineering, 71, 1-9.
7.Dorigo, M., & Gambardella, L. M. (1997). Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1(1), 53-66.
8.Gicquel, C., & Minoux, M. (2015). Multi-product valid inequalities for the discrete lot-sizing and scheduling problem. Computers & Operations Research, 54, 12-20.
9.Glover, F. (1977). Tabu Search.Bostom: Kluwer Academic Publishers.
10.Hall, N. G., & Potts, C. N. (2003). Supply chain scheduling: Batching and delivery. Operations Research, 51(4), 566-584.
11.Holland, J. H. (1975). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MI: U Michigan Press.
12.Huang, R.H. (2010). Multi-objective job-shop scheduling with lot-splitting production. International Journal of Production Economics, 124(1), 206-213.
13.Ivanov, D., Sokolov, B., & Dolgui, A. (2013). Multi-stage supply chain scheduling with non-preemptive continuous operations and execution control. International Journal of Production Research, 52(13), 4059-4077.
14.Karimi, N., & Davoudpour, H. (2015). A branch and bound method for solving multi-factory supply chain scheduling with batch delivery. Expert Systems with Applications, 42(1), 238-245.
15.Kostin, A. M., Guillén-Gosálbez, G., Mele, F. D., Bagajewicz, M. J., & Jiménez, L. (2011). A novel rolling horizon strategy for the strategic planning of supply chains. Application to the sugar cane industry of Argentina. Computers & Chemical Engineering, 35(11), 2540-2563.
16.Masih-Tehrani, B., Xu, S. H., Kumara, S., & Li, H. (2011). A single-period analysis of a two-echelon inventory system with dependent supply uncertainty.Transportation Research Part B: Methodological, 45(8), 1128-1151.
17.Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., &Teller, E. (1953). Equation of state calculations by fast computing machines. The Journal of Chemical Physics, 21(6), 1087.
18.Nedaei, H., & Mahlooji, H. (2014). Joint multi-objective master production scheduling and rolling horizon policy analysis in make-to-order supply chains. International Journal of Production Research, 52(9), 2767-2787.
19.Neto, R. T., & Godinho Filho, M. (2011). An ant colony optimization approach to a permutational flowshop scheduling problem with outsourcing allowed. Computers & Operations Research, 38(9), 1286-1293.
20.Rabbani, M., Monshi, M., & Rafiei, H. (2014). A new AATP model with considering supply chain lead-times and resources and scheduling of the orders in flowshop production systems: A graph-theoretic view. Applied Mathematical Modelling, 38(24), 6098-6107.
21.Rakke, J. G., Stålhane, M., Moe, C. R., Christiansen, M., Andersson, H., Fagerholt, K., & Norstad, I. (2011). A rolling horizon heuristic for creating a liquefied natural gas annual delivery program. Transportation Research Part C: Emerging Technologies, 19(5), 896-911.
22.Sahin, F., Narayanan, A., & Robinson, E. P. (2013). Rolling horizon planning in supply chains: review, implications and directions for future research. International Journal of Production Research, 51(18), 5413-5436.
23.Schütz, P., & Tomasgard, A. (2011). The impact of flexibility on operational supply chain planning. International Journal of Production Economics, 134(2), 300-311.
24.Selvarajah, E., & Zhang, R. (2014). Supply chain scheduling at the manufacturer to minimize inventory holding and delivery costs. International Journal of Production Economics, 147, 117-124.
25.Song, D.P., Dong, J.X., & Xu, J. (2014). Integrated inventory management and supplier base reduction in a supply chain with multiple uncertainties. European Journal of Operational Research, 232(3), 522-536.
26.Stadtler, H. (2011). Multi-level single machine lot-sizing and scheduling with zero lead times. European Journal of Operational Research, 209(3), 241-252.
27.Tang, L., Jing, K., & He, J. (2013). An improved ant colony optimisation algorithm for three-tier supply chain scheduling based on networked manufacturing. International Journal of Production Research, 51(13), 3945-3962.
28.Thomas, A., Venkateswaran, J., Singh, G., & Krishnamoorthy, M. (2014). A resource constrained scheduling problem with multiple independent producers and a single linking constraint: A coal supply chain example. European Journal of Operational Research, 236(3), 946-956.
29.Vyve, M., Wolsey, L. A., & Yaman, H. (2013). Relaxations for two-level multi-item lot-sizing problems. Mathematical Programming, 146(1-2), 495-523.
30.Wang, G., Lei, L., & Lee, K. (2014). Supply chain scheduling with receiving deadlines and non-linear penalty. Journal of the Operational Research Society, 66(3), 380-391.
31.Wang, L., Pei, J., Pardalos, P. M., Liu, X., Fan, W., & Yang, S. (2014). Coordination of production and transportation in supply chain scheduling. Journal of Industrial and Management Optimization, 11(2), 399-419.
32.Yao, J., & Liu, L. (2009). Optimization analysis of supply chain scheduling in mass customization. International Journal of Production Economics, 117(1), 197-211.
33.Zegordi, S. H., Abadi, I. N. K., & Nia, M. A. B. (2010). A novel genetic algorithm for solving production and transportation scheduling in a two-stage supply chain. Computers & Industrial Engineering, 58(3), 373-381.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top